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Abstract: In some experiments, the levels of some factors are difficult to change; then fractional
factorial split-plot (FFSP) designs are suitable for selection. In an FFSP design, the factors are divided
into two classes—the whole plot (WP) and subplot (SP) factors. In some experiments, the selection of
the levels of the WP factors can affect that of the SP factors, which attracts much attention to the WP
factors. Paying more attention to the WP factors, a new optimality criterion for selecting such FFSP
designs is proposed. The robustness of the proposed method is discussed. The construction method
of the optimal designs under the new criterion is studied.
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1. Introduction

The study of optimal fractional factorial (FF) designs under the minimum aberration
(MA) criterion has received significant attention over the last few decades, motivated by
the wide applicability in industrial and agricultural experiments. When an FF experiment
is performed, the order of the experimental runs is usually required to be completely
randomized. However, it is sometimes difficult or expensive to change the levels of certain
factors in an experiment. Fractional factorial split-plot (FFSP) designs which involve a
two-phase randomization represent a practical design option in such situations. In general,
the factors in an FFSP design are divided into two types. The factors with hard-to-change
levels are called whole plot (WP) factors, and the rest are called subplot (SP) factors. If the
WP and SP factors have different importance, their difference must be taken into account
when choosing the optimal FFSP design.

To choose the optimal FF design, Box and Hunter [1] proposed the maximum resolu-
tion criterion, which indicates that a good design should have the maximum resolution.
However, in most cases there are several designs with the same maximum resolution and
the maximum resolution criterion cannot distinguish them. Hence, the MA criterion was
proposed to choose optimal FF designs by Fries and Hunter [2]. They assumed that the
experimenter believes initially that main effects are more important than two-factor interac-
tions, that two-factor interactions are more important than three-factor interactions, and so
forth. Wu and Hamada [3] summarized these as the effect hierarchy principle. Cheng et al. [4]
explored the model robustness of minimum aberration designs. Chen and Wu [5] gave the
construction method of MA 2n−k designs with k ≤ 4. Tang and Wu [6] developed the method
of complementary designs to construct 2n−kdesigns with large k. Huang et al. [7] extended
the MA criterion to FFSP designs and discussed the method of constructing MA-FFSP designs.
Bingham and Sitter [8] gave a construction method of the MA FFSP designs and tabulated
a catalog of two-level MA FFSP designs with 8 and 16 runs. Bingham and Sitter [9] listed
MA FFSP designs with up to 32 runs. Bingham and Sitter [10] discussed the impact of
randomization restrictions on the choice of FFSP designs and developed theoretical results
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on MA FFSP designs. Yang et al. [11] extended the results of Bingham and Sitter [10] to
multi-level designs. Bingham et al. [12] considered the construction of the optimal FFSP
design with few WP factors. Yang and Lin [13] considered split-plot designs with factors of
three, more than three, or mixed levels and tabulated a catalog of mixed-level MA FFSP
designs with 18 and 36 runs. Since the WP and SP factors no longer have interchangeability,
frequently, there exist several nonisomorphic MA FFSP designs. Cheng and Mukerjee [14]
and Mukerjee and Fang [15] explored a criterion of minimum secondary aberration (MSA),
called the MSA-FFSP criterion, which considered a secondary wordlength pattern and
significantly narrowed the class of competing nonisomorphic MA FFSP designs. Ai and
Zhang [16] constructed the MSA-FFSP designs in terms of consulting designs.

We should note that the underlying assumption of MA criterion is that all factors are
of equal interest. It is not always the case. Box and Jones [17] and Bingham and Sitter [18]
investigated the applicability of split-plot designs for robust product experimentation,
focusing on the WP-by-SP interactions. The following example from Montgomery [19]
shows two scenarios that WP factors are more important than SP factors. The experiments
considered the effect of five factors on the uniformity in a single-wafer plasma etching
process. The response variable of primary interest was the resulting uniformity data, and
thus smaller is better. The experiments had three factors that were relatively difficult
to change on the etching tool, each at two levels: A = electrode gap, B = gas flow, and
C = pressure. It also had two factors that were easy to change from run to run, each at two
levels: D = time and E = radio frequency power. The experimenters used a 2(3+2)−(0+1)

design with factors A, B, and C in the whole plots and factors D and E in the subplots. The
design generator was E = ABCD. They assumed that all interactions beyond order two were
negligible. A half-normal plot of the effects in Montgomery [19] identified five significant
effects, depending on visual interpretation. The effects that they identified as active were A,
B, E, AB and AE. The two-factor interaction graphs indicated that the treatment combination
A high, B low, and E low or A low, B high, and E high would produce low levels of the
uniformity response. On the one hand, the factors on the etching tool, namely WP factors,
are difficult to change during etching, the experimenters may pay more attention to them.
In fact, experimenters often pay more attention to the WP factors since the WP factors are
usually difficult or expensive to change the levels. On the other hand, the experimenter
usually randomly chooses one of the level combinations of the WP factors and then run all
the SP factor settings while keeping the WP factors fixed in an FFSP experiment. Therefore,
the experimenters focused on the WP factors in this experiment since the selection of the
levels of A affected that of E. Tichon et al. [20] considered five design scenarios that may be
important to practitioners, and the setting “WP factors are more important than SP factors”
was one of the five scenarios they considered. Wang et al. [21] proposed the minimum
aberration of type WP (WP-MA) criterion for the experiments with the WP factors being
more important than the SP factors. Zhao and Zhao [22] constructed WP-MA FFSP designs
via complementary sets.

