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Abstract: The main goal of this article is to provide estimates of mild solutions of Navier–Stokes
equations with arbitrary external forces in Rn for n ≥ 2 on proposed weak Herz-type Besov–Morrey
spaces. These spaces are larger than known Besov–Morrey and Herz spaces considered in known
works on Navier–Stokes equations. Morrey–Sobolev and Besov–Morrey spaces based on weak-Herz
space denoted as WK̇α

p,qMs
µ and WK̇α

p,qṄ s
µ,r, respectively, represent new properties and interpolations.

This class of spaces and its developed properties could also be employed to study elliptic, parabolic,
and conservation-law type PDEs.
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1. Introduction

Let us consider Rn with n ≥ 2, and a fixed interval with 0 < T < ∞. The incompress-
ible Navier–Stokes equations system in Rn × (0, T) is written in the form

∂u
∂t
− ∆u + u · ∇u +∇p = f ,

∇ · u = 0,
u(0) = u0,

(1)

where vector values u and f denote the velocity of the fluid and external forces acting on
the fluid, respectively. The scalar value p represents the pressure.

The nonstationary Navier–Stokes equations are invariant under the following change
of scaling:

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2 p(λx, λ2t), ∀t > 0.

In Refs. [1,2], the authors considered the problem of applying hybrid spaces, such
as Besov–Morrey or Triebel–Lizorkin–Morrey spaces, to nonlinear PDEs, for instance,
nonlinear heat and Navier–Stokes equations. Properties of mild solutions of PDE in
Lebesgue [3] and Sobolev [4] spaces were investigated. Additionally, they were observed
in spaces, such as Hardy [5], Besov [6], Triebel–Lizorkin [7], Morrey [8], Herz [9], and other
spaces.

There are several works [7,10,11], where properties of the Besov–Morrey space were
provided, and they also included related Kθ,r-method real interpolations. The properties of
the Besov-weak Herz space BWK̇α,s

p,q,r were explored in [12]. Herz-type Besov K̇α,p
q Bs

β and

K̇α,p
q Fs

β Triebel–Lizorkin spaces were considered in [6,7]. These spaces were introduced to
explore global solutions of NSE in the case that f = 0 and to prove the Jawerth–Franke
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embeddings, respectively. The unique maximally strong solution for the Navier–Stokes
equations with f 6= 0 on corresponding Triebel–Lizorkin–Lorentz spaces was constructed
in [13]. The application of hybrid and global spaces to nonlinear heat and Navier–Stokes
equations was observed in [1]. In addition, properties of local spaces and their applications
to mild solutions of NSE with f 6= 0 were researched in [2].

The main idea of this article came from researching mild solutions of (1) on Besov–
Morrey spaces, which were investigated in [10], and exploring the NSE with f = 0, realized
on (weak) Herz spaces in [14]. According to the results of Besov–Morrey and (weak) Herz
spaces from [10,14], we imply estimates of mild solutions of NSE with f 6= 0 on weak
Herz-type Besov–Morrey spaces. In this article, we propose weak Herz-type Besov–Morrey
space in Definition 5. Then, we prove interpolations of offered spaces, and three estimates
containing the heat semigroup operator are proved in Lemma 1, engaging an estimate on
weak Herz space in Corollary 1.

The proposed weak Herz-type Besov–Morrey spaces were not attended to in other
works, so proper interpolations, wavelets, atomic decomposition, and embeddings are not
provided. Theorem 3 and Lemma 1 can be used to find new interpolations and wavelet
characterizations and further establish relations with other global and hybrid spaces.

Let us denote a projection onto the divergence-free vector fields, so-called Leray
projection P, on both sides of the first equation of (1). Then, we study the simpler equation,
where P∇p = 0. P can be represented as

P = (Pij)1≤i,j≤n, Pij = δij + RiRj, i, j = 1, ..., n,

where (δij)1≤i,j≤n is the Kronecker symbol and Rj, j = 1, ..., n are the Riesz transforms that
can be represented by using Fourier transform:

Rj f =
∂j√
−∆

f = F−1
(
−

iξ j

|ξ|F f
)
=

Γ
(

n+1
2

)
π

n+1
2

lim
ε→0

∫
‖y‖≥ε

f (y)
xi − yj

‖x− y‖n+1 dy,

F ( f (x)) =
∫
Rn

f (x)e−2πix·ξ dx, F−1( f (x)) = F ( f (−x)),

where f ∈ S(Rn).
From the Calderón–Zygmund operator theory, for 1 < p < ∞, 0 ≤ µ < n, the

boundedness of Riesz transform Rj on the Morrey spaceMp,µ implies that P is bounded on
Mp,µ, as it was remarked in [10].

