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Abstract: In this study, we consider eight stages per step family of explicit Runge-Kutta-Nyström
pai ·rs of orders eight and six. The pairs from this family effectively use eight stages for each step.
The coefficients p ·rovided by such a method are much less than the number of non linear o ·rder
conditions requi ·red to be solved. Thus, we t ·raditionally apply various simplified assumptions in
o ·rder to address this drawback. The assumptions taken in the family we consider he ·re deliver a
subsystem where all the coefficients are evaluated successively and explicitly with respect to five f ·ree
parameters. We t ·rain (adjust) these f ·ree parameters in o ·rder to derive a certain pair that outperforms
other similar pai ·rs of orders 8(6) in Keplerian type o ·rbits, e.g., Kepler, pe ·rturbed Kepler, A ·renstorf
o ·rbit, or Pleiades. Diffe ·rential evolution technique is used for the training. The pair that we finally
present offe ·rs about an additional digit of accu ·racy in a va ·riety of orbits.

Keywords: initial value p ·roblem; Runge-Kutta-Nyström pairs; diffe ·rential evolution; Kepler orbits

MSC: 65L05; 65L06; 90C26; 90C30

1. Introduction

The initial value problem of special form

ψ′′ = ϕ(x, ψ), ψ(x0) = ψ0, ψ′(x0) = ψ′0 (1)

where ϕ : R×Rm → Rm, and (ψ0, ψ′0) ∈ R2m, is considered here.
We approximate the solution of (1) at a set of discrete points (xn, ψn, ψ′n) with an

explicit Runge-Kutta-Nyström (RKN) pair of orders p(q), p > q. This method has the form

ϕi = ϕ(xn + γihn, ψn + γihnψ′n + h2
n

s

∑
j=1

αij ϕj), i = 1, 2, · · · , s
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ψn+1 = ψn + hnψ′n + h2
n ∑s

i=1 βi ϕi, ψ̂n+1 = ψn + hnψ′n + h2
n ∑s

i=1 β̂i ϕi,

ψ′n+1 = ψ′n + hn ∑s
i=1 β′i ϕi, ψ̂′n+1 = ψ′n + hn ∑s

i=1 β̂′i ϕi,

with hn = xn+1− xn, while the number of the stages of the method is s. The solution is prop-
agated by the higher order approximations ψn, ψ′n. In consequence, β̂ and β̂′ correspond to
the lower order method.

Some norm of the vector estimating the error

εn = max(‖h2
n

s

∑
i=1

(βi − β̂i)ϕi‖, ‖hn

s

∑
i=1

(β′i − β̂′i)ϕi)‖,

is used in comparison with the requested tolerance TOL, for step-size control algorithm

hn+1 = 0.9 · hn ·
(

TOL

hp−q−1
n · εn

)1/p

.

This formula is used even if TOL < hp−q−1 · εn, but then hn+1 is actually a new smaller
version of hn. For extended details in the issue, see [1].

All the coefficients can be formulated using the Butcher tableau [2,3]. So the method
takes the form

γ A

β β̂

β′ β̂′

with A ∈ Rs×s, βT, β̂T, β′T, β̂T, γ ∈ Rs. Here, matrix A is strictly lower triangular since the
methods considered are explicit. By this we mean that the function evaluations (i.e., φi’s) are
calculated directly and successively. On the contrary, when the method is implicit we have
to solve non linear equations for evaluating the stages, which increases the computation
time. Implicit methods are used when the problems are stiff [4]. The problems we are
dealing with in the following do not fall into the latter category [5].

Here we are interested in studying nine stages (i.e., s = 9), FSAL (First stage As Last)
pair of orders eight and six (i.e., p = 8 and q = 6). This method spends only eight stages per
step since the last stage is used again as the first stage in the next step. Thus, the coefficients
in the ninth stage coincide with β, i.e., a9j = β j for j = 1, 2, · · · , 8.

2. The Dormand-El Mikkawy-Prince Family of Runge-Kutta-Nyström Pairs of
Orders 8(6)

This family is used for the derivation of the famous DEP8(6) pair presented in [6].
Further investigation is given in [1]. Thus, we may deploy here the algorithm for the
derivation of the parameters of the pair with respect to the free terms γ4, γ5, γ6, γ7 and β̂9.