Although the WP-MA criterion is a good choice for selecting optimal FFSP designs,
it still has some shortcomings. Firstly, the WP-MA criterion considers that all WP factor
effects are more possibly significant than SP factor effects, even higher order WP factor
effects are more possibly significant than lower order SP factor effects. Obviously, this
contradicts the effect hierarchy principle. Secondly, the robustness of the WP-MA design
is not tested. In addition, Box and Hunter [1] think that a good design should have the
maximum resolution. The WP-MA design does not meet this requirement. If the levels
of SP factors are affected by the selection of the levels of WP factors in some experiments,
experimenter needs to focus on the WP factors firstly. In this paper, a new criterion that
focuses on the WP factors is proposed under the following effect hierarchy principle:

i Lower-order factorial effects are more important than higher-order ones;
ii The WP factorial effects are more important than the SP factorial effects of the

same order;
iii The WP/SP factorial effects of the same order are equally likely to be important.
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The rest of the paper is organized as follows. Section 2 proposes the new criterion
and introduces some useful results. Section 3 tests the robustness of the WS-MA design.
Section 4 compares the new criterion with the WP-MA criterion. Section 5 is devoted to
constructing optimal FFSP designs under the new criterion. Section 6 gives a conclusion.
All proofs are given in Appendix A.

2. Preliminaries

Consider the setup of a factorial experiment, which involves n two-level factors. The
n factors are divided into two groups, n1(1 ≤ n1 < n) WP factors and n2(= n− n1) SP
factors. A defining word is called WP type if it involves only WP factors and SP type if
it involves at least one SP factor. A regular FFSP design d, denoted as 2(n1+n2)−(k1+k2),
involves n1 WP factors and n2 SP factors and is determined by k1 independent WP type
defining words and k2 independent SP type defining words. The group generated by the
k1 + k2 independent defining words is called the defining contrast subgroup of d. Many
concepts of FFSP designs remain the same as FF designs, such as defining relation and
resolution. The following definition of isomorphism is from Mukerjee and Wu [23].

Definition 1. Two 2(n1+n2)−(k1+k2) FFSP designs are isomorphic if the defining contrast subgroup
of one design can be obtained from that of the other by permuting the WP factor labels and/or the SP
factor labels.

For a regular 2(n1+n2)−(k1+k2) FFSP design d, let Ai,0(d) and Ai,1(d) be the numbers
of WP and SP type defining words with length i, respectively, and Ai(d) be the number
of defining words with length i. Obviously, Ai(d) = Ai,0(d) + Ai,1(d). The wordlength
pattern of a 2(n1+n2)−(k1+k2) design d is defined as:

W(d) = (A1(d), A2(d), . . . , An1+n2(d)). (1)

Let r be the smallest integer i such that Ai(d) 6= 0, which is called the resolution of design
d. A 2(n1+n2)−(k1+k2) design d which sequentially minimizes W(d) is called an MA design.
Wang et al. [21] defined the following two n-dimensional sequences

W1(d) = (A1,0(d), A2,0(d), . . . , An1,0(d), 0, . . . , 0), (2)

W2(d) = (A1,1(d), A2,1(d), . . . , An1+n2,1(d)), (3)

and called them WP and SP wordlength patterns of design d, respectively.

Definition 2. Let d1 and d2 be two 2(n1+n2)−(k1+k2) designs. Under the condition that WP
factors are more important than SP factors, d1 is said to have less aberration of type WP than
d2 if either (i)Ar,0(d1) < Ar,0(d2) for the smallest integer r such that Ar,0(d1) 6= Ar,0(d2) or
(ii)Ai,0(d1) = Ai,0(d2) for any i but Ar,1(d1) < Ar,1(d2) for the smallest integer r such that
Ar,1(d1) 6= Ar,1(d2). An FFSP design d is called a minimum aberration design of type WP
(WP-MA) if no other design has less aberration of type WP than d.

Define the 2n-dimensional sequence:

W0(d) = (A1,0(d), A1,1(d), . . . , An1+n2,0(d), An1+n2,1(d)), (4)

and call it the whole-subplot (WS) wordlength pattern to discriminate it from the wordlength
pattern (1) and the WP and SP wordlength patterns (2) and (3).