The Navier–Stokes equations can be transformed into an integral formula

u(t) = et∆u0 +
∫ t

0
e(t−s)∆P f (s)ds + B(u, u), (2)

where

B(u, v) = −1
2

∫ t

0
e(t−s)∆P∇ · (u⊗ v + v⊗ u)ds. (3)

Functions that satisfy (2) are called mild solutions of the NSE.
Applying P to (1), we have{

∂u
∂t + Au + P∇ · (u⊗ u) = P f on (0, T),
u(0) = u0,

(4)

where A = −P∆ is the Stokes operator.
In [15], mild solutions were constructed for Lα,∞(0, ∞; Lp,∞(Rn)), where 2/α+ n/p = 3

and max{1, n/3} < p < ∞. In [10], these properties were extended to homogeneous
Besov–Morrey space Ṅ s

q,µ,r(Rn), and especially estimates of heat semigroup operator et∆.
According to interpolations and Lemma 2.3 from [12] for Besov-weak Herz space, we prove
the interpolation of the proposed weak Herz-type Besov–Morrey spaces. The motivation



Mathematics 2022, 10, 680 3 of 13

of our research is to propose new hybrid spaces (weak Herz-type Besov–Morrey spaces),
which contain the properties of several global spaces (Herz, Besov–Morrey spaces), and
explore mild solutions of the incompressible Navier–Stokes equations with f 6= 0. Mild
solutions were researched on Besov–Morrey and Herz spaces with proper interpolations,
embeddings, and estimates in [9,10], respectively. Herz-type Besov K̇α,p

q Bs
β and Triebel–

Lizorkin spaces K̇α,p
q Fs

β were engaged in [6], and BWK̇α,s
p,q,r Besov-weak Herz spaces in [12].

In our manuscript, we explore weak Herz-type Besov–Morrey spaces WK̇α
p,qṄ s

µ,r(Rn),
which were not met in other publications. Therefore, it would be reasonable to provide
their properties and study mild solutions of NSE on such spaces.

Our main results are

Theorem 1. Let 1 < q < ∞, 0 ≤ µ ≤ n, 1 < α < α0 < ∞, −∞ < s < s0 < ∞, and
−n/q < γ < δ < n(1− 1/q) such that

2
α0
− s0 =

2
α
− s− 2. (5)

Let 1 < p < ∞ satisfy

n− µ

q
≤ n− µ

p
<

2
α0

+
n− µ

q
. (6)

Suppose that a measurable function u on Rn × (0, T) is a mild solution of (4) and satisfies
ut, Au ∈ Lα,r(0, T; WK̇γ

q,lṄ
s
µ,∞) with u(0) = u0 ∈WK̇δ

p,lṄ
k
µ,r for k = 2 + (n− µ)/p− (2/α +

(n− µ)/q− s).
Then

u ∈ Lα0,r(0, T; WK̇δ
q,lṄ

s0
µ,1) (7)

holds with estimate

‖u‖Lα0,r(0,T;WK̇γ
q,lṄ

s0
µ,1)
≤ ‖et∆Pu0‖Lα0,r(0,T;WK̇γ

q,lṄ
s0
µ,1)

+C
(
‖ut‖Lα,r(0,T;WK̇δ

q,lṄ
s
µ,∞) + ‖Au‖Lα,r(0,T;WK̇δ

q,lṄ
s
µ,∞)

)
, (8)

‖et∆Pu0‖Lα0,r(0,∞;WK̇γ
q,lṄ

s0
µ,1)
≤ C‖u0‖WK̇δ

p,lṄ
k
µ,r

,

where C = C(n, µ, q, α, γ, δ, s, p, r) is independent of u, u0 and T.

Theorem 2. Let 1 < q < ∞, 1 < α < ∞, 0 ≤ µ < n and−1 < s < ∞, 2/α+(n−µ)/q− s = 3,
1 < p ≤ q and 1 ≤ r ≤ ∞ with δ ∈ R, 1 < l ≤ ∞ and a measurable function u on Rn × (0, T) is
a mild solution of (4) with

ut, Au ∈ Lα,r(0, T; WK̇δ
q,lṄ

s
µ,∞),

u0 ∈WK̇δ
p,lṄ

−1+(n−µ)/p
µ,r

it holds P(u · ∇u) ∈ Lα,r(0, T; WK̇δ
q,lṄ

s
µ,∞) with the estimate

‖P(u · ∇u)‖Lα,r(0,T;WK̇δ
q,lṄ

s
µ,∞) ≤ C

(
‖et∆Pu0‖Lα0,r(0,T;WK̇δ

q,lṄ
s0
µ,1)

+‖ut‖Lα,r(0,T;WK̇δ
q,lṄ

s
µ,∞) + ‖Au‖Lα,r(0,T;WK̇δ

q,lṄ
s
µ,∞)

)2
, (9)

for some α < α0 < ∞, q < ∞ and s < s0 < ∞ such that 2/α0 + (n− µ)/q− s0 = 1, where
C = C(n, µ, δ, q, α, α0, p, r) is a constant independent of 0 < T ≤ ∞.
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Extension of (weak) Herz and Besov–Morrey spaces to (weak) Herz-type Besov–
Morrey spaces allows enlarging their properties, especially embedding, interpolations
and wavelet characterizations. Moreover, atomic partition and oscillations in [1,2] make
it possible to receive useful estimates and properties of solutions of nonlinear PDEs and
investigate the similar extension on Triebel–Lizorkin–Morrey spaces researching mild
solutions of NSE with f 6= 0.

