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Abstract: In this study, we consider eight stages per step family of explicit Runge-Kutta-Nystrom
pairs of orders eight and six. The pairs from this family effectively use eight stages for each step.
The coefficients provided by such a method are much less than the number of non linear order
conditions required to be solved. Thus, we traditionally apply various simplified assumptions in
order to address this drawback. The assumptions taken in the family we consider here deliver a
subsystem where all the coefficients are evaluated successively and explicitly with respect to five free
parameters. We train (adjust) these free parameters in order to derive a certain pair that outperforms
other similar pairs of orders 8(6) in Keplerian type orbits, e.g., Kepler, perturbed Kepler, Arenstorf
orbit, or Pleiades. Differential evolution technique is used for the training. The pair that we finally
present offers about an additional digit of accuracy in a variety of orbits.

Keywords: initial value problem; Runge-Kutta-Nystrom pairs; differential evolution; Kepler orbits
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1. Introduction
The initial value problem of special form

" = @(x, ), P(x0) = o, ¥’ (x0) = 9 1)

where ¢ : R x R — R™, and (yo, ) € R?", is considered here.
We approximate the solution of (1) at a set of discrete points (x,, P, ¢;,) with an
explicit Runge-Kutta-Nystrom (RKN) pair of orders p(g), p > . This method has the form

s
Qi = q)(xn + Yiln, P + ’)/ll’lnllJ,/1 —|—I’l% Zﬂéqu)]), i=1,2,---,s
=i
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Yni1 = Yu + Bty + 15 51 Bigis Y1 = n + hatly + B3 5, Bigi,
1 = P+ ha i Bios, Prq = Pn+ha Xy Blgi,

with h, = x;,41 — x5, while the number of the stages of the method is s. The solution is prop-
agated by the higher order approximations ,,, ;. In consequence, 3 and 3’ correspond to
the lower order method.

Some norm of the vector estimating the error

S

en = max( |1 i(ﬁi = Beill, I Y (B — B i),

i=1 i=1

is used in comparison with the requested tolerance TOL, for step-size control algorithm

ro. \""
hn+] :Oghn <hpq1€n> .

n
This formula is used even if TOL < h?~771 . ¢,, but then h,, 1 is actually a new smaller
version of hy,. For extended details in the issue, see [1].
All the coefficients can be formulated using the Butcher tableau [2,3]. So the method
takes the form

with A € R5*S, ﬁT, ﬁT, B’ T ,BT, 7 € R®. Here, matrix A is strictly lower triangular since the
methods considered are explicit. By this we mean that the function evaluations (i.e., ¢;’s) are
calculated directly and successively. On the contrary, when the method is implicit we have
to solve non linear equations for evaluating the stages, which increases the computation
time. Implicit methods are used when the problems are stiff [4]. The problems we are
dealing with in the following do not fall into the latter category [5].

Here we are interested in studying nine stages (i.e., s = 9), FSAL (First stage As Last)
pair of orders eight and six (i.e., p = 8 and g = 6). This method spends only eight stages per
step since the last stage is used again as the first stage in the next step. Thus, the coefficients
in the ninth stage coincide with §, i.e., agj = [Sj forj=1,2,---,8.

2. The Dormand-El Mikkawy-Prince Family of Runge-Kutta-Nystrom Pairs of
Orders 8(6)

This family is used for the derivation of the famous DEP8(6) pair presented in [6].
Further investigation is given in [1]. Thus, we may deploy here the algorithm for the
derivation of the parameters of the pair with respect to the free terms 74, s, 7,77 and fBo.

Initially, set yg = 79 = 1. All the coefficients not presented below are zero, e.g., B, = 0.