Initially, set γ8 = γ9 = 1. All the coefficients not presented below are zero, e.g., β′2 = 0.

γ3 =


15− 20γ4 − 20γ5 + 28γ4γ5 − 20γ6 + 28γ4γ6 + 28γ5γ6 − 42γ4γ5γ6

−20γ7 + 28γ4γ7 + 28γ5γ7 − 42γ4γ5γ7 + 28γ6γ7
−42γ4γ6γ7 − 42γ5γ6γ7 + 70γ4γ5γ6γ7


2(10− 14γ4 − 14γ5 + 21γ4γ5 − 14γ6 + 21γ4γ6 + 21γ5γ6
−35γ4γ5γ6 − 14γ7 + 21γ4γ7 + 21γ5γ7 − 35γ4γ5γ7
+21γ6γ7 − 35γ4γ6γ7 − 35γ5γ6γ7 + 70γ4γ5γ6γ7)


,

γ2 =
1
2

γ3.

Then solve

b′ · e = 1, b′ · γ =
1
2

, b′ · γ2 =
1
3

, b′ · γ3 =
1
4

, b′ · γ4 =
1
5

, b′ · γ5 =
1
6

, b′ · γ6 =
1
7
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for β′1, β′3, β′4, β′5, β′6, β′7 and β′8.

In these equ·ations, “∗” is to be unde ·rstood as a component-wise multiplication among
vecto ·rs and has the lowest prio ·rity after all other operations. Also,

γ2 = γ ∗ γ, γ3 = γ2 ∗ γ, etc.

This latter ope ·ration (“raising” a vector to a power) has highest prio ·rity and is evalu-
ated befo ·re the dot products and “∗”.

Set βi = βi(1− γi), for i = 1, 2, · · · , 8.
In consequence from FSAL property follows that a9i = βi, i = 1, 2, · · · , 8.
Continue evaluating successively

a32 =
γ2

3
6γ2

,

a42 =
γ3

4(−2γ3 + γ4)

12γ2(γ2 − γ3)
,

a43 =
γ3

4(−2γ2 + γ4)

12γ3(−γ2 + γ3)
,

a65 =
9− 20γ3 − 20γ4 + 56γ3γ4 − 12γ7 + 28γ3γ7 + 28γ4γ7 − 84γ3γ4γ7

10, 080(γ3 − γ5)γ5(−γ4 + γ5)(−1 + γ6)(γ6 − γ7)db6
,

a75 =


−9γ5 + 20γ3γ5 + 20γ4γ5 − 56γ3γ4γ5 + 15γ6 − 32γ3γ6 − 32γ4γ6 + 84γ3γ4γ6

−12γ2
6 + 28γ3γ2

6 + 28γ4γ2
6 − 84γ3γ4γ2

6 − 6γ7 + 12γ3γ7 + 12γ4γ7

−28γ3γ4γ7 + 12γ5γ7 − 28γ3γ5γ7 − 28γ4γ5γ7 + 84γ3γ4γ5γ7


10, 080(γ3 − γ5)γ5(−γ4 + γ5)(γ5 − γ6)(γ6 − γ7)(−1 + γ7)β′7

,

a76 =
3− 6γ3 − 6γ4 + 14γ3γ4 − 6γ5 + 14γ3γ5 + 14γ4γ5 − 42γ3γ4γ5

5040(γ3 − γ6)γ6(−γ4 + γ6)(−γ5 + γ6)(−1 + γ7)β′7)
,

a85 = −
−β′5 + 2γ5β′5 − γ2

5β′5 + 2a65β′6 + 2a75β′7
2β′8

,

a86 =
−β′6 + 2γ6β′6 − γ2

6β′6 + 2a76β′7
2β′8

,

a87 =
β′7 − 2γ7β′7 + γ2

7β′7
2β′8

.