Definition 3. With 2(n1+n2)−(k1+k2) FFSP designs d1 and d2, let r be the smallest integer i such
that (Ai,0(d1), Ai,1(d1)) 6= (Ai,0(d2), Ai,1(d2)). If (i) Ar,0(d1) < Ar,0(d2) or (ii) Ar,0(d1) =
Ar,0(d2) but Ar,1(d1) < Ar,1(d2), then d1 is said to have less aberration of type WS than d2. An
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FFSP design d is called a minimum aberration design of type WS (WS-MA) if no other design has
less aberration of type WS than d.

The WP-MA criterion based on Definition 2 requires sequential minimization of W1(d)
and W2(d). This means that it sacrifices most of the accuracy of the estimation of the SP
factor effects while focusing on WP factors. In contrast, the WS-MA criterion based on
Definition 3 minimizes W0(d) sequentially. Thus, it guarantees that a lower order factorial
effect is always more important than a higher order factorial effect, even when the WP
factor is concerned. Therefore, compared with the WP-MA designs, the WS-MA designs
always have better resolution and robustness.

The following Lemma 1 is the basis for constructing the WS-MA FFSP designs.

Lemma 1. If a 2(n1+n2)−(k1+k2) design d is a WS-MA design, then each of the n1 + n2 factors is
involved in some defining word of d.

The proof of Lemma 1 is similar to the proof of Theorem 4. We omit it to save space.
The following Theorem 1 proves that WS-MA designs have the maximum resolution.

This is important to construct the WS-MA designs. The proof of Theorem 1 is given in
Appendix A.

Theorem 1. If a 2(n1+n2)−(k1+k2) design d is a WS-MA design, then it has the same resolution as
the MA 2(n1+n2)−(k1+k2) design.

3. Robustness of the WS-MA Designs

Cheng et al. [4] explored model robustness of MA designs with two different criteria:
estimation capacity and the expected number of suspect two-factor interactions. Under the
assumption that the number of active two-factor interactions is not too large, they showed
that the MA two-level factorial designs are highly efficient with respect to two criteria for
model robustness. We will test the robustness of the WS-MA design in a similar manner to
Cheng et al. [4]. In this section, we only consider designs with resolution three or higher.
All the interactions involving three or more factors are assumed to be negligible.

In a 2(n1+n2)−(k1+k2) design d of resolution three or higher, 2n1+n2 − 2k1+k2 effects that
appear outside the definition words are partitioned into g = 2(n1+n2)−(k1+k2) − 1 alias sets.
Clearly, n1 + n2 alias sets contain main effects. Let f = g− (n1 + n2) and denote the alias
sets not containing main effects by M1, . . . , M f . Denote the rest by M f+1, . . . , Mg. For
1 ≤ i ≤ g, let mi(d) be the number of two-factor interactions in Mi. Then we have the
following equations from Cheng et al. [4]:

f

∑
i=1

mi(d) = 3A3(d) = 3(A3,0(d) + A3,1(d))

and
g

∑
i=1

mi(d)2 −
(

n
2

)
= 6A4(d) = 6(A4,0(d) + A4,1(d)).

They proved that “a design has large estimation capacity if ∑
f
i=1 mi(d) is as large as

possible and the mi(d)s are as uniform as possible” and “if the number of active interactions
is not large, a fractional factorial design will approximately minimize the expected number
of suspect two-factor interactions if it minimizes 3A3(d) and, subject to that condition,
minimizes ∑

g
i=1 mi(d)2”.

Since the design d has resolution three or more, we have A1(d) = A2(d) = 0. By
Definition 2, a WS-MA design sequentially minimizes A3,0(d), A3,1(d), A4,0(d) and A4,1(d).
Then a WS-MA design of resolution three or higher approximately maximizes ∑

f
i=1 mi(d),
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and among the designs approximately maximizing ∑
f
i=1 mi(d) it approximately minimizes

∑
g
i=1 mi(d)2. Thus, the WS-MA FFSP design is also robust.

4. Comparison with WP-MA Designs

Wang et al. (2019) proposed the WP-MA criterion for the experiments with the WP
factors being more important than the SP factors. In this section, we will compare the
WS-MA criterion with the WP-MA criterion. Some optimal designs under the WS-MA
criterion are consistent with that under the WP-MA criterion. The results are summarized
in Theorems 2 and 3.

Theorem 2. For any WP-MA 2(n1+n2)−(k1+k2) design d, let p be the largest integer i such that
Ai,0(d) 6= 0. If Aj,1(d) = 0, j = 1, . . . , p− 2, then d is also a WS-MA design.

Theorem 3. For any WP-MA 2(n1+n2)−(k1+k2) FFSP design d, if it is an MA FF design, then it is
also a WS-MA design.

According to Theorems 2 and 3, we only need to construct WS-MA designs that may
be different from WP-MA designs. This reduces the number of WS-MA designs that need
to be constructed.

Theorem 4 shows that many WS-MA designs are different from the WP-MA designs.

Theorem 4. For any WP-MA 2(n1+n2)−(k1+1) design d, let k be the smallest integer i such that
Ai,0(d) 6= 0. If Aj,1(d) = 0, j = k− 1, . . . , n1 + n2, then there must exist a design which has less
aberration of type WS than d.

