
����������
�������

Citation: Rasekhmanesh, M.H.;

Garcia-Contreras, G.; Córcoles, J.;

Ruiz-Cruz, J.A. On the Use of

Quadrilateral Meshes for Enhanced

Analysis of Waveguide Devices with

Manhattan-Type Geometry

Cross-Sections. Mathematics 2022, 10,

656. https://doi.org/10.3390/

math10040656

Academic Editor: Dumitru Baleanu

Received: 28 December 2021

Accepted: 16 February 2022

Published: 20 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On the Use of Quadrilateral Meshes for Enhanced Analysis of
Waveguide Devices with Manhattan-Type Geometry
Cross-Sections
Mohamad Hosein Rasekhmanesh , Gines Garcia-Contreras , Juan Córcoles * and Jorge A. Ruiz-Cruz

Group of RadioFrequency: Circuits and Systems (RFCAS), Escuela Politécnica Superior,
Universidad Autónoma de Madrid, 28049 Madrid, Spain; mohamad.rasekhmanesh@estudiante.uam.es (M.H.R.);
gines.garcia@uam.es (G.G.-C.); Jorge.RuizCruz@uam.es (J.A.R.-C.)
* Correspondence: juan.corcoles@uam.es

Abstract: This work addresses the suitability of using structured meshes composed of quadrilateral
finite elements, instead of the classical unstructured meshes made of triangular elements. These
meshes are used in the modal analysis of waveguides with Manhattan-like cross-sections. For this
problem, solved with the two-dimensional Finite Element Method, there are two main quality metrics:
eigenvalue and eigenvector accuracy. The eigenvalue accuracy is first considered, showing how the
proposed structured meshes are, given comparable densities, better, especially when dealing with
waveguides presenting pairs of modes with the same cutoff frequency. The second metric is measured
through a practical problem, which commonly appears in microwave engineering: discontinuity
analysis. In this problem, for which the Mode-Matching technique is used, eigenvectors are needed
to compute the coupling between the modes in the discontinuities, directly influencing the quality
of the transmission and reflection parameters. In this case, it is found that the proposed analysis
performs better given low-density meshes and mode counts, thus proving that quadrilateral-element
structured meshes are more resilient than their triangular counterparts to higher-order eigenvectors.

Keywords: finite-element method; mode-matching method; Lagrange elements; triangular cell types;
quadrilateral cell types; degenerate mode analysis; waveguide devices

MSC: 78M10

1. Introduction

The Finite Element Method (FEM) is a long-known well-established numerical method [1,2].
FEM has proven to be a powerful tool in all fields of engineering [3–5]. Specifically, in the
arena of applied electromagnetics, FEM is a commonly used technique in the analysis
and design of a wide variety of high-frequency components such as microwave circuits or
antennas [6,7], either as a standalone tool or hybridized with other analytical or numeri-
cal methods.

Waveguide devices [8] are commonly found on-board satellites because of their in-
herent capability of handling high power and to endure the harsh space environment. To
analyze them, one possible approach would be the use of 3D-FEM, which requires vectorial
spacefunctions to correctly model boundary conditions [7]. However, the classic method
for characterizing waveguide devices is the Mode-Matching (MM) technique. It is based
on the principle that the electromagnetic field inside of any waveguide with z-translational
symmetry can be decomposed via modal analysis. Considering this property, waveg-
uide sections are characterized analytically or numerically in terms of modes, and then
discontinuities are modeled by obtaining the coupling between these modes. However,
to obtain accurate results using this technique, the correct and accurate computation of
many modes is required. In this case, the problem of modal computation of waveguides
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with non-analytical solutions is simplified from the vectorial 3D-FEM to a scalar 2D-FEM
problem. This is why hybridizing 2D-FEM with MM has been an attractive solution for a
long time [9–14].

Computing modes in closed homogeneous waveguides, which are known to be of
transverse electric (TE) and transverse magnetic (TM) nature [15], was the first problem
in FEM ever applied to microwave engineering [16]. However, since those beginnings,
a lot of progress has been done regarding FEM element theory, such as the development of
higher-order Lagrange (scalar) and vectorial elements for triangular and quadrilateral cell
types [17–19]. Overall, although quadrilateral cells had been considered for 2D-FEM [20,21],
triangular cells (and by extension tetrahedral cells in 3D-FEM) are commonly preferred
due to their capability of better fitting complicated geometries [22,23]. Indeed, most
commercial software implements these kinds of finite elements. Nevertheless, certain types
of cross-sections, namely Manhattan-type, defined by polygons only presenting angles of
90◦ or its multiples, are amenable to be meshed with quadrilateral cells. This applies to
many, very commonly-appearing waveguides, such as ridge, double ridge, quadridge, etc.
The inherent structured nature these cells provide suggests the idea that the computation
of the modes using quadrilateral cells will prove to be more accurate than using their
triangular counterparts, which is what this work will address in detail.