Our main contribution to the theory of Navier–Stokes equations is providing estimates
in Theorems 1 and 2, which can state the maximal Lorentz regularity of a function u in
WK̇α

p,qṄ s
µ,r(Rn). This allows us to approach establishing the unique existence of local strong

or weak solutions to (1) for arbitrary large initial data u0 and large external force f . The
maximal Lorentz regularity is exploited for Besov–Morrey space in [10].

The current problems of nonlinear PDEs need new tools, such as embedding, wavelet
characterization, real (K- and J-types), and complex interpolations. In our manuscript,
we provide and prove K-real interpolations for Herz-type Besov–Morrey spaces, which
allow us to imply useful estimates in Lemma 1 that engage not only the heat semigroup
operator, but also the Leray projection. In [10] in Lemma 2.2 for Besov–Morrey spaces,
Leray projection was not considered, while for weak Herz space, it was shown in [14]
(Corollary 1). Combining Besov–Morrey and weak Herz spaces into Herz-type Besov–
Morrey spaces allows us to imply new estimates in Lemma 1, by real interpolation of new
proposed spaces.

The remaining of the paper is organized as follows. Section 2 is devoted to function
spaces and some necessary statements from references. Section 3 defines weak Herz-type
Besov–Morrey space and proves the interpolation of Theorem 3 and Lemma 1, providing
essential properties and inequalities. Section 4 and 5 are devoted to proofs of Theorems 1 and
2, respectively.

2. Preliminaries

Let us define Herz spaces and weak Herz spaces from [12,14], respectively.

Definition 1. Let 0 < p, q ≤ ∞ and α ∈ R. One defines the homogeneous Herz space K̇α
p,q(Rn) as

K̇α
p,q(Rn) := { f ∈ Lp

loc(R
n \ {0}); ‖ f ‖K̇α

p,q
< ∞},

where

‖ f ‖K̇α
p,q

:=

(
∑
k∈Z

2kαq‖ f ‖q
Lp(Ak)

)1/q

,

with the usual modification in the case q = ∞ and Ak = {x ∈ Rn; 2k−1 ≤ |x| < 2k}.

Definition 2. With the same conditions as in Definition 1, one defines the homogeneous weak Herz
space WK̇α

p,q(Rn) as the space of measurable functions such that

‖ f ‖WK̇α
p,q

:=


(

∑k∈Z 2kαq‖ f ‖q
Lp,∞(Ak)

)1/q
< ∞, q < ∞,

supk∈Z 2kα‖ f ‖Lp,∞(Ak)
, q = ∞.

The definition and the basic properties of Morrey and Besov-Morrey spaces were
reviewed in [6,10,11].

From [13] we recall the definition of the Lorentz space that is applied in the proofs of
the theorems.

Definition 3. Let (X, λ) be a measure space. Let f be a scalar-valued λ-measurable function and

λ f (s) = λ{x : f (x) > s}.
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Then, the rearrangement function f ∗ of f is defined by: f ∗(t) = inf{λ f (s) ≤ t}. For any
1 < p < ∞, the Lorentz spaces Lp,q is defined by Lp,q(Rn) = { f : Rn −→ C : ‖ f ‖Lp,q < ∞} where

‖ f ‖Lp,q :=


q
p

[∫ ∞
0

(
t

1
p f ∗(t)

)
dt
] 1

q
, q < ∞,

supt>0{t
1
p f ∗(t)}, q = ∞.

In particular, Lp,∞ agrees with the weak-Lp (Marcinkiewicz space) Lp∗(Rn) = { f :
Rn −→ C : ‖ f ‖Lp∗ < ∞}, equipped with the following quasi-norm ‖ f ‖Lp∗ = supt>0 t

[
λ f (t)

]
.

Let us provide Proposition 2.2 and Corollary 2.1 in [14].

Proposition 1. Let 1 < p ≤ ∞, 0 < q ≤ ∞ and m ≥ 0. Suppose that φ ∈ Lr,1 ∩ L∞, with
1 = 1/p + 1/r, such that |φ(x)| ≤ C∗|x|−m for all x 6= 0. Then we have the following estimate:

‖ f ∗ φ‖
WK̇β

p,q
≤ C‖ f ‖WK̇α

p,q
(10)

provided that one of the following cases holds:

(1) 0 < q ≤ 1, − n
p < β ≤ α ≤ n(1− 1

p ), n− α + β ≤ m and β + n
p < m,

(2) 1 < q < ∞, − n
p < β ≤ α < n(1− 1

p ) and n− α + β ≤ m,

(3) q = ∞, − n
p ≤ β ≤ α < n(1− 1

p ), n− α + β ≤ m and n(1− 1
p )− α < m.

Some properties of the operators et∆ and et∆P are investigated and proved in [14],
which gives us a necessary estimate.