Then solve simultaneously

β̂′ · e = 1, β̂′ · γ =
1
2

, β̂′ · γ2 =
1
3

, β̂′ · γ3 =
1
4

, β̂′ · γ4 =
1
5

, β̂′ · γ5 =
1
6

and
β̂ · A · (Γ− γ3 I) · (Γ− γ4 I) · γ− γ2(γ2 − γ3)(γ2 − γ4)

(
β̂′ · A

)
2
=

=
∫ x=1

x=0

∫ x=x
x=0

∫ x=x
x=0 (x− γ3)(x− γ4)xdxdxdx

for β̂′1, β̂′3, β̂′4, β̂′5, β̂′6, b̂′7 and β̂′8, assuming that Γ = diag(γ).
Also set β̂i = β̂′i(1− γi), for i = 1, 2, · · · , 8.
Proceed solving(

b′ · A
)

2 =
(
b′ · (γ ∗ A)

)
2 =

(
b′ ·
(

γ2 ∗ A
))

2
=
(

β̂′ · A
)

2
= 0

for a52, a62, a72 and a82.
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After this, evaluate successively

a53 =
12a52γ2

2 + 12a52γ2γ4 − 2γ4γ3
5 + γ4

5
12γ3(γ3 − γ4)

,

a54 =
−12a52γ2

2 + 12a52γ2γ3 − 2γ3γ3
5 + γ4

5
12γ4(−γ3 + γ4))

,

a63 =
−12a62γ2

2 + 12a62γ2γ4 + 12a65γ4γ5 − 12a65γ2
5 − 2γ4γ3

6 + γ4
6

12γ3(γ3 − γ4)
,

a64 =
−12a62γ2

2 + 12a62γ2γ3 + 12a65γ3γ5 − 12a65γ2
5 − 2γ3γ3

6 + γ4
6

12γ4(−γ3 + γ4)
,

a73 =
−12a72γ2

2 + 12a72γ2γ4 + 12a75γ4γ5 − 12a75γ2
5 + 12a76γ4γ6 − 12a76γ2

6 − 2γ4γ3
7 + γ4

7
12γ3(γ3 − γ4)

,

a74 =
−12a72γ2

2 + 12a72γ2γ3 + 12a75γ3γ5 − 12a75γ2
5 + 12a76γ3γ6 − 12a76γ2

6 − 2γ3γ3
7 + γ4

7
12γ4(−γ3 + γ4)

,

a83 = −
−β′3 + 2γ3β′3 − γ2

3β′3 + 2a43β′4 + 2a53β′5 + 2a63β′6 + 2a73β′7
2β′8

,

a84 = −
−β′4 + 2γ4β′4 − γ2

4β′4 + 2a54β′5 + 2a64β′6 + 2a74β′7
2β′8

.

Conclude with

ai1 =
1
2

γ2
i −

i−1

∑
j=2

ai,j.

Bec·ause the ninth st·age is used as the first stage of the next step, even though s = 9,
the f·amily wastes only eight st·ages each step.

The ch·allenge now is how to choose the f ·ree par·ameters. The no ·rm of the princip·al
coefficients of the loc·al trunc·ation er ·ror is tr·aditionally minimized, i.e., the coefficients of
h8 in the residu·al of T·aylor er ·ror exp·ansions cor ·responding to the 5th order formula of the
unde ·rlying RK p·air.

Since our conce ·rn he ·re is to de·al with Kepleri·an type o ·rbits, we sh·all t ·ry another
appro·ach and tr·ain these f ·ree par·ameters in order for the resulting p·air to pe ·rform best in
our p ·roblems of inte ·rest.

3. Comparison of Outcomes from Various Pairs

Comp·arison of the results obse ·rved by v·arious p·airs is an inte ·resting issue. It is of
cruci·al impo ·rtance in our p ·resent work. We thus deal with the Kepler p ·roblem. This h·as a
form that follows

1ψ′ = 3ψ,
2ψ′ = 4ψ,

3ψ′ = −
1ψ(√

(1ψ)2 + (2ψ)2
)3 ,

4ψ′ = −
2ψ(√

(1ψ)2 + (2ψ)2
)3 ,

with x ∈ [0, 10π], ψ(0) =
[
1− τ, 0, 0,

√
1+τ
1−τ

]T
and the theoretic·al solution is [5]

1ψ(x) = cos(v)− τ, 2ψ(x) = sin(v)
√

1− τ2.