15 — 20774 — 2075 + 28745 — 2076 + 287476 + 287576 — 42747576
—2077 + 287477 + 287577 — 427457 + 287677
— 4247677 — 427567 + 707457677

Y3 = ’
{ 2(10 — 1474 — 1495 + 214775 — 1496 + 219476 + 217576 }

—3574Y576 — 1477 + 217y47y7 + 217y57v7 — 35747577
+219677 — 357aY6Y7 — 3575Y677 + 704Y5Y6Y7)

_1
72—273-
Then solve
1 1 1 1 1 1
Vee=10-y==,b- =20 -P*=0 - y*==1V - y*=_,b -4 =Z
e 7 r)/ 2/ r)/ 3/ ’)/ 4/ r)/ 5/ ’Y 6/ ’)/ 7
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Il opl o op! o opl oAl /
for IB]/ ﬁ3/ ﬁ4/ ,35/ ‘BG’ ,87 and ﬁs.
In these equations, “*” is to be understood as a component-wise multiplication among

vectors and has the lowest priority after all other operations. Also,
V=757 7 =1 sy ete

This latter operation (“raising” a vector to a power) has highest priority and is evalu-
ated before the dot products and “*”.

Set B; = Bi(1—1;), fori =1,2,---,8.
In consequence from FSAL property follows that ag; = B;,i =1,2,--- ,8.

Continue evaluating successively
2
3

azy = %/

thy — Y3(=273+ 714)
1272(72 —13)”

43 — Y3(=272 + 714)
1293(=72+73)”
fes — 9 — 2073 — 2074 + 567374 — 1297 + 287377 + 287477 — 84737477
10,080(3 — ¥5)5(—74 + ¥5) (=1 4+ 76) (76 — 7)db6 ’

=975 + 2079375 + 20747Y5 — 5637475 + 1576 — 32773776 — 3274v6 + 84737476
—1292 + 287372 + 287472 — 8437472 — 677 + 127377 + 127477
s = —2873747y7 + 127577 — 283757 — 2874577 + 84Y374 Y5777
10,080(73 — 15)75(—v4 +5)(7r5 — 76) (76 — ¥7) (=1 4+ 77) B, ’

g — 0073 =674+ 147374 — 675 + 149375 + 147475 — 42737475
5040(v3 — 76)v6(—74 + 76) (=75 +76) (=1 + 77) BY)

7

_ —BE+2ys5BE — VEBE 4 2ae5B + 2a75B
ags = — 2!
8

7

7

_ —Be+276Bt — 6Pt + 20765

as6
285
_ By = 2v7Br + 1785
agy — 2, .
Ps
Then solve simultaneously
_ - 1 1 5 1 1 - 1
1 —18.v=-g8. 2 _ 2l A3 pl A ARl A
pre=Lp y=5p7v=35F1v=gF1r=cp1r=¢

and
A (T —sl)- (= yal) -7 = 7212 = 73) (72 fn)(ﬁ"A)z

= [ JS S (= 73) (x — va) xdxdddx
for E’l, Eg, Bﬁl, Bg, 3’6,3’7 and Eg, assuming that I' = diag(y).

Also set B; = Bi(1— 1), fori =1,2,--- 8.
Proceed solving

(V- A),= (V- (v 4), = (V- (v*+4)) = (B-4), =0

for asp, agp, a7, and agy.
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After this, evaluate successively

iss — 1245573 + 12a50 7274 — 27473 + 72 ,
12793(73 — 714)

T —12a5p73 + 1245077273 — 27373 + 7‘51,
12794(=73 + 714))

—12a6273 + 12a62727v4 + 1206574775 — 1206573 — 277472 + 76

fes = 1293(73 — 714)
ter — —12a6273 + 12627273 + 120657375 — 1206573 — 27375 + 76
1274(=73 + 74)
tys = —12a7575 4 12a757274 + 12a75747y5 — 1247572 + 12a76'y476 — 1207672 — 27473 + 77
1273(73 — 7a)
S —12a7,73 + 12a757273 + 12a75737y5 — 12a7572 + 124767376 — 12a767% — 27375 + 77
1274(=73 + 74)
s = —Bs + 27385 — v3Bs + 2a432,54 + 2a53 85 + 26385 + 2a73ﬁ7
Bs
_ —Bi+274P) — viPy + 2054B5 + 2064 B + 20745
agq = — 2‘3,8 .
Conclude with

ap = *'Yz Zal,j

Because the ninth stage is used as the first stage of the next step, even though s =9,
the family wastes only eight stages each step.