Corollary 1. Let 1 < p ≤ ∞, 0 < q ≤ ∞, −n/p ≤ β ≤ α ≤ n(1− 1/p). Then

‖et∆P f ‖
WK̇β

p,q
≤ Ct−(α−β)/2‖ f ‖WK̇α

p,q
. (11)

Let Br(x0) be the open ball in Rn centered at x0 and radius r > 0. The definition of the
Morrey-type (weak) Herz space is provided in [14].

Definition 4. Let 1 ≤ p < ∞, 0 < q ≤ ∞, α ∈ R and 0 ≤ µ < n, the Morrey-type (weak)
Herz space K̇α

p,qMµ(Rn) (WK̇α
p,qMµ(Rn)) is defined to be the set of functions f ∈ Lp(Br(x0))

such that
‖ f ‖K̇α

p,qMµ
:= sup

x0∈Rn
sup
r>0

r−µ/p‖ f ‖K̇α
p,q(Br(x0))

< ∞.

For weak Morrey-type Herz space, we substitute the norm of the WK̇α
p,q instead the norm of

the K̇α
p,q.

As in the [10,11] for s ∈ R and 1 ≤ p < ∞, the homogeneous weak Sobolev–Morrey-
type Herz space WK̇α

p,qMs
µ = (−∆)s/2WK̇α

p,qMµ is the Banach space with the norm

‖ f ‖WK̇α
p,qMs

µ
= ‖(−∆)s/2 f ‖WK̇α

p,qMµ
.

Additionally, the Herz-type Sobolev space can be defined by means of the Riesz
potential Is = (−∆)s/2, as in [16], defined as

Is f (x) = 2−sπ−
n
2

Γ
( n−s

2
)

Γ
( s

2
) ∫

Rn
f (x− y)|y|−n+sdy.
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3. Weak Herz-Type Besov–Morrey Space and Its Properties

Let S(Rn) and S ′(Rn) be the Schwarz space and the tempered distributions space,
respectively. Let φ ∈ S(Rn) be a non-negative radial function such that

supp(φ) ⊂ {ξ ∈ Rn; 1/2 < |ξ| < 2}

and
∑
k∈Z

φk(ξ) = 1, ∀ξ 6= 0,

where φk(ξ) = φ(2−kξ).
Let us define the homogeneous weak Herz-type Besov–Morrey space.

Definition 5. For 1 ≤ p < ∞, 0 < q ≤ ∞, 0 ≤ µ < n and s, α ∈ R, the homogeneous weak
Herz-type Besov–Morrey space WK̇α

p,qṄ s
µ,r with r ∈ [1, ∞] is the set of f ∈ S ′/P , where P is the

set of polynomials, such that F−1φk ∗ f ∈WK̇α
p,qMµ and

‖ f ‖WK̇α
p,qṄ s

µ,r
=


(

∑k∈Z 2ksr‖F−1φk ∗ f ‖r
WK̇α

p,qMµ

)1/r
< ∞, 1 ≤ r < ∞,

supk∈Z 2ks‖F−1φk ∗ f ‖WK̇α
p,qMµ

, r = ∞.

We denote the localization operators of the Littlewood–Paley decomposition as
∆j f = F−1φj ∗ f .

The space WK̇α
p,qṄ s

µ,r is Banach and in particular, WK̇0
p,pṄ s

0,r corresponds to the ho-
mogeneous Besov space with weak-Lebesgue space, which implies the Kθ,r-method real-
interpolation properties.

Theorem 3. Let θ ∈ (0, 1), s0, s1 ∈ R, s0 6= s1, 0 < p, q 6= ∞ and r, r0, r1 ∈ (0, ∞]. Suppose
s = (1− θ)s0 + θs1, then

WK̇α
p,qṄ s

µ,r =
(

WK̇α
p,qM

s0
µ , WK̇α

p,qM
s1
µ

)
θ,r

(12)

and
WK̇α

p,qṄ s
µ,r =

(
WK̇α

p,qṄ
s0
µ,r0 , WK̇α

p,qṄ
s1
µ,r1

)
θ,r

. (13)

Proof. Let f = f0 + f1 with fi ∈WK̇α
p,qM

si
µ , i = 0, 1. By using Lemma 2.3 from [12] for weak

Herz-type Sobolev space, we note that WK̇α,s
p,q is an Herz-Sobolev space and it holds that

‖∆j f ‖WK̇α
p,q
≤ ‖∆j f0‖WK̇α

p,q
+ ‖∆j f1‖WK̇α

p,q

≤ C′
(
‖∆j f0‖WK̇α

p,qMµ
+ ‖∆j f1‖WK̇α

p,qMµ

)
,

where C′ is a constant. Therefore,

‖∆j f0‖WK̇α
p,qMµ

≤ C
(
‖∆j f0‖WK̇α

p,qMµ
+ ‖∆j f1‖WK̇α

p,qMµ

)
≤ C

(
2−s0 j‖Is0 ∆j f0‖WK̇α

p,qMµ
+ 2−s1 j‖Is1 ∆j f1‖WK̇α

p,qMµ

)
≤ C

(
2−s0 j‖Is0 f0‖WK̇α

p,qMµ
+ 2−s1 j‖Is1 f1‖WK̇α

p,qMµ

)
≤ C2−s0 j

(
‖ f0‖WK̇α

p,qMs0
µ
+ 2(s0−s1)j‖ f1‖WK̇α

p,qMs1
µ

)
.