In the above, v = τ · sin(v) + x, τ is the eccent ·ricity, and the left superscript de-
notes the components of ψ. We have to avoid confusion with ψ1 =

[1ψ1,2 ψ1,3 ψ1,4 ψ1
]T ,

ψ2 =
[1ψ2,2 ψ2,3 ψ2,4 ψ2

]T , ψ3, · · · , that cor ·respond to the vecto ·rs app ·roximating the solu-
tion at x1, x2, x3, · · · .
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When running DEP8(6) for τ = 0.8 and tole ·rances 10−5, 10−6, · · · , 10−11, we get the
results summa ·rized in Table 1. The ·re we reco ·rded the e ·rror obse ·rved at the end-point and
the stages used by each pair.

Table 1. Outcomes of DEP8(6) on Kepler o ·rbit for τ = 0.8.

Tolerance Stages End-Point Error

10−5 1089 6.4× 10−4

10−6 1377 2.7× 10−5

10−7 1769 2.6× 10−7

10−8 2265 1.3× 10−8

10−9 2889 6.9× 10−8

10−10 3497 4.0× 10−9

10−11 3785 2.5× 10−10

Then, we t ·ry the PT8(6) pair given in [1] and get the results p ·resented in Table 2.

Table 2. Outcomes of PT8(6) on Kepler orbit for τ = 0.8.

Tolerance Stages End-Point Error

10−5 1161 5.0× 10−4

10−6 1457 1.6× 10−6

10−7 1833 4.5× 10−7

10−8 2361 3.4× 10−8

10−9 3057 3.7× 10−9

10−10 3729 1.2× 10−9

10−11 3769 2.4× 10−10

The question we raise now is regarding which pair delivers the better results. It is
not clear from what can be seen in the tables. Thus, we use a technique similar to the one
described in [5].

We form a line·ar le·ast squa ·res fit on the loga ·rithms of d·ata (i.e., function evaluations
and accuracies achieved). Then we ar ·rive at a slope th·at corresponds to the o ·rder of the
method. These pa ·rallel slopes for DEP8(6) and TP8(6) c·an be seen in Figure 1. See [3]
(p. 214) for more explanations on this issue.

Now, we are able to compa ·re the results of the pai ·rs in the selected p ·roblem.
In Table 3 we p ·resent the function ev·aluations that might h·ave been used for achieving

va ·rious accur·acies by both pai ·rs. These values follow the linear fit, as mentioned in [5],
but the const·ant ratio is explained by p·arallel slopes amongst techniques of the s·ame order.
The l·atter obse ·rvation might not be present for eve ·ry problem. Some speci·al cha ·racteristics
of v·arious problems m·ay be exploited diffe ·rently by v·arious pairs of the s·ame o ·rders and
thus m·ay provide steeper slopes than anticipated. As a result, the numbers in the second
column of T·able 3 are interpreted as

functionevaluations ≈ 10−0.0879·log10(expected error)+2.742,

while the st·ages in the thi ·rd column c·an be computed from the rel·ation

functionevaluations ≈ 10−0.0900·log10(expected error)+2.715.
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Averaging the ratios in the fourth column of Table 3, we conclude that DEP8(6)) is conside ·red
to be about 3% costlier than PT8(6) in the p ·roblem under conside ·ration. After this we m·ay
ask for free par·ameters that m·ay derive a new pair, which is che·aper in a wider cl·ass of
Keple ·rian type o ·rbits.

1000 1500 2000 2500 3000 3500 4000

stages

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3
e
rr

o
r

DEP86

DEP86 fit

PT86

PT86 fit

Figure 1. Results for DEP86 and PT86, as given in Tables 1 and 2 and their cor ·responding
log-linear fits.

Table 3. St·ages th·at might have been used for achieving va ·rious accuracies by both pairs for Keple ·rian
o ·rbit with eccent ·ricity τ = 0.8.