In this work, the stand-alone computation of TE and TM modes is firstly considered,
to show how with fewer degrees of freedom (d.o.f.) quadrilateral-element cells offer a
higher rate of accuracy for Manhattan-type structures. This is especially critical in the
case of cross-sections that exhibit a high amount of degenerate (presenting the same cutoff
wavenumber) modes, since the use of a numerical method generally does not guarantee
that the computed modes will yield that exact same eigenvalue (up to machine preci-
sion), unless certain boundary conditions are imposed in symmetry planes [24]. Secondly,
to study how this enhanced accuracy in computing waveguide modes (thanks to the use
of quadrilateral cells) translates to the analysis of actual devices, we address the MM
simulation of waveguide bandpass filters where modes in their different cross-sections
are computed with 2D-FEM. To that effect, a hybrid MM-FEM procedure [14] adapted to
quadrilateral cells is used.

2. Enhanced Waveguide Degenerate Mode Analysis
2.1. Brief Review of Standard 2D-FEM for Modal Computation

With the application of standard 2D-FEM we seek to approximate a continuous func-
tion into a combination of discrete functions by subdividing the simulation domain into
non-overlapping finite elements. A solution for a function of this kind Φ is sought so that:

Φ =
M

∑
i=1

viLi (1)

where M is the number of d.o.f., vi are the values for those d.o.f., and Li are the basis
functions, which will be assumed to be those of Lagrange elements in this work. Addi-
tionally, electromagnetic fields in enclosed, homogeneous waveguides with z-translational
symmetry, as the one shown in Figure 1, filled by an isotropic dielectric with relative
dielectric permittivity εr and relative magnetic permeability µr, can be fully characterized
with a scalar function Φ in the frequency domain with the scalar 2D Helmholtz equa-
tion ∇2

t Φ− k2
c Φ = 0 inside the domain Ωv and the Perfect Electric Conductor boundary

conditions, which are:

∇Φ · n̂
∣∣
Γe

= 0 for transverse electric (TE) modes, (2)

Φ
∣∣
Γe

= 0 for transverse magnetic (TM) modes. (3)

where n̂ is the vector normal to the contour of the cross-section Γe (see Figure 1). Please note
that for closed homogeneous waveguides as the ones under consideration, the complete
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electromagnetic field can be fully characterized by this scalar function Φ standing for the
longitudinal field shape (Ez or Hz for TM and TE modes, respectively). This ensures the
validity and exactness of a scalar FEM solution for the computation of the modal spectrum,
without the need to use other approaches required in waveguides where hybrid modes
are present, as inhomogeneous waveguides (i.e., vector-scalar FEM approximation [25,26]),
open dielectric channel waveguides (i.e., the effective index method [27,28]), etc. To address
the discrete solution of this 2D Helmholtz equation there are enriched versions of the FEM
which rely on non-polynomial basis functions that can achieve increased accuracy, such
as the so called 2D Generalized Finite Element Method [29,30]. However, as it is beyond the
scope of this work to study these enriched implementations, we will stick to the common
and widely-used standard application of FEM with polynomial basis functions (as said,
those corresponding to Lagrange elements) to solve this problem. To do this, the weak
form of the Helmholtz equation previously defined is obtained and discretized [6], which
yields the following generalized eigenvalue/eigenvector problem:

Sv = k2
c Tv. (4)

Matrices S and T have the following entries ij [6]:

Sij =
1
µr

∫∫
Ων

(∇tLi) · (∇tLj)dΩ, (5)

Tij = εr

∫∫
Ων

LiLjdΩ. (6)

Figure 1. A long waveguide with a Manhattan-type cross-section aligned with the z-axis.

In this process, the smallest eigenvalues will represent the lowest propagating modes,
k2

c being the squared cutoff wavenumber, and their corresponding eigenvectors will be
the discretized eigenfunction Φ containing the field shape (Ez or Hz for TM and TE
modes, respectively).