The following example shows the advantages of the WS-MA criterion over the WP-
MA criterion on selecting FFSP designs when the WP factors are more important than the
SP factors.

Example 1. Consider 2(10+5)−(1+2) designs under the three criteria above. Here n1 = 10,
n2 = 5, k1 = 1, k2 = 2. Let t1, . . . , t10 denote the WP factors and t11, . . . , t15 denote the SP
factors. The design dWS with the defining relation

I = t1t2t3t4t5t6t7t8t9 = t1t2t3t4t5t12t13t14t15 = t1t2t3t6t7t10t11t14t15 = t1t2t3t8t9t10t11t12t13
= t4t5t6t7t10t11t12t13 = t4t5t8t9t10t11t14t15 = t6t7t8t9t12t13t14t15

is the WS-MA design. The design dWP with the defining relation

I = t1t2t3t4t5t6t7t8t9t10 = t1t2t3t4t9t11t12t14 = t1t2t5t6t9t12t13t15 = t3t4t5t6t11t13t14t15
= t5t6t7t8t10t11t12t14 = t3t4t7t8t10t12t13t15 = t1t2t7t8t9t10t11t13t14t15

is the WP-MA design. The design dMA with the defining relation

I = t1t2t3t4t7t8t9t10 = t1t2t3t4t5t6t13t14t15 = t1t2t5t6t7t8t11t12 = t1t2t9t10t11t12t13t14t15
= t3t4t7t8t11t12t13t14t15 = t3t4t5t6t9t10t11t12 = t5t6t7t8t9t10t13t14t15

is an MA design.
Table 1 lists the wordlength patterns of the three designs above. Clearly, dWS and dMA have

the same wordlength pattern, hence dWS is also an MA design.
In an FFSP design, SP effects in the SP alias sets are tested against the SP level error while

other effects are tested against the WP level error. An SP alias set is one which contains no WP
effects. Since the WP level error is typically larger than the SP level error, a good FFSP design should
avoid confounding of the most important effects of the SP factors with any WP type effect. One
such measure is given by the secondary wordlength pattern of an FFSP design d which is denoted
as W∗(d) = (B1(d), B2(d), . . . , Bn1+n2(d)), where Bi(d) is the number of the ith-order SP type
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effects aliased with WP type effects. See Mukerjee and Fang [15] for more details. Table 2 provides
the secondary wordlength patterns of the three designs. Clearly, dWS and dWP have the approximate
secondary wordlength patterns which are significantly better than that of dMA. So, in 2(10+5)−(1+2)

designs, the WS-MA design is also the approximate optimal design under MSA criterion.

Table 1. W(d) of dWS, dWP and dMA.

d W(d)

dWS (0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0)
dWP (0, 0, 0, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0, 0, 0)
dMA (0, 0, 0, 0, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0)

Table 2. W∗(d) of dWS, dWP and dMA.

d W∗(d)

dWS (0, 0, 4, 42, 200, 570, 1080, 1425, 1341, 900, 420, 130, 24, 2, 0)
dWP (0, 0, 4, 42, 200, 570, 1080, 1423, 1344, 899, 420, 130, 24, 2, 0)
dMA (0, 2, 22, 110, 332, 680, 1014, 1162, 1076, 834, 530, 262, 92, 20, 2)

In view of the different application situations of WS-MA criterion and WP-MA crite-
rion, we propose which criteria should be used in the following two scenarios:

1. When the experimenters have no prior information about the importance of the
factors, or they have some prior information about the significance of the WP factors
and do not want to sacrifice too much of the accuracy of the estimation of the SP factor
effects, the WS-MA criterion or MA criterion should be used.

2. When the experimenters have some prior information about the significance of the
WP factors, and they do not care too much about the effects of SP factors, the WP-MA
criterion should be used.

5. Construction of WS-MA FFSP Designs

When k1 and k2 are small, the construction of WS-MA designs is relatively easy since
the defining contrast subgroup of a 2(n1+n2)−(k1+k2) design has few elements. Construction
of WS-MA 2(n1+n2)−(k1+k2) designs with small k1 and k2 is discussed in this section. We use
1, . . . , n1 + n2 to denote the factors in the following.

5.1. WS-MA 2(n1+n2)−(k1+k2) Designs with k1 = 0 or k2 = 0

Theorem 5. Regarding a 2(n1+n2)−(0+k2) design d0 as an FF 2n−k2 design d, where n = n1 + n2,
if the 2n−k2 design d is an MA design, then d0 is a WS-MA design.

Theorem 6. An FFSP 2(n1+n2)−(k1+0) design is a WS-MA design if and only if its WP factors
constitute an MA 2n1−k1 design.

Theorems 5 and 6 can be easily derived from (4) and Definition 3. Note that W1(d)
(W2(d)) is a sequence of zeros when k1 (k2) equals 0. Therefore, by Theorem 2, the WS-MA
design is the same as the WP-MA design when k1 = 0 or k2 = 0.