It follows that

‖∆j f0‖WK̇α
p,qMµ

≤ C2−s0 jK(2(s0−s1)j, f , WK̇α
p,qM

s0
µ , WK̇α

p,qM
s1
µ ).
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Multiplying the previous inequality by 2js and s− s0 = −θ(s0 − s1), we obtain

2sj‖∆j f0‖WK̇α
p,qMµ

≤ C(2(s0−s1)j)−θK(2(s0−s1)j, f , WK̇α
p,qM

s0
µ , WK̇α

p,qM
s1
µ ),

and then (see Lemma 3.1.3 from [17]) we can conclude that

‖ f ‖WK̇α
p,qṄ s

µ,r
≤ C‖ f ‖

(WK̇α
p,qM

s0
µ ,WK̇α

p,qM
s1
µ )

. (14)

To prove the reverse inequality of (14), note that by using Lemma 2.3 from [12], again
we have

2(s−s0)j J(2(s0−s1)j, ∆j f , WK̇α
p,qM

s0
µ , WK̇α

p,qM
s1
µ ) =

2(s−s0)j max (‖∆j f ‖WK̇α
p,qM

s0
µ

, 2(s0−s1)j‖∆j f ‖WK̇α
p,qM

s1
µ
)

≤ 2s0 j max (2s0 j‖∆j f ‖WK̇α
p,qMµ

, 2s0 j‖∆j f ‖WK̇α
p,qMµ

)

≤ 2sj max (‖∆j f ‖WK̇α
p,qMµ

, ‖∆j f ‖WK̇α
p,qMµ)

= 2sj‖∆j f ‖WK̇α
p,qMµ

.

Now the equivalence theorem (see Lemma 3.2.3 from [17]) leads us to

‖ f ‖
(WK̇α

p,qM
s0
µ ,WK̇α

p,qM
s1
µ )
≤ C‖ f ‖WK̇α

p,qṄ s
µ,r

.

In the remainder of the proof, we need to show that in fact f ∈WK̇α
p,qṄ s

µ,r implies that
f ∈WK̇α

p,qM
s0
µ + WK̇α

p,qM
s1
µ . Suppose that s0 > s1 (without loss of generality). Using the

decomposition f = ∑j<0 ∆j f + ∑j≥0 ∆j f = f0 + f1 and Lemma 2.3 from [12], we obtain

‖ f0‖WK̇α
p,qM

s0
µ
≤ ∑

j<0
‖∆j f ‖WK̇α

p,qM
s0
µ
≤ ∑

j<0
2(s0−s)j2sj‖∆j f ‖WK̇α

p,qMµ

≤ C

(
∑
j<0

2(s0−s)jr′
)1/r′(

∑
j<0

2sjr‖∆j f ‖r
WK̇α

p,qMµ

)1/r

≤ C‖ f0‖WK̇α
p,qṄ s

µ,r
.

Similarly, one has

‖ f1‖WK̇α
p,qM

s1
µ
≤ ∑

j≥0
‖∆j f ‖WK̇α

p,qM
s1
µ
≤ ∑

j≥0
2(s1−s)j2sj‖∆j f ‖WK̇α

p,qMµ

≤ C

(
∑
j≥0

2(s1−s)jr′
)1/r′(

∑
j≥0

2sjr‖∆j f ‖r
WK̇α

p,qMµ

)1/r

≤ C‖ f1‖WK̇α
p,qṄ s

µ,r
,

and then (12) is valid.
By using (12) and the reiteration theorem (see [17], Theorem 3.5.3 and its remark), we

conclude that (13) is valid.

Now we provide Lemma 1 for weak Herz-type Sobolev–Morrey and Besov–Morrey
spaces.

Lemma 1. Let s, s0 ∈ R, 1 < p < ∞, 0 < q ≤ ∞, (s0 − s) < 2 with s < s0, 0 ≤ µ < n,
−n/p < β < α < n(1− 1/p), then the following inequalities hold:

(1) ‖et∆P f ‖
WK̇β

p,qM
s0
µ
≤ Ct−(α−β)/2‖ f ‖WK̇α

p,qMs
µ

(15)
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for every t > 0 and f ∈WK̇α
p,qMs

µ.

(2) ‖et∆P f ‖
WK̇β

p,qṄ
s0
µ,r
≤ Ct−(α−β)/2‖ f ‖WK̇α

p,qṄ s
µ,r

(16)

for every t > 0 and f ∈ S ′/P .