Lagrange elements considered in this work are shown in Figure 2: triangular and
quadrilateral cell types of both order 1 and order 2. According to the figure, both for
triangular and quadrilateral cells of order 1, the d.o.f. correspond to the values at the
vertices of the function to be interpolated (3 d.o.f. for triangular elements, 4 d.o.f. for
quadrilateral elements). For the triangular cell type, order 2 includes the value at the
center of the edges of the triangle (6 d.o.f. in total). In the case of quadrilateral elements,
in addition to the center of the edges, the center point of the quadrangle itself is included
as another d.o.f. for order 2 (9 d.o.f. in total). Full details of the derivation and properties
of these elements can be found in the documentation for the computing platforms that will
be used to develop this work: FEniCS and FEniCS-X [31].



Mathematics 2022, 10, 656 4 of 15

Figure 2. Lagrange elements of triangular and quadrilateral cell types for order 1 and order 2.

2.2. Results

To test the performance of quadrilateral vs. triangular elements, the three Manhattan-
type cross-sections shown in Figure 3 will be analyzed.

Figure 3. (a) Square waveguide, (b) quad-ridge waveguide, (c) gammadion cross waveguide. Dimen-
sions in mm.

Because of their inherent discrete rotational symmetry, degenerate modes are prone
to appear in these waveguides (square, quad-ridge, and gammadion cross). The use of
a numerical method such as FEM does not ensure that these degenerate modes will be
computed with the same exact cutoff wavenumber (that they must have). For lower order
modes, degeneracy can be easily identified as relative errors between values, which might
be in the order of machine precision if enough d.o.f. are used. However, for higher order
modes, the relative error in the computed cutoff wavenumber for each pair of degenerate
modes will eventually be high, making them very difficult to identify. The structured
nature quadrilateral meshes offer suggests that this type of element will enable an enhanced
analysis of higher-order degenerate modes. To that effect, we use the meshes shown in
Figure 4: one with triangular and another one with quadrilateral elements for each of the
three waveguides under analysis. These meshes are chosen so that the number of d.o.f.
is similar for both triangular and quadrilateral meshes in each waveguide. In this case,
elements of order 2 are used, so that the global number of d.o.f. for each mesh is reported
in the caption of Figure 4.

With these meshes, scalar 2D-FEM as described in the previous section is applied to
compute a high number of TE and TM modes and identify the first pairs of degenerate
modes. For each identified pair of degenerate modes having cutoff wavenumbers denoted
as kc1 and kc2 (which should be identical), a relative error between their computed values
can be calculated as:

Relative Error (%) =
|kc1 − kc2|

kc1
(×100 %) (7)
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(a) (b)

(c) (d)

(e) (f)

Figure 4. (a) Triangular cell type mesh element for square waveguide with 1633 d.o.f., (b) quadrilateral
cell type mesh element for square waveguide with 1521 d.o.f., (c) triangular cell type mesh element
for quad-ridge waveguide with 1623 d.o.f., (d) quadrilateral cell type mesh element for quad-ridge
waveguide with 1683 d.o.f., (e) triangular cell type mesh element for gammadion cross waveguide
with 1693 d.o.f., (f) quadrilateral cell type mesh element for gammadion cross waveguide with
1617 d.o.f., by considering Lagrange elements with order 2.

Figure 5 shows the relative error between the identified pairs of degenerate TE and TM
modes in the three waveguides under analysis. As it can be seen, while for lower-order
degenerate modes the relative error is very low (up to machine precision) for both types of
elements, only quadrilateral elements ensure that this relative error will be kept to a low
value for higher-order degenerate modes. This can be explicitly checked in Table 1, where
some values for the cutoff wavenumber of TE modes in the quad-ridge waveguides are
reported, and identified degenerate mode pairs are highlighted in bold font.
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Figure 5. Comparison of the accuracy of analyzed degenerate modes for (a) TE modes of square
waveguide, (b) TM modes of square waveguide, (c) TE modes of quad-ridge waveguide, (d) TM
modes of quad-ridge waveguide (e) TE modes of gammadion cross waveguide, (f) TM modes of
gammadion cross waveguide.
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Table 1. Computed kc values (m−1) for TE modes in the quad-ridge waveguide. Identified degenerate
mode pairs are highlighted in bold font.

Mode Quadrilateral Triangular

1 93.36721 93.49582

2 93.36721 93.49584

3 100.95156 101.11755

4 187.60566 187.95254

5 328.92679 329.07231

...
...