5.2. WS-MA 2(n1+n2)−(k1+k2) Designs with k1 = 1, 2, 3 and k2 = 1

This section gives the construction of 2(n1+n2)−(k1+1) designs with k1 = 1, 2, 3. From
Section 4, we need only to consider the construction of WS-MA designs which do not satisfy
the conditions of Theorems 2 and 3.

Consider the construction of the WS-MA 2(n1+n2)−(1+1) designs first. Let n1 + n2 =
3m + r for 0 ≤ r < 3. By Theorem 2, we just consider the case of n2 ≤ n1/2. For i = 1, 2, 3,
define
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Bi =

{
(im−m + 1)(im−m + 2) · · · (im)(3m + i), i ≤ r,
(im−m + 1)(im−m + 2) · · · (im), r < i ≤ 3.

(5)

By n1 = 3m + r− n2 and n2 ≤ n1/2, it’s easy to get n2 ≤ m. Thus, the n2 SP factors can be
labeled as 2m + 1, . . . , 2m + n2 and arranged in B3.

Theorem 7. The 2(n1+n2)−(1+1) design d0 with n2 ≤ n1/2 and the defining relation I = B1B2 =
B1B3 = B2B3, where B1, B2, B3 are given in (5), is a WS-MA design.

Next consider the construction of the WS-MA 2(n1+n2)−(2+1) designs. Let n1 + n2 =
7m + r for 0 ≤ r < 7. Similarly, we just consider the case of n2 ≤ n1/6. For i = 1, . . . , 7,
define

Bi =

{
(im−m + 1)(im−m + 2) · · · (im)(6m + i), i ≤ r,
(im−m + 1)(im−m + 2) · · · (im), r < i ≤ 7.

Similar to (5), we can get n2 ≤ m. Thus, the n2 SP factors can be labeled as 6m + 1, . . . , 6m +
n2 and arranged in B7.

When r 6= 3, let
B = {B1B2B6B7, B1B4B5B6, B3B4B6B7}. (6)

When r = 3, switch B4 and B7 in (6). Then we have the following theorem.

Theorem 8. The 2(n1+n2)−(2+1) design d0 with n2 ≤ n1/6, whose defining contrast subgroup is
generated by the three words in (6), is a WS-MA design.

Next, consider the construction of the WS-MA 2(n1+n2)−(3+1) designs. Let n1 + n2 =
15m + r for 0 ≤ r < 15. By Theorems 2 and 3, we just consider the case of n2 ≤ n1/14.
When r = 5 and n2 ≤ m− 1, i = 1, . . . , 15, define

Bi =


(im−m + 1)(im−m + 2) · · · (im)(15m + i− 1), i = 1, 2, 3,
(im−m + 1)(im−m + 2) · · · (im)(15m + i− 2), i = 5, 6, 7,
(im−m + 1)(im−m + 2) · · · (im), i = 4, 8, . . . , 14,
(im−m + 1)(im−m + 2) · · · (im− 1), i = 15.

In other cases, define

Bi =

{
(im−m + 1)(im−m + 2) · · · (im)(15m + i), i ≤ r,
(im−m + 1)(im−m + 2) · · · (im), r < i ≤ 15.

Similar to (5), the n2 SP factors can be labeled as 14m + 1, . . . , 14m + n2 and arranged in
B15.

When r 6= 5, 6, 7, 10, 11 and when r = 5 and n2 ≤ m− 1, let

B = {B15B14B12B9B8B7B6B1, B15B13B11B9B8B7B5B2,

B15B14B11B10B8B6B5B3, B15B13B12B10B7B6B5B4}.
(7)

When r = 5 and n2 = m, switch B5 and B15 in (7). When r = 6, 7, switch B8 and B15 in (7).
When r = 10, switch B14 and B15 in (7). When r = 11, switch B12 and B15 in (7).

Theorem 9. The 2(n1+n2)−(3+1) design d0 with n2 ≤ n1/14, whose defining contrast subgroup is
generated by the four words in (7), is a WS-MA design.

By Theorems 2 and 3, Theorems 7–9 construct all WS-MA designs that may be different
from WP-MA designs.
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5.3. WS-MA 2(n1+n2)−(1+2) Designs

Let n1 + n2 = 7m + r, 0 ≤ r < 7. We consider the case of n2 ≤ 3[n1/4], where [n1/4]
is the integer part of n1/4. For i = 1, . . . , 7, define:

Bi =

{
(im−m + 1)(im−m + 2) · · · (im)(7m + i), i ≤ r,
(im−m + 1)(im−m + 2) · · · (im), i > r.