(3) ‖et∆P f ‖
WK̇β

p,qṄ
s0
µ,1
≤ Ct−(α−β)/2‖ f ‖WK̇α

p,qṄ s
µ,r

(17)

for every t > 0, r ∈ [1, ∞] and f ∈ S ′/P .
For all inequalities α− β ≤ s0 − s and C is a constant.

Proof. (1) We use inequality

‖et∆P f ‖
WK̇β

p,qMs
µ
= sup

x0∈Rn
sup
r>0

r−µ/p‖(−∆)s/2et∆P f ‖
WK̇β

p,q

≤ Ct−(α−β)/2 sup
x0∈Rn

sup
r>0

r−µ/p‖(−∆)s/2 f ‖WK̇α
p,q

= Ct−(α−β)/2‖ f ‖WK̇α
p,qMs

µ

from Corollary 2.1 (iv) in [14] for Herz-type Sobolev–Morrey spaces.
Now we use the Lemma 2.2 (i) from [10] and to get

‖et∆P f ‖
WK̇β

p,qM
s0
µ
≤ C‖et∆P f ‖WK̇α

p,qM
s0
µ
≤ Ct−(s0−s)/2‖ f ‖WK̇α

p,qMs
µ
.

Finally, if α− β ≤ s0 − s, then we obtain

‖et∆P f ‖
WK̇β

p,qMs
µ
≤ Ct−(α−β)/2‖ f ‖WK̇α

p,qMs
µ
.

(2) As in first part of this proof we can use Corollary 2.1 (iv) in [14] with respect to
weak Herz space

‖et∆P f ‖
WK̇β

p,qṄ s
µ,r

=

(
∑
k∈Z

2ksr‖F−1φk ∗ et∆P f ‖r
WK̇β

p,qMµ

)1/r

.

Particularly we estimate the norm of the weak Herz-type Morrey space

‖F−1φk ∗ et∆P f ‖
WK̇β

p,qMµ
≤ C‖et∆P f ‖

WK̇β
p,qMµ

≤ Ct−(α−β)/2‖ f ‖WK̇α
p,qMµ

.

Then it follows that

‖et∆P f ‖
WK̇β

p,qṄ s
µ,r
≤ Ct−(α−β)/2

(
∑
k∈Z

2ksr‖F−1(φk ∗ f )‖r
WK̇α

p,qMµ

)1/r

≤ Ct−(α−β)/2‖ f ‖WK̇α
p,qṄ s

µ,r
. (18)

Now by applying the Lemma 2.2 (ii) from [10] and properties of first part of this proof
to (18), it implies that

‖et∆P f ‖WK̇α
p,qṄ

s0
µ,r
≤ C‖et∆ f ‖WK̇α

p,qṄ
s0
µ,r
≤ Ct−(s0−s)/2‖ f ‖WK̇α

p,qṄ s
µ,r

.

Additionally, if α− β ≤ s0 − s, then we receive (16).
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(3) Applying the K-method real interpolation (12):

WK̇α
p,qṄ s

µ,r =
(

WK̇α
p,qM

s1
µ , WK̇α

p,qM
s2
µ

)
θ,r

,

WK̇β
p,qṄ s

µ,r =
(

WK̇β
p,qMs1

µ , WK̇β
p,qMs2

µ

)
θ,r

for inequality (16) with s = (1− θ)s1 + θs2, s1 6= s2 we obtain

‖et∆P f ‖
WK̇β

p,qṄ
2s0−s
µ,∞

≤ Ct−(α−β)/2‖ f ‖WK̇α
p,qṄ s

µ,∞

and
‖et∆P f ‖

WK̇β
p,qṄ s

µ,∞
≤ Ct−(α−β)/2‖ f ‖WK̇α

p,qṄ s
µ,∞

.

Using (13) for WK̇α
p,qṄ

2s0−s
µ,∞ and WK̇α

p,qṄ s
µ,∞ with (2s0 − s)(1− 1/2) + s(1/2) = s0, it

follows that WK̇α
p,qṄ

s0
µ,1 = (WK̇α

p,qṄ
2s0−s
µ,∞ , WK̇α

p,qṄ s
µ,∞)1/2,1 that yields (17).

Example 1. Let ρ > 0 be such that Bρ(0) ⊂ Rn and set f (x) = |x|−nχBρ(0)(x), for n ≥ 2. This
function satisfies the norm of weak Herz space and then Besov–Morrey spaces, which means that
f ∈WK̇α

p,qṄ s
µ,r for α > n− n

p , 1 ≤ p, q ≤ ∞, 0 ≤ µ < n, r ∈ [1, ∞] and s ∈ R.

Example 2. In B 1
2
(0) ⊂ Rn we set f (x) = |x|−n(| log |x||)−1χB 1

2
(0)(x), where f ∈WK̇α

p,qṄ s
µ,r

for α = n− n
p , 1 ≤ p ≤ ∞, 1 < q ≤ ∞, 0 ≤ µ < n, r ∈ [1, ∞] and s ∈ R.

Examples 1 and 2 demonstrate functions belonging to weak Herz-type Besov–Morrey
spaces that satisfy inequalities in Lemma 1.