...

61 1211.52957 1212.19782

62 1244.80243 1245.59825

63 1244.80243 1245.61271

64 1248.09740 1248.93386

65 1253.54659 1254.29740

...
...

...

116 1757.14673 1761.62864

117 1780.04634 1784.91594

118 1780.04634 1784.95591

119 1784.52997 1789.22539

3. Enhanced Analysis of Waveguide Devices
3.1. Brief Review of MM Technique

Mode-Matching (MM) [32–34] is a modal technique used for the analysis of waveguide
discontinuities. It is based on obtaining an accurate characterization of a waveguide step
using the coupling between modes. To briefly explain the procedure, we first look at
the modes of each one of them, which can be conveniently expressed as a product of a
normalizing factor Qn, the mode impedance Zn, or mode admittance Yn (which depend
on the cutoff wavenumber of the mode and the frequency), as well as the eigenfunction
Φ = Hz for TE modes and Φ = Ez for TM modes. For the former:~eTE

n = Q
1
2
n Z

1
2
n ~ΦEn = Q

1
2
n Z

1
2
n∇tΦn × ẑ

~hTE
n = Q

1
2
n Y

1
2

n ~ΦHn = Q
1
2
n Y

1
2

n ∇tΦn

(8)

and, for the latter: ~eTM
n = Q

1
2
n Z

1
2
n ~ΦEn = Q

1
2
n Z

1
2
n∇tΦn

~hTM
n = Q

1
2
n Y

1
2

n ~ΦHn = Q
1
2
n Y

1
2

n ẑ×∇tΦn

(9)

Given the previous expressions and knowing that only the functions Φ are space-
dependent, it can be seen that the normalising factor must be computed the following way:

Qn =
∫∫

Ωn
~en ×~hn · ẑdΩ (10)

The cross product between modes from the small s and large w waveguide is the most
fundamental part of mode-matching. It is computed using the formula:

Xsw =
∫∫

Ωs
~es ×~hw · ẑdΩ (11)
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Using the expression in Equations (8) and (9) it can be seen how Equation (11) can be
separated in a frequency independent and frequency dependent part. Arranging Q, Z and
Y in diagonal matrices with entries Qii = Qn, Zii = Zn and Yii = Yn, respectively; and X in
a [S×W] matrix with entries Xij = Xsw, the problem can be expressed the following way,
where only Z and Y are frequency dependent:

X = {Q
1
2 Z

1
2 }X̄{Y

1
2 Q

1
2 } (12)

X̄ij =
∫∫

Ωi

~ΦEi × ~ΦHj · ẑdΩ (13)

Note that in this case it is assumed that the domain Ωs ⊆ Ωw, but other, more general,
approaches exist. With the previous values obtained, the scattering parameter matrix can
be computed using:

S =

[
Q−1

w XtFX− Iw Q−1
w XtFQs

FX FQs − Is

]
(14)

where F = 2(Qs + XQ−1
w Xt)−1. In this procedure a higher amount of modes will translate

into an increase in accuracy.
Note that the explained method is not restricted to using analytical results or FEM for modal

computation of the eigenfunctions Φn, and much less triangular or quadrilateral elements.
Finally, to obtain the response of a device containing various discontinuities, scattering

(S-) parameters of every stem must be obtained and then cascaded [34]. There are many
well known procedures to cascade S-parameters, such as transforming them to ABCD
parameters or generating a larger S-parameter matrix.

3.2. Results

Firstly, we simulate a classic H-plane filter in rectangular waveguide. A 3D view and
dimensions in two different perspectives (top and front) can be found in Figure 6. The
analysis is carried out with MM with 200 TE modes and 200 TM modes in each discontinuity.
These modes are computed with the fine meshes for each cross-section shown in the upper
rows of Figure 7 (triangular) and Figure 8 (quadrilateral). In this case, elements of order 1
are used. Table 2 shows the number of d.o.f. for each fine mesh (leftmost double column).
As can be seen, 200 TE and 200 TM modes can be accurately computed with this high
number of d.o.f. The reason for choosing 200 TE modes and 200 TM modes in each
discontinuity is for mere comparison when using fewer number of modes computed with
coarser meshes made up of triangular and quadrilateral elements. It is beyond the scope of
this work to address well-known issues related to the MM convergence with respect to the
number of modes. To that effect, it just suffices to know that 200 TE and 200 TM modes are
well beyond the minimum number of modes required to reach convergence in this device.
As a proof, Figure 9 shows the reflection coefficient magnitude (dB) achieved with MM
for this number of modes computed with the aforementioned fine meshes. As expected,
they are identical. Since all cross-sections of this structure are rectangular and thus have
analytical solution for the modes, the analytical MM result for the same number of modes
is also shown in Figure 9 for comparison purposes, corroborating that with the fine meshes
and such number of modes the H-plane rectangular waveguide filter is correctly simulated
and that the results are grid-independent.
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Figure 6. H-plane rectangular waveguide filter: (a) perspective view, (b) top view, (c) front view.
Dimensions in mm.