(8)

By n1 = 7m + r − n2 and n2 ≤ 3[n1/4], we can get n2 ≤ 3m + 2. When n2 ≤ 3m, the
n2 SP factors can be labeled as 4m + 1, . . . , 4m + [(n2 + 2)/3], 5m + 1, . . . , 5m + [(n2 +
1)/3], 6m + 1, . . . , 6m + [n2/3]. When n2 = 3m + 1, the n2 SP factors can be labeled as
4m + 1, . . . , 7m, 7m + 5. When n2 = 3m + 2, the n2 SP factors can be labeled as 4m +
1, . . . , 7m, 7m + 5, 7m + 6. Then, all SP factors are arranged in B5, B6 and B7.

Let
B = {B1B2B6B7, B1B4B5B6, B3B4B6B7}. (9)

Theorem 10. The 2(n1+n2)−(1+2) design d0 with n2 ≤ 3[n1/4], whose defining contrast subgroup
is generated by the three words in (9), is a WS-MA design.

Theorem 10 constructs some WS-MA designs. By Theorem 2, only one case needs to
be considered, that is n1 = 4m + 3 and n2 = 3m + 1.

Now consider the case of n1 = 4m + 3 and n2 = 3m + 1. In this case, the n2 SP factors
are 2m + 1, . . . , 5m, 7m + 3. Clearly, all SP factors are arranged in B3, B4 and B5 by (8).

Theorem 11. The 2(n1+n2)−(1+2) design d0 with n1 = 4m + 3 and n2 = 3m + 1, whose defining
contrast subgroup is generated by the three words in (9), is a WS-MA design.

By Theorems 2, Theorems 10 and 11 construct all WS-MA designs that may be different
from WP-MA designs.

6. Conclusions

The FFSP designs are widely used when the levels of some factors are very difficult
or expensive to change or control. Sometimes the selection of the levels of the WP factors
affects that of the SP factors. This requires the experimenters to pay more attention to
WP factors. However, the experimenters perhaps do not want to sacrifice too much of the
accuracy of the estimation of SP factor effects. In this paper, we first propose a criterion for
selecting 2(n1+n2)−(k1+k2) designs, that is, the minimum aberration of type WS (WS-MA).
Then we test the robustness of the WS-MA design and compare the WS-MA criterion with
the other criteria. Finally, construction methods of WS-MA FFSP designs with small k1 and
k2 are studied.

In some situations, there are many factors to be tested. Then designs with larger k1 and
k2 are needed. Note that the WS-MA designs are not unique sometimes. The new criterion
is needed to further discriminate them. We look forward to exploring the problems in
future research.
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Abbreviations
The following abbreviations are used in this manuscript:

FF Fractional factorial
MA Minimum aberration
FFSP Fractional factorial split-plot
WP Whole plot
SP Sub plot
MSA Minimum secondary aberration
WP-MA Minimum aberration of type WP
WS-MA Minimum aberration of type WS

Appendix A

Lemmas A1 from Wang et al. [21] will be helpful. The proof of Lemma A2 is similar to
that of Lemma 3.2.1 in Mukerjee and Wu [23]. We omitted it to save space here.

Lemma A1. For any 2(n1+n2)−(k1+k2) design,
(a) ∑n

i=1 Ai,0 + ∑n
i=1 Ai,1 = 2k − 1,

(b) ∑n
i=1 iAi,0 + ∑n

i=1 iAi,1 = n2k−1,
(c) either all the defining words have even lengths or 2k−1 of them have odd lengths, where
n = n1 + n2, k = k1 + k2.

Lemma A2. For any 2(n1+n2)−(k1+k2) design,
(a) ∑n1

i=1 Ai,0 = 2k1 − 1,
(b) ∑n1

i=1 iAi,0 = n′12k1−1,
(c) either all the WP defining words have even lengths or 2k1−1 of them have odd lengths, where n′1
is a positive integer with n′1 ≤ n1.

Proof of Theorem 1. Suppose that d1 is a WS-MA FFSP design with resolution r1, d2 is an
MA FFSP design with resolution r2, and r2 > r1. This means that (Ai,0(d1), Ai,1(d1)) =
(Ai,0(d2), Ai,1(d2)) = (0, 0) for 0 ≤ i < r1 and (Ar1,0(d1), Ar1,1(d1)) 6= (Ar1,0(d2), Ar1,1(d2))
= (0, 0). By Definition 2, it is not difficult to conclude that d2 has less aberration of type WS
than d1. This contradiction completes the proof.

Proof of Theorem 2. Let d1 be a WS-MA design with a different WS wordlength pattern
from the WP-MA design d2. Suppose the WS wordlength pattern of d1 is

W0(d1) = (A1,0(d1), A1,1(d1), . . . , An1+n2,0(d1), An1+n2,1(d1)).

Let r be the smallest integer i such that (Ai,0(d1), Ai,1(d1)) 6= (Ai,0(d2), Ai,1(d2)). By
Definition 3, we have (i) Ar,0(d1) < Ar,0(d2) or (ii) Ar,0(d1) = Ar,0(d2), Ar,1(d1) < Ar,1(d2).

For (i). By the definition of resolution, we have Aj,0(d1) = Aj,0(d2), j = 1, . . . , r− 1.
Since Ar,0(d1) < Ar,0(d2), the design d1 has less aberration of type WP than d2. This
contradicts the assumption that d2 is a WP-MA design.