In function space theory [18,19], it could be useful to provide a norm of WK̇α
p,qṄ s

µ,r,
defined by derivatives and differences, equivalent to the norm in Definition 5. In the case
of Besov spaces, such an approach was used in [20,21], where the authors established the
equivalence between the norms defined by Fourier analytic tools and by derivatives and
differences, respectively.

Theorems 1 and 2 allow to provide the maximal Lorentz regularity theorem of Stokes
and Navier–Stokes equations. They can help in establishing the unique existence of local
strong solutions to Navier–Stokes equation on proposed weak Herz-type Besov–Morrey
spaces, as it is made in [10] for homogeneous Besov–Morrey spaces and in [15] in Lorentz
spaces.

The properties of Herz-type Besov–Morrey spaces, such as the interpolations in Theorem 3
and the inequalities in Lemma 1, can be also used to study other nonlinear PDEs. For exam-
ple, a mathematical model of waves on shallow water surfaces described by Korteweg-de
Vries equation [22]; the Keller–Segel system [23] presents a cellular chemotaxis model; and
Fokker–Planck equations [24] demonstrate models of anomalous diffusion processes. De-
veloping atomic decomposition, oscillations, real and complex interpolations can advance
the study of the WK̇α

p,qṄ s
µ,r spaces, especially observing them not only with the Fourier

approach ([25]), but by the finite difference approach, in the same fashion of Besov spaces
in [26,27].

4. Proofs of the Theorem 1

Let u be a mild solution of the NSE (1). Then, by using representation (4), we obtain

f (t) = ut + Au, (19)
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as in [10]. Then it holds that u(t) = et∆u0 +
∫ t

0 e(t−τ)∆ f (τ)dτ. By (19), we have f ∈
Lα,r(0, T; WK̇δ

q,lṄ
s
µ,∞) with the estimate

‖ f ‖Lα,r(0,T;WK̇δ
q,lṄ

s
µ,∞) ≤ ‖ut‖Lα,r(0,T;WK̇δ

q,lṄ
s
µ,∞) + ‖Au‖Lα,r(0,T;WK̇δ

q,lṄ
s
µ,∞).

As s < s0 by Lemma 1 (ii), we have that

∥∥∥∥∫ t

0
e(t−τ)∆P f (τ)dτ

∥∥∥∥
WK̇γ

q,lṄ
s0
µ,1

≤
∫ t

0

∥∥∥e(t−τ)∆P f (τ)
∥∥∥

WK̇γ
q,lṄ

s0
µ,1

dτ

≤ C
∫ t

0
(t− τ)−(s0−s)/2‖ f (τ)‖WK̇δ

q,lṄ
s
µ,∞

dτ

≤ C
∫ t

0
(t− τ)−(δ−γ)/2‖ f (τ)‖WK̇δ

q,lṄ
s
µ,∞

dτ

≤ C
∫ t

0
(t− τ)σ−1‖ f (τ)‖WK̇δ

q,lṄ
s
µ,∞

dτ, (20)

with σ− 1 = − 1
2 (s0 − s). Since 2/α0 − s0 = 2/α− s− 2 and 1 < α < α0, we obtain

σ = 1− 1
2
(s0 − s) =

1
α
− 1

α0
<

1
α

,

which yields 0 < σ < 1 and 1 < α < 1/σ. Being 1/α0 = 1/α− σ and applying Proposition 3.1
from [10] we obtain the following inequality∥∥∥∥∥∥

∥∥∥∥∫ t

0
e(t−τ)∆P f (τ)dτ

∥∥∥∥
WK̇γ

q,lṄ
s0
µ,1

∥∥∥∥∥∥
Lα0,r(0,T)

≤ C
∥∥∥∥‖ f ‖WK̇δ

q,lṄ
s
µ,∞

∥∥∥∥
Lα,r(0,T)

≤ C
∥∥∥∥‖ f ‖WK̇δ

q,lṄ
s
µ,∞

∥∥∥∥
Lα,r(0,T)

. (21)

Then we obtain∥∥∥∥∫ t

0
e(t−τ)∆P f (τ)dτ

∥∥∥∥
Lα0,r(0,T;WK̇γ

q,lṄ
s0
µ,1)
≤ C

(
‖ut‖Lα,r(0,T;WK̇δ

q,lṄ
s
µ,∞)

+‖Au‖Lα,r(0,T;WK̇δ
q,lṄ

s
µ,∞)

)
,

where C = C(n, q, s, α, s0, α0, r, δ, γ) is independent of T. Now we need to show that
et∆Pu0 ∈ Lα0,r(WK̇γ

q,lṄ
s0
µ,1) for u0 ∈WK̇δ

p,lṄ
k
µ,r. We assume that

p ≤ q, k = (n− µ)/p− (2/α + (n− µ)/q− s− 2) < s0,

and hence there exist k1, k2 and 0 < θ < 1 with k1 < k < k2 < s0 such that k = (1− θ)k1 +
θk2. Lemma 1 (iii) implies

‖et∆Pu0‖WK̇δ
q,lṄ

s0
µ,1
≤ Ct−

1
2

(
n−µ

p −
n−µ

q

)
− 1

2 (s0−ki)‖u0‖WK̇δ
p,lṄ

ki
µ,∞

,
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where i = 1, 2 for any t > 0. The real interpolations
(

WK̇δ
p,lṄ

k1
µ,∞, WK̇δ

p,lṄ
k2
µ,∞

)
θ,r

=

WK̇δ
p,lṄ

k
µ,r and (Lα1,∞(0, ∞), Lα2,∞(0, ∞))θ,r = Lα0,r(0, ∞) implied by (1 − θ)α1 + θα2 =

1
2 ((n− µ)/p− (n− µ)/q) + 1

2 (s0 − k) = 1
α0

lead to the following estimate:∥∥∥∥∥∥∥∥et∆Pu0

∥∥∥
WK̇δ

q,lṄ
s0
µ,1

∥∥∥∥∥
Lα0,r(0,∞)

≤ C‖u0‖WK̇δ
p,lṄ

k
µ,r

,

where C = C(n, q, α, s, α0, s0, r, γ, δ). This proves Theorem 1.

5. Proofs of the Theorem 2

Let α < α0 < ∞ and s0 ∈ R so that α0 = 2α, max{(n− µ)/p− 1/α, s + 2− 1/α} <
(n− µ)/q, max{s + 1, (n− µ)/p− 1} < s0 and

2/α0 + (n− µ)/q− s0 = 1.

Since 0 < s + 1 < s0 by hypothesis, then there exists σ ∈ R such that

0 < σ < s0 − (s + 1).

As in [10], we obtain

‖P∇ · (u⊗ u)‖WK̇δ
q,lṄ

s
µ,∞

= ‖P(u⊗ u)‖WK̇δ
q,lṄ

s+1
µ,∞

≤ C‖u⊗ u‖WK̇δ
q,lṄ

s+1
µ,∞
≤ C‖u‖2

WK̇δ
q,lṄ

s0
µ,∞

,

namely
‖P∇ · (u⊗ u)‖Lα,r(WK̇δ

q,lṄ
s
µ,∞) ≤ C‖u‖2

Lα0,r(WK̇δ
q,lṄ

s0
µ,∞)

,

where C = C(n, µ, q, α, α0, r, δ) is a constant independent of 0 < T ≤ ∞. Since p ≤
q, (n− µ)/p− 1 < s0, and 2/α0 + (n− µ)/q− s0 = 1, we have

(n− µ)/q ≤ (n− µ)/p < s0 + 1 = 2/α0 + (n− µ)/q,

k = 2 + (n− µ)/p− (2/α + (n− µ)/q− s) = −1 + (n− µ)/p.

Hence from Theorem 1,

‖u‖Lα,r(WK̇δ
q,lṄ

s0
µ,∞)
≤ C

(
‖et∆Pu0‖Lα0,r(WK̇δ

q,lṄ
s0
µ,1)

+‖ut‖Lα,r(WK̇δ
q,lṄ

s
µ,∞) + ‖Au‖Lα,r(WK̇δ

q,lṄ
s
µ,∞)

)
,

where C = C(n, µ, q, α, α0, r, δ) independent of 0 < T ≤ ∞. This proves Theorem 2.

6. Conclusions

This article focused on mild solutions of the incompressible Navier–Stokes equations
with external forces on Rn for n ≥ 2 on Herz-type Besov–Morrey spaces. We introduced
real interpolations on WK̇α

p,qMs
µ and WK̇α

p,qṄ s
µ,r and discussed some useful properties,

which were proved in Theorem 3. The inequalities in Lemma 1 were extended from
WK̇α

p,q(Rn),Ms
µ(Rn), and Ṅ s

p,q,r(Rn) into WK̇α
p,qMs

µ(Rn) and WK̇α
p,qṄ s

µ,r(Rn). Applying
such properties, we achieved some estimates for mild solutions of Navier–Stokes equations,
described in Theorems 1 and 2.

The function spaces theory propagates not only for nonlinear PDEs and abstract har-
monic analysis, but for global and geometric analysis. For example, Besov and Triebel–
Lizorkin spaces are defined on the Riemannian manifold, Lie groups, and fractals. Weak
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Herz-type Besov–Morrey spaces can be applied, for instance, in Riemannian geometry, global
and geometric analysis, pseudo-differential operator theory, and approximation theory.

The provided estimates can be helpful to explore mild solutions of Navier–Stokes equa-
tions and imply the existence and uniqueness of weak and strong solutions. Theorems 1.2–1.4
from [10] show the uniqueness of strong solutions for Navier–Stokes equations, from prop-
erties of mild solutions on Besov–Morrey spaces. Future works could focus on obtaining
some features of weak Herz-type Besov–Morrey spaces, such as their interpolations, atomic
decompositions, and representation via finite differences. Combining (weak) Herz and
Triebel–Lizorkin–Morrey spaces may be useful for further studying nonlinear PDEs.
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