Figure 7. (a) Fine meshes and (b) coarse meshes with triangular cells for the four cross-sections that
compose the H-plane rectangular waveguide filter.

Figure 8. (a) Fine meshes and (b) coarse meshes with quadrilateral cells for the four cross-sections
that compose H-plane rectangular waveguide filter.

Table 2. Number of d.o.f. for the meshes of each cross-section of the H-plane rectangular waveguide
filter depicted in Figures 7 and 8.

Fine Meshes Coarse Meshes

Triangular Quadrilateral Triangular Quadrilateral

Cross-section 1: 6717 6785 429 435
Cross-section 2: 3413 3481 245 255
Cross-section 3: 2563 2537 168 195
Cross-section 4: 2309 2301 141 135
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Figure 9. Comparison of reflection coefficient magnitude, for fine meshes with triangular and
quadrilateral cell types and analytical MM, by choosing 200 TE and 200 TM modes, for the H-plane
rectangular waveguide filter.

Now, coarser meshes with a similar number of d.o.f. are considered for the cross-
sections of this device. They are shown in the lower rows of Figure 7 (triangular) and
Figure 8 (quadrilateral). Details on the number of d.o.f. for these coarse meshes (with
elements of order 1) are also listed in Table 2 (rightmost double column). With these meshes,
60 TE and 60 TM modes are considered for the MM procedure in each discontinuity. This
number is chosen so that the minimum number of d.o.f. in the smallest cross-sections
(135 for quadrilateral elements and 141 for triangular elements) is well beyond the number
of modes to be computed, ensuring that the eigenvalue/eigenvector matrix system in (4)
converges properly. Figure 10 shows the MM results for these two sets of coarse meshes,
together with the reference result obtained with any of the fine meshes (triangular or
quadrilateral elements). It is shown how for fewer d.o.f., quadrilateral elements achieve
results closer to the reference reflection coefficient magnitude (obtained with 200 TE and
200 TM modes accurately computed with any of the fine meshes). On the other hand,
using triangular elements results in increased lobes in the simulated reflection coefficient
magnitude of the passband region. This means that using a structured quadrilateral mesh
for these simple rectangular cross-sections enhances the accuracy (in this case, for the first
60 TE and 60 TM modes), implying that fewer computational resources are required if
quadrilateral elements are used. Indeed, for this example, reducing the number of elements
from the fine to the coarse meshes and, correspondingly, the number of modes from 200
to 60 (both TE and TM) resulted in a 18×–20× speedup factor of the hybrid FEM-MM
simulation independent of frequency (i.e., to obtain the elements of the normalized cross-
product matrix (13)) for both type of elements (triangular and quadrilateral). However,
in view of the results in Figure 10, only the use of quadrilateral elements retains a high
degree of precision with respect to the reference return loss.

The second studied device is a bandpass filter composed of ridge waveguide cross-
sections [35]. In this case, these cross-sections do not have analytical solutions for their
modes, so the use of a numerical method to hybridize with MM is imperative. This filter is
shown in Figure 11. The procedure applied here is the same one as explained for rectangular
waveguide H-plane filter. First, the response for a very high d.o.f. density is obtained using
fine meshes made of triangular and quadrilateral elements of order 1, shown respectively
in Figures 12 and 13 (upper rows). Details of the number of d.o.f. for each cross-section are
shown in Table 3 (leftmost double column). For the MM procedure, the number of modes
for all the cross-sections is set to the same as the previous example, 200 TE and TM modes,
for the sake of simplicity. These converged results, which are once again grid independent,
are shown in Figure 14. As can be seen, there is virtually no difference between elements.
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The reflection coefficient computed with the hybrid MM-FEM procedure for these fine
meshes becomes the reference for comparison with lower mesh densities and number
of modes.