The challenge now is how to choose the free parameters. The norm of the principal
coefficients of the local truncation error is traditionally minimized, i.e., the coefficients of
18 in the residual of Taylor error expansions corresponding to the 5th order formula of the
underlying RK pair.

Since our concern here is to deal with Keplerian type orbits, we shall try another
approach and train these free parameters in order for the resulting pair to perform best in
our problems of interest.

3. Comparison of Outcomes from Various Pairs

Comparison of the results observed by various pairs is an interesting issue. It is of
crucial importance in our present work. We thus deal with the Kepler problem. This has a
form that follows

/ — 34),
2yt =4y,
Sy = 'y i
(V)7 + P
tyl = 2y

T
with x € [0,107], p(0) = {1 —1,0,0,,/H= } and the theoretical solution is [5]

—T

Ly (x) = cos(v) — 1, 2p(x) = sin(v)m.

In the above, v = 7-sin(v) + x, T is the eccentricity, and the left superscript de-
. . . T
notes the components of 1. We have to avoid confusion with ¥ = [¢1,2 1,2 1,2 ],

T L
o = Y22 922 Yo, o], 3, - - -, that correspond to the vectors approximating the solu-
tion at x1,xp,x3,- - -.
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When running DEP8(6) for T = 0.8 and tolerances 1075,107%,---, 10711, we get the
results summarized in Table 1. There we recorded the error observed at the end-point and
the stages used by each pair.

Table 1. Outcomes of DEP8(6) on Kepler orbit for T = 0.8.

Tolerance Stages End-Point Error
105 1089 6.4 x 1074
10~° 1377 2.7 x 107>
107 1769 2.6 x 1077
108 2265 13 %1078
10~° 2889 6.9 x 108
10~10 3497 40x 1077
10~ 11 3785 25x%x10°10

Then, we try the PT8(6) pair given in [1] and get the results presented in Table 2.

Table 2. Outcomes of PT8(6) on Kepler orbit for T = 0.8.

Tolerance Stages End-Point Error
107> 1161 50x 1074
10—° 1457 1.6 x 107
107 1833 45 %1077
108 2361 34x10°8
10—° 3057 3.7 x107°?
1010 3729 12 %1077
10~ 3769 24 x10°10

The question we raise now is regarding which pair delivers the better results. It is
not clear from what can be seen in the tables. Thus, we use a technique similar to the one
described in [5].

We form a linear least squares fit on the logarithms of data (i.e., function evaluations
and accuracies achieved). Then we arrive at a slope that corresponds to the order of the
method. These parallel slopes for DEP8(6) and TP8(6) can be seen in Figure 1. See [3]
(p. 214) for more explanations on this issue.

Now, we are able to compare the results of the pairs in the selected problem.

In Table 3 we present the function evaluations that might have been used for achieving
various accuracies by both pairs. These values follow the linear fit, as mentioned in [5],
but the constant ratio is explained by parallel slopes amongst techniques of the same order.
The latter observation might not be present for every problem. Some special characteristics
of various problems may be exploited differently by various pairs of the same orders and
thus may provide steeper slopes than anticipated. As a result, the numbers in the second
column of Table 3 are interpreted as

. : ~ —0.0879-1 ted 2.742
functionevaluations ~ 10 0g19(expected error)+ ,

while the stages in the third column can be computed from the relation

functionevaluations ~ 10—0.0900~10g10(expected error)+2.715
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Averaging the ratios in the fourth column of Table 3, we conclude that DEP8(6)) is considered
to be about 3% costlier than PT8(6) in the problem under consideration. After this we may
ask for free parameters that may derive a new pair, which is cheaper in a wider class of

Keplerian type orbits.
109 & ‘ : T T
FNQ
AN O DEP86
4 [ DEPS86 fit
107 * PT86
oo N e PT86 flt
105 F 3
* A
10° ¢
5 =
®
7L 4
10 O 3
108 F
¢
109F *
1-‘10\ . . . . 1 . A b b I
1000 1500 2000 2500 3000 3500 4000
stages

Figure 1. Results for DEP86 and PT86, as given in Tables 1 and 2 and their corresponding

log-linear fits.