Expected End-Point Error DEPP8(6) PT8(6) Efficiency Ratio

10−3 1013.97 965.53 1.05

10−4 1241.42 1187.91 1.05

10−5 1519.88 1461.51 1.04

10−6 1860.81 1798.13 1.03

10−7 2278.24 2212.28 1.03

10−8 2789.24 2721.81 1.02

10−9 3414.91 3348.71 1.02

10−10 4180.91 4119.99 1.01

4. Pairs’ Performance in a Diverse Range of Problems in Keplerian-like Forms

Our purpose here is to construct a RKN8(6) pair from the family discussed above. This
pair has to deliver the best results on problems of Keplerian form. For this reason, we have
selected the problems that follow.

4.1. The Kepler Problem

We have already dealt with this. We used the eccentricities τ = 0, 0.2, 0.4, 0.6, 0.8, and
recorded the cost (i.e., the stages used) and the errors observed at xend = 10π. In the tables
with the results, these five problems are referred to as the numbers one through five.
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4.2. The Perturbed Kepler

The Schwarzschild potential is used to explain the motion of a planet according to
Einstein’s general relativity theory. The equations are:

1ψ′′ = −
1ψ√

(1ψ)2 + (2ψ)23 − (2 + δ)δ
1ψ√

(1ψ)2 + (2ψ)25 ,

2ψ′′ = −
2ψ√

(1ψ)2 + (2ψ)23 − (2 + δ)δ
2ψ√

(1ψ)2 + (2ψ)25 ,

and the analytical solution is

1ψ = cos(x + δx), 2ψ = sin(x + δx).

We solved the problem through xend = [0, 10π
1+δ ]. The parameters used are δ = 0.01, 0.02,

0.03, 0.04, 0.05. In the tables with the results, these 5 problems are referred to as numbers 6
through to 10, respectively.

4.3. The Arenstorf Orbit

Another f·ascinating orbit displays a sp·acecraft’s steady journey around the E·arth and
Moon [7] (p. 129).

1ψ′′ = 1ψ + 2 · 2ψ
′ − ζ ′ ·

1ψ + ζ

P1
− ζ ·

1ψ− ζ ′

P2
,

2ψ′′ = 2ψ + 2 · 1ψ
′ − ζ ′ ·

2ψ

P1
− ζ ·

2ψ

P2
,

with

P1 =

√
(1ψ + ζ)

2
+ 2ψ

2
3
, P2 =

√
(1ψ− ζ ′)2

+ 2ψ
2

3
,

ζ = 0.012277471, ζ ′ = 0.987722529,

and initi·al values

1ψ(0) = 0.994, 1ψ
′
(0) = 0, 2ψ(0) = 0, 2ψ

′
(0) = −2.00158510637908252,

and the solution is periodic with period xA = 17.0652165601579625589. We solved the
Arenstorf problem and recorded the cost (i.e., the stages used) and the errors observed
to xA and 2xA. In the tables with the results, these two problems are referred to as the
numbers 11 and 12, respectively.

4.4. The Pleiades

Finally, we considered the problem “Pleiades” as given in [7] (p. 245).

iψ′′ = ∑
i 6=j

µj
(jψ− iψ

)
ρij

, iz
′′
= ∑

i 6=j

µj
(jz−i z

)
ρij

,

with

ρij =

√(
iψ− jψ

)2
+
(

iz− jz
)2

3
, i, j = 1, · · · , 7 and µj = j, j = 1, · · · , 7.

The initial values can be retrieved from [7]. We integrated the problem to xend = 3
and xend = 4. Similarly, we recorded the cost (i.e., the stages used) and the errors observed
at the endpoints. In the tables with the results, these two problems are referred to as the
numbers 13 and 14, respectively.

We have formed a set of 14 problems and we tested the pairs DEP8(6) and PT8(6) over
7 tolerances, namely 10−5, 10−6, · · · , 10−11.
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In Table 4 we reco ·rd the co ·rresponding r·atios (as those appeared in the rightmost
column of Table 3) of DEP8(6) vs. PT8(6). In the fi ·rst column of Table 4 we see the expected
e ·rrors. In the last row we reco ·rd the ave ·rage pe ·rformances over all runs (i.e., tole ·rances
used) for e·ach p ·roblem. Numbe ·rs g ·reater than 1 are in f·avor of the second pair. The ove ·rall
ave ·rage of these means is 0.99, which means that PT8(6) was in ave ·rage about 1% mo ·re
expensive than DEP8(6) in all these 14× 7 = 98 runs.

Table 4. Efficiency r·atios of DEP8(6) vs. PT8(6) for problems 1–14 and the corresponding end-point
errors achieved.

Error︸ ︷︷ ︸ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10−2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.95 ∗ ∗
10−3 ∗ ∗ ∗ ∗ 1.05 ∗ ∗ ∗ ∗ ∗ ∗ 0.98 1.00 1.02
10−4 ∗ ∗ ∗ ∗ 1.05 ∗ ∗ ∗ ∗ ∗ 0.94 1.01 1.01 1.04
10−5 0.84 1.07 0.95 0.90 1.04 0.84 0.84 0.84 0.84 0.83 0.99 1.04 1.03 1.06
10−6 0.85 1.08 0.98 0.97 1.03 0.86 0.85 0.85 0.85 0.85 1.03 1.08 1.05 1.07
10−7 0.86 1.09 1.02 1.05 1.03 0.87 0.87 0.87 0.87 0.87 1.08 1.11 1.07 1.09
10−8 0.88 1.09 1.05 1.13 1.02 0.88 0.88 0.88 0.88 0.89 1.14 ∗ 1.09 1.11
10−9 0.89 1.10 1.09 1.23 1.02 0.89 0.90 0.90 0.90 0.91 1.19 ∗ 1.11 1.13
10−10 0.90 1.11 1.12 1.33 1.01 0.90 0.91 0.92 0.91 0.93 ∗ ∗ 1.13 1.15
10−11 0.92 1.11 1.16 ∗ ∗ 0.91 0.93 0.93 0.93 0.95 ∗ ∗ ∗ ∗
10−12 0.93 1.12 ∗ ∗ ∗ 0.92 0.94 0.95 0.95 0.97 ∗ ∗ ∗ ∗
10−13 0.94 ∗ ∗ ∗ ∗ 0.93 0.96 0.97 0.96 0.99 ∗ ∗ ∗ ∗

mean-> 0.89 1.10 1.05 1.10 1.03 0.89 0.90 0.90 0.90 0.91 1.06 1.03 1.06 1.08

Our aim now is to choose the five f ·ree pa ·rameters in a way to get a new pair that will
be mo ·re efficient and pe ·rform better than the 0.99 achieved above.

5. T ·raining the F ·ree Paramete ·rs in a Wide Set of Keple ·rian-like P ·roblems

The idea we apply here is based on a p ·revious wo ·rk [8]. After selecting values for
the f ·ree pa ·rameters γ4, γ5, γ6, γ7, β̂′9 we get pai ·rs named NEW8(6) and const ·ruct tables
similar to Table 4. The ·re we reco ·rd the efficiency ratios of DEP8(6) vs. NEW8(6) and
calculate the ave ·rage of means. This l·atter v·alue is a fitness measu ·re and is me·ant to be
m·aximized. For the maximization p ·rocess we may choose from a variety of population-
dependent techniques.

We have chosen the differential evolution (DE) technique [9]. We already have
achieved some very interesting results using DE [10]. The latter work is about Runge-
Kutta pairs of orders 5(4) addressing equations of the form ψ′ = ϕ(x, ψ), i.e., a clearly
different type of methods and problems. DE is an ite ·rative p ·rocedure, and in eve ·ry ite ·ration,
named generation g, we wo ·rk with a “population” of individuals(

γ
(g)
4i , γ

(g)
5i , γ

(g)
6i , γ

(g
7i ), β̂

′(g)
9i

)
, i = 1, 2, · · · , N,

with N the population size. An initial population(
γ
(0)
4i , γ

(0)
5i , γ

(0)
6i , γ

(0
7i ), β̂

′(0)
9i

)
, i = 1, 2, · · · , N,

is randomly c ·reated in the fi ·rst step of the method. We also used the average of the means
from Table 4 as the fitness function. Following that, the fitness function is assessed for
each member in the initial population. A three-phase sequential approach updates all of
the persons participating in each iteration (generation) g. Differentiation, crossover, and
selection are the phases involved. For the latter method, we utilized MATLAB Software
DeMat [11].
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Among the numerous quintuplets we got by the technique selected, we concluded the
following

γ4 = 0.4