For (ii). (a) When r < p− 1, we have Ar,1(d2) = 0 and then Ar,1(d1) ≥ Ar,1(d2) which
contradicts Ar,1(d1) < Ar,1(d2).

(b) When r = p− 1, if Ar+1,0(d1) < Ar+1,0(d2), then d1 has less aberration of type WP
than d2 due to Ai,0(d1) = Ai,0(d2), i = 1, . . . , r. This contradicts with the assumption that
d2 is a WP-MA design. If Ar+1,0(d1) = Ar+1,0(d2), since Ai,0(d2) = 0, i = r + 2, . . . , n1 + n2,
we have ∑r+1

i=1 Ai,0(d1) = ∑r+1
i=1 Ai,0(d2) = 2k1 − 1. So Ai,0(d1) = 0, i = r + 2, . . . , n1 + n2

and W1(d1) = W1(d2). Since Ar,1(d1) < Ar,1(d2), the design d1 has less aberration of type



Mathematics 2022, 10, 700 10 of 12

WP than d2 which also contradicts with the assumption that d2 is a WP-MA design. If
Ar+1,0(d1) > Ar+1,0(d2), then ∑n

i=1 Ai,0(d1) ≥ ∑r+1
i=1 Ai,0(d1) > ∑r+1

i=1 Ai,0(d2) = 2k1 − 1,
which contradicts Lemma A2(a).

(c) When r > p − 1, similar to the case of Ar+1,0(d1) = Ar+1,0(d2) in (b), we have
W1(d1) = W1(d2). Since Ar,1(d1) < Ar,1(d2), d1 has less aberration of type WP than d2
which again contradicts with the assumption that d2 is a WP-MA design.

Proof of Theorem 3. Suppose d1 is a WS-MA design and d2 is a WP-MA design. Let r be
the smallest integer i such that (Ai,0(d1), Ai,1(d1)) 6= (Ai,0(d2), Ai,1(d2)). From Definition 3,
we have (i) Ar,0(d1) < Ar,0(d2) or (ii) Ar,0(d1) = Ar,0(d2), Ar,1(d1) < Ar,1(d2).

If (i) holds, then Aj,0(d1) = Aj,0(d2), j = 1, . . . , r − 1. Thus d1 has less aberration of
type WP than d2 since Ar,0(d1) < Ar,0(d2). This contradicts with the assumption that d2 is
a WP-MA design.

If (ii) holds, then d1 has less aberration than d2. This contradicts with the condition
that d2 is an MA FF design in Theorem 3.

Proof of Theorem 4. Suppose d1 is a WP-MA 2(n1+n2)−(k1+1) design and w1 is a WP factor
of d1. Suppose the independent defining words of d1 are W1, . . . , Wk1 , S, where
Wi (i = 1, . . . , k1) and S denote the WP and SP type defining words, respectively. By
Definition 2, the WP part of d1 is an MA 2n1−k1 design and hence every WP factor is in-
volved in some WP type defining word by Lemma 2.5.1 in Mukerjee and Wu [23]. It
is obvious that S contains at least one WP factor. Otherwise, we can construct a design
which has less aberration of type WP than d1 by adding a WP factor to S. Without loss of
generality, suppose w1 is involved in S. Consider d2 determined by deleting the letter w1
from the WP type defining words of d1. Then we can check that d2 has less aberration of
type WS than d1.

Theorems 5 and 6 can be easily derived from (4) and Definition 3.
The proofs of the Theorems 7–11 are similar. We only give the proof of r = 4 and 5 in

Theorem 9 to save space.

Proof of Theorem 9. For r = 4, d0 has the WS wordlength pattern

W0(d0) = (0, . . . , 0, 4, 6, 0, 0, 4, 1, 0, . . . , 0),

where A8m+1,1(d0) = 4, A8m+2,0(d0) = 6, A8m+3,1(d0) = 4, A8m+4,0(d0) = 1. We can
directly check that d0 has the same resolution as the MA 2n−4 design, where n = n1 + n2.
To prove that d0 is an WS-MA design, we only need to consider the 2(n1+n2)−(3+1) designs
d that might have less aberration of type WS than d0.

According to Lemmas A1 and A2, design d needs to satisfy the following conditions:

• ∑n
i=1 Ai,0(d) + ∑n

i=1 Ai,1(d) = 15,
• ∑n

i=1 iAi,0(d) + ∑n
i=1 iAi,1(d) = 8n,

• either all the defining words have even lengths or eight of them have odd lengths,
• ∑n1

i=1 Ai,0(d) = 7,
• ∑n1

i=1 iAi,0(d) is divisible by four, and
• either all the WP defining words have even lengths or four of them have odd lengths.