Table 3. Stages that might have been used for achieving various accuracies by both pairs for Keplerian

orbit with eccentricity T = 0.8.

Expected End-Point Error DEPP8(6) PT8(6) Efficiency Ratio
1073 1013.97 965.53 1.05
104 1241.42 1187.91 1.05
107> 1519.88 1461.51 1.04
107° 1860.81 1798.13 1.03
10~7 2278.24 2212.28 1.03
108 2789.24 2721.81 1.02
107 3414.91 3348.71 1.02
10710 4180.91 4119.99 1.01

4. Pairs’ Performance in a Diverse Range of Problems in Keplerian-like Forms

Our purpose here is to construct a RKN8(6) pair from the family discussed above. This
pair has to deliver the best results on problems of Keplerian form. For this reason, we have

selected the problems that follow.

4.1. The Kepler Problem

We have already dealt with this. We used the eccentricities T = 0,0.2,0.4,0.6,0.8, and
recorded the cost (i.e., the stages used) and the errors observed at x,,; = 107. In the tables
with the results, these five problems are referred to as the numbers one through five.
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4.2. The Perturbed Kepler

The Schwarzschild potential is used to explain the motion of a planet according to
Einstein’s general relativity theory. The equations are:

' '
Ly = — 5 —(2406)s =,
()2 + (g2 () + (g2
211[]//:7 l)b 37(2+5)§ l)b

(97 + 92 TP+ 97
and the analytical solution is
L = cos(x + dx), 2y = sin(x + dx).

We solved the problem through x,,,; = [0, %}. The parameters used are § = 0.01,0.02,
0.03, 0.04, 0.05. In the tables with the results, these 5 problems are referred to as numbers 6

through to 10, respectively.

4.3. The Arenstorf Orbit

Another fascinating orbit displays a spacecraft’s steady journey around the Earth and
Moon [7] (p. 129).

1 1 !
1,00 _ 1 20 1P+€_ . y—¢
y'o= ety g o
2 2
20— 2 R .

with

3 3
Bo= \Opg a2t m= (- g+t

¢ = 0.012277471,' = 0.987722529,
and initial values
Lp(0) = 0.994, 1¢p'(0) =0, 2ip(0) = 0, 2y’ (0) = —2.00158510637908252,

and the solution is periodic with period x4 = 17.0652165601579625589. We solved the
Arenstorf problem and recorded the cost (i.e., the stages used) and the errors observed
to x4 and 2x 4. In the tables with the results, these two problems are referred to as the
numbers 11 and 12, respectively.

4.4. The Pleiades
Finally, we considered the problem “Pleiades” as given in [7] (p. 245).

4

y k9 ="9) i _ y uilz—"z)

i/
1/) =
iz P iz P

with

3
pij = \/(fz,b—hp)2+ (z—iz)% i,j=1,--,7andpj=j, j=1,---,7.

The initial values can be retrieved from [7]. We integrated the problem to x,,; = 3
and x,,7 = 4. Similarly, we recorded the cost (i.e., the stages used) and the errors observed
at the endpoints. In the tables with the results, these two problems are referred to as the
numbers 13 and 14, respectively.

We have formed a set of 14 problems and we tested the pairs DEP8(6) and PT8(6) over
7 tolerances, namely 1072,1076,... 10711,
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In Table 4 we record the corresponding ratios (as those appeared in the rightmost
column of Table 3) of DEP8(6) vs. PT8(6). In the first column of Table 4 we see the expected
errors. In the last row we record the average performances over all runs (i.e., tolerances
used) for each problem. Numbers greater than 1 are in favor of the second pair. The overall
average of these means is 0.99, which means that PT8(6) was in average about 1% more
expensive than DEP8(6) in all these 14 X 7 = 98 runs.

Table 4. Efficiency ratios of DEP8(6) vs. PT8(6) for problems 1-14 and the corresponding end-point
errors achieved.

Eror 1 2 3 4 5 6 7 8 9 10 11 12 13 14
10~2 * * * * * * * * * * * 095 =« *
103 * * * * 1.05 =x * * * * * 098 1.00 1.02
10~4 * * * * 1.05 =« * * * * 094 1.01 1.01 1.04
105 084 1.07 095 090 1.04 084 0.84 0.84 084 083 099 1.04 1.03 1.06
1076 085 1.08 098 097 1.03 086 0.85 0.85 085 085 103 1.08 1.05 1.07
1077 086 1.09 1.02 1.05 103 087 087 0.87 087 087 1.08 111 107 1.09
108 088 1.09 1.05 1.13 1.02 0.88 0.88 0.88 0.88 0.89 114 =« 1.09 1.11
109 089 1.10 1.09 1.23 1.02 0.89 090 090 090 091 119 =« 111 113
1010 090 111 1.12 133 1.01 090 091 092 091 093 * 113 1.15
10~ 1 092 111 1.16 = * 091 093 093 093 095 = * * *
10-12 093 1.12 =« * * 092 094 095 095 097 =« * * *
10~13 094 * * * 093 096 097 096 099 =« * * *

mean-> 089 1.10 1.05 110 1.03 0.89 090 090 090 091 1.06 1.03 1.06 1.08

Our aim now is to choose the five free parameters in a way to get a new pair that will
be more efficient and perform better than the 0.99 achieved above.

5. Training the Free Parameters in a Wide Set of Keplerian-like Problems

The idea we apply here is based on a previous work [8]. After selecting values for
the free parameters 74, ¥s, Y6, v7, ,89 we get pairs named NEWS§(6) and construct tables
similar to Table 4. There we record the efficiency ratios of DEP8(6) vs. NEWS§(6) and
calculate the average of means. This latter value is a fitness measure and is meant to be
maximized. For the maximization process we may choose from a variety of population-
dependent techniques.

We have chosen the differential evolution (DE) technique [9]. We already have
achieved some very interesting results using DE [10]. The latter work is about Runge-
Kutta pairs of orders 5(4) addressing equations of the form ¢’ = ¢(x, ), i.e., a clearly
different type of methods and problems. DE is an iterative procedure, and in every iteration,
named generation g, we work with a “population” of individuals

() @) -
(741 7+ Vsi ’761 /')’71) ,391 ) i=1,2,---,N,

with N the population size. An initial population

0 0 .
(741 + Vsi ”761 /')/71) ,391 ) i=1,2,---,N,

is randomly created in the first step of the method. We also used the average of the means
from Table 4 as the fitness function. Following that, the fitness function is assessed for
each member in the initial population. A three-phase sequential approach updates all of
the persons participating in each iteration (generation) g. Differentiation, crossover, and
selection are the phases involved. For the latter method, we utilized MATLAB Software
DeMat [11].
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Among the numerous quintuplets we got by the technique selected, we concluded the

following

74 = 0.4556145825203227, s = 0.494497106631637, ¢ = 0.8105140017857914,

7 = 0.898444913211217 and B} = 0.02601695275050284.

In Table 5 we present the derived pair. Coefficients that did not appear there are zero.

Table 5. Coefficients of the proposed here NEW8(6) pair, accurate for double precision computations.

¥2 = 0.0854544187688376031,
vs = 0.494497106631637020,
Y8="79=1,

B4 = 5.864310848696467 - 1074,
B7 = 0.00456108425288804292,
[/3\4 = —0.00580373475137855214,
/§7 = 0.00505375060024082628,
[321 = 0.00107723510961154486,
,3'7 = 0.0449124154890862874,
E; = —0.0106610768125419417,
’7 = 0.0497636382385428827,
azy = 0.00973661024949315254,
asy = —0.0264148295270339516,
agp = 0.0839513409881428112,
ags = 0.266751419874429655,
ayy = 1.25849331157904383,
agy = —0.0238094759938050803,
ags = 0.581476734552232745,

v3 = 0.170908837537675206,

Y6 = 0.810514001785791327,

B1 = 0.0495023778457969496,

Bs = 0.176658022702874654,

//3\1 = 0.0493217331530729867,

35 = 0.183035611932723099,
‘B/l = ,31/,5,1 = B1,

,3% = 0.349469854713854025,
é = 0.0462178842360828093,
3/5 = 0.362086180581648925,
Eg = 0.0190472342471524293,
ag = —0.122821108259130461,
asz = 0.103470702345032179,
agz = 0.142671597223573008,
a7y = —0.273030769247765195,
ays = —1.02650962278825033,
agz = 0.322215841053004229,

74 = 0.455614582520322714,
77 = 0.898444913211216931,
B3 = 0.223315864614348454,
Bs = 0.0453762194992222526,
B3 = 0.224007190882142852,
Be = 0.0443854481831987883,
By = 0.269350192988574135,
B, = 0.239470039616994250,
Bl = 0.270184029240960690,
B, = 0.234241308600661186,
By = 0.0260169527505028420,
a43 = 0.153641587946575897,
as4 = 0.0103732869329210154,

a4 = —0.164005790762850565,
az73 = 0.160122716797143754,
a76 = 0.0629905335176362299,

a4 = —0.448160499830497980,

ag7 = 0.00501106135437686956,

age = 0.0318063480094925576,

i—1
_g i _ 1.2
agj = Bj,j=12,---,8, ap = 37 — ‘Zzﬂi,j-
fon

For the above selection of the free parameters, we get the efficiency rations tabulated
in Table 6.

Table 6. Efficiency ratios of DEP8(6) vs. NEW8(6) for various problems and end-point errors achieved.

@5 1 2 3 4 5 6 7 8 9 10 11 12 13 14
101 * * * * * * * * * * * 095 =« *

101 * * * * * * * * * * * 1.00 0.85
101 * * * * 1.03 * * * * 0.84 1.05 0.89 0.89
1071 * 1.15 094 =« 1.06 * * * * * 091 1.11 092 0.93
101 151 1.14 098 0.86 1.09 152 152 151 154 149 098 1.17 095 097
1071 152 1.14 1.02 094 111 153 154 152 153 151 1.06 124 098 1.02
101 153 1.13 1.06 1.03 114 155 155 154 153 152 1.15 131 1.02 1.07
101 154 113 1.10 1.13 117 157 157 155 153 153 124 =« 1.06 1.12
101 155 1.12 114 124 120 158 158 156 152 154 134 =« 1.09 1.17
1071 156 1.12 119 136 =« 1.60 159 158 152 155 = * 1.13 1.23
1071 1.57 111 123 =« * 1.62 161 159 152 156 =« * * *

107! 1.58 * * * * 1.64 162 160 151 158 x * * *

107! 159 x* * * * 1.65 164 1.61 151 159 = * * *

mean-> 155 1.13 1.08 110 111 159 158 156 152 154 1.08 112 1.01 1.03

The average efficiency is 1.29, i.e., DEP8(6) is about 29% more expensive for these 98
runs over the selected 14 orbital problems. In reverse, this means that about

log,,1.29% ~ 0.88

digits were gained in average for NEW8(6) at the same costs.
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6. Numerical Tests

We tested NEW8(6) presented here in comparison with the DEP8(6) pair, which
appeared in [6]. DEP8(6) is the most widely used Runge-Kutta-Nystom pair of orders
8(6) [12]. Both pairs were run for tolerances of 1072,107°, ... ,10~11. We set NEWS8(6) as
the reference pair and thus numbers greater than 1 indicate that NEW8(6) is more efficient.
Thus, we can interpret the number 1.30 as DEP8(6) being 0.3 = 30% more expensive than
NEWS(6).

The main difference here is that we recorded the global errors observed over all grid
points of the integrations. We proceed by presenting in Table 7 the ratios for global errors
for Kepler and perturbed Kepler (i.e., problems 1-10) in the intervals [0,100] changing
the parameters. Thus let us name as problems 1b,2b,3b,4b,5b Kepler orbits with var-
ious random eccentricities, namely T = 0.01,0.24,0.37,0.48 and 0.77, respectively. We
also name as problems 6b,7b,8b,9b,10b the perturbed Kepler orbits with parameters
6 = 0.015,0.025,0.035,0.045 and 0.055, respectively.

We also recorded the global errors for Arenstorf for intervals through x,,; = 30 and
Xeng = 40, now naming the problems 11b and 12b, respectively. Finally we run Pleiades to
Xend = 1.75 and x,,; = 3 now naming the problems 13b and 140, respectively. The efficiency
ratios for these 14 problems are presented in Table 7. The latter four problems come with
no analytical solutions. Thus the true values were approximated by a parallel integration
with much stringent tolerance.

Table 7. Efficiency ratios of DEP8(6)(4) vs. NEW8(6) for problems 1b-14b and global errors achieved.

@5 b 2b 3b 4 5b 6b 7a 8 9 10b 11b 12b 13b 14b
109 * * * * * * * * * * * 1.13 = *
101 * * * * * * * * * * 093 1.14 =« *
102 * * * * 091 =« * * * * 098 1.15 = *
103 * 111 x * 096 * * * * 1.03 1.16 = 0.89
104 156 1.11 1.03 092 101 154 149 150 154 155 1.07 117 087 092
105 152 110 1.07 097 107 155 152 152 155 155 1.13 1.18 092 0.95
10— 148 1.09 1.11 102 114 156 154 155 156 156 1.18 = 0.96 0.98
107 143 1.08 1.15 107 120 157 157 157 157 157 123 = 1.02 1.02
108 139 1.08 1.19 112 127 157 160 159 158 158 =« * 1.07 1.06
107 136 1.07 124 118 =« 158 1.63 1.61 159 159 =« * 113 1.09
1010 132 106 128 =x * 159 166 1.63 1.60 1.60 = * 1.18 1.13
10~11 128 * * * 160 1.69 1.66 161 161 =« * 125 «
10-12 125 =« * * * 161 1.72 168 162 161 =« * * *

mean-> 140 1.09 115 1.04 1.08 157 1.60 159 158 158 1.08 1.16 105 1.01

The overall image is almost the same as the one observed in the previous Table, which
is also quite a positive result.

The implementation of Runge-Kutta-Nystrom methods is a subject of ongoing interest.
This year we presented the Runge-Kutta-Nystrom pair RKNST7(5) of orders 7(5) [13].
Another issue of research is producing methods that are symplectic. The latter methods
have the property of linear error growth with respect to the length of integration interval
when applied to Kepler problems [14]. Their disadvantage is having higher truncation
errors and that they need more stages per step. On the contrary, conventional methods
(like the one presented here) have quadratic error growth. One of the most known eighth
order symplectic methods is the 15-stages Y8, given by Yoshida [15] in Table 1, column D.

We run the methods NEWS§(6), DEP8(6), RKNST7(5) and Y8 on problems 1b and 6b.
The intervals of integration were lengthened to 10,0007t and 10,0007t /1.015, respectively,
in favor of symplectic methods. We recorded the stages taken versus the end-point error
achieved and plot it in Figures 2 and 3.
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Figure 2. Efficiency curves for problem 1b in the interval [0, 10,0007].
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Figure 3. Efficiency curves for problem 6b in the interval [0, 10,0007t /1.015].

RKNTS7(5) pair was less efficient at higher tolerances than eighth order pairs since
it attains lesser algebraic accuracy and it was not designed to perform best on Keplerian
type orbits. DEP8(6) remains less efficient than NEW8(6) on these intervals and problems.
Symplectic methods are not competitive at all. It seems to share interesting properties
for geometers but not for numerical analysts. Their poor performance has already been

remarked elsewhere [16].

7. Conclusions

In this study, we considered the Runge-Kutta-Nystrom pairs of orders 8(6) for ad-
dressing the special second order Initial Value Problem. We focused on problems of the
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Keplerian type. Thus, we proposed a pair with coefficients specially trained in order to
address such kinds of orbits. Extensive results justified our effort.
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