Figure 10. Comparison of reflection coefficient magnitude for coarse meshes with triangular and
quadrilateral cell types, by choosing 60 TE and 60 TM modes, against the reference result (fine mesh,
200 TE and 200 TM modes), for the H-plane rectangular waveguide filter.

Figure 11. Ridge waveguide filter: (a) perspective view, (b) top view, (c) front view. Dimensions in mm.

Figure 12. (a) Fine meshes and (b) coarse meshes with triangular cell types for the two cross-sections
that compose the ridge waveguide filter.
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Figure 13. (a) Fine meshes and (b) coarse meshes with quadrilateral cell types for the two cross-
sections that compose the ridge waveguide filter.

Table 3. Number of d.o.f. for the meshes of each cross-section of the ridge waveguide filter depicted
in Figures 12 and 13.

Fine Meshes Coarse Meshes

Triangular Quadrilateral Triangular Quadrilateral

Cross-section 1: 5261 5693 446 389
Cross-section 2: 3317 3645 284 293

Figure 14. Comparison of reflection coefficient magnitude, for fine meshes with triangular and
quadrilateral cell types, by choosing 200 TE and 200 TM modes, for the ridge waveguide filter.

In Figure 15, the reflection coefficient magnitude obtained with 150 TE and 150 TM
modes in the MM procedure for the coarse meshes shown in the lower rows of Figure 12
(triangular) and Figure 13 (quadrilateral) are compared against the previous fine-mesh
baseline. The behaviour at the lower part of the passband is similar, but for the higher-
frequency lobes the difference in response between triangular and quadrilateral elements
becomes more pronounced, which implies that higher-order modes are being more accu-
rately computed for quadrilateral elements. Details of the number of d.o.f. (elements of
order 1, as well) for each cross-section in the coarse meshes are shown in Table 3 (rightmost
double column). For this example, the speedup factor achieved with the reduction in the
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number of d.o.f. and modes is 13×–14× for both types of elements. However, as in the
previous example, only the use of quadrilateral elements ensures achieving similar results
to the converged fine-mesh response.

Figure 15. Comparison of reflection coefficient magnitude, for coarse meshes with triangular and
quadrilateral cell types, by choosing 150 TE and 150 TM modes, against the reference result (fine
mesh, 200 TE and 200 TM modes), for the ridge waveguide filter.

The presented examples show how it is, in general, more appropriate to use quadri-
lateral elements when dealing with Manhattan-type structures. This is because, given
comparable d.o.f. counts and computational times, the use of quadrilateral elements
yield more accurate results. It is safe to say that, in these cases, the quadrilateral cell
type has an advantage over the triangular finite element, especially when doing fast or
iterating simulations.

4. Conclusions

A comparison between the results of using quadrilateral and triangular cells for the
analysis of waveguide devices made up of Manhattan-type cross-sections has been carried
out from two different perspectives. In the first approach, three homogeneous waveguides
are selected for the computation of their modal spectrum, with special focus on degenerate
mode calculation and identification. All the computations in these analyses have been done
trying to preserve the same number of d.o.f. (using Lagrange elements of order 2) both
for triangular and quadrilateral meshes. Results show how the relative error for higher-
order degenerate modes remains low (up to machine precision) only if using quadrilateral
cells, which makes the identification of this degeneracy easier. In the second approach,
the advantage of using quadrilateral cells is challenged by analyzing two waveguide
bandpass filters with the use of a hybrid MM-FEM method. In this hybrid method, modes
are computed with elements (either triangular or quadrilateral) of order 1. Firstly, fine
meshes are used with both types of cells and a similar number of d.o.f. to compute a
reference response, which is identical no matter which type of element (triangular or
quadrilateral is used). Secondly, the response is obtained with the use of coarser meshes
with a lower number of d.o.f. (which entails reducing the number of modes in the MM
procedure). Results show how only the use of quadrilateral elements ensures achieving
results comparable to the converged fine-mesh results.

Future work may include similar studies related to the accuracy of hexahedral vs.
tetrahedral meshes both for the FEM solution of 3D electromagnetic eigenproblems (i.e.,
cavities mode spectrum) [6,7] and for other hybrid FEM approaches for the analysis of
complex 3D waveguide structures, i.e., through hybrid FEM-MM [36] or hybrid FEM-beam
propagation method [37].
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