Under the above conditions, we obtain the following two WS wordlength patterns of
possible designs with less aberration of type WS than d0:

W0(d) = (0, . . . , 0, 4, 2, 4, 4, 0, 1, 0, . . . , 0), (A1)

where A8m+1,1(d) = 4, A8m+2,0(d) = 2, A8m+2,1(d) = 4, A8m+3,0(d) = 4, A8m+4,0(d) = 1,

W0(d) = (0, . . . , 0, 4, 3, 4, 3, 0, 0, 0, 1, 0, . . . , 0), (A2)

where A8m+1,1(d) = 4, A8m+2,0(d) = 3, A8m+2,1(d) = 4, A8m+3,0(d) = 3, A8m+5,0(d) = 1.
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We first consider the pattern (A1). Since the sum of the lengthes of the shortest SP
type defining word and the longest WP type defining word is 16m + 5 > n, there is at
least a WP factor shared by one of the shortest SP type defining words and the longest WP
type defining word. Let l denote such a WP factor. By deleting all the words containing
l, the remaining words define a 2(n

′
1+n′2)−(2+1) design d1 with n′1 ≤ n1 and n′2 ≤ n2. From

Lemma A1(c), there are 3 defining words of length 8m + 2. By Lemma A1(a) and (b) and
Lemma A2(a), we have

n′1+n′2

∑
i=1

Ai,0(d1) +
n′1+n′2

∑
i=1

Ai,1(d1) = 7,

n′1+n′2

∑
i=1

iAi,0(d1) +
n′1+n′2

∑
i=1

iAi,1(d1) = 4(n′1 + n′2),

n′1

∑
i=1

Ai,0(d1) = 3.

Only two wordlength patterns of type WS of design d1 satisfy the above three equations:

W0(d1) = (0, . . . , 0, 3, 2, 1, 1, 0, . . . , 0),

where A8m+1,1(d1) = 3, A8m+2,0(d1) = 2, A8m+2,1(d1) = 1, A8m+3,0(d1) = 1 and

W0(d1) = (0, . . . , 0, 1, 0, 3, 3, 0, . . . , 0),

where A8m+1,1(d1) = 1, A8m+2,1(d1) = 3, A8m+3,0(d1) = 3. They all violate Lemma A2(c).
Hence, there is no design having the WS wordlength pattern (A1). Similarly, we can prove
that there is no design having the WS wordlength pattern (A2).

For r = 5 and n2 ≤ m− 1, d0 has the WS wordlength pattern

W0(d0) = (0, . . . , 0, 3, 8, 0, 0, 3, 0, 0, 0, 1, 0 . . . , 0),

where A8m+2,0(d) = 3, A8m+2,1(d0) = 8, A8m+4,0(d0) = 3, A8m+6,0(d0) = 1. The conditions
are similar to those in r = 4 and we obtain the following WS wordlength pattern of possible
designs with less aberration of type WS than d0

W0(d) = (0, . . . , 0, 2, 8, 0, 0, 5, 0, . . . , 0), (A3)

where A8m+2,0(d) = 2, A8m+2,1(d) = 8, A8m+4,0(d) = 5.
Now we prove that there is no design having WS wordlength pattern (A3). Let l be a

WP factor that appears in one of the two shortest WP defining words but not in the other.
By deleting all the defining words containing l, the remaining defining words define a
2(n

′
1+n′2)−(2+1) design d1 with n′1 ≤ n1 and n′2 ≤ n2. By Lemma A1(a) and Lemma A2(a),

only one wordlength pattern of type WS of possible design d1 meets the conditions:

W0(d1) = (0, . . . , 0, 1, 4, 0, 0, 2, 0, . . . , 0),

where A8m+2,0(d1) = 1, A8m+2,1(d1) = 4, A8m+4,0(d1) = 2. This violates Lemma A1(b).
For r = 5 and n2 = m, d0 has the WS wordlength pattern

W0(d0) = (0, . . . , 0, 4, 6, 0, 0, 3, 2, 0, . . . , 0),
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where A8m+2,0(d0) = 4, A8m+2,1(d0) = 6, A8m+4,0(d0) = 3, A8m+4,1(d0) = 2. The condi-
tions are also similar to those in r = 4 and we obtain the following two WS wordlength
patterns of possible designs with less aberration of type WS than d0:

W0(d) = (0, . . . , 0, 2, 8, 0, 0, 5, 0, . . . , 0), (A4)

where A8m+2,0(d) = 2, A8m+2,1(d) = 8, A8m+4,0(d) = 5,

W0(d) = (0, . . . , 0, 3, 8, 0, 0, 3, 0, 0, 0, 1, 0 . . . , 0), (A5)

where A8m+2,0(d) = 3, A8m+2,1(d) = 8, A8m+4,0(d) = 3, A8m+6,0(d) = 1.
Similar to (A3), we can prove that there is no design having the WS wordlength pattern

(A4). For (A5), we have

n1

∑
i=1

iAi,0(d) = 56m + 24 = 4× (14m + 6) > 4× (14m + 5),

which violates Lemma A2(b). So, there is no design having the WS wordlength pat-
tern (A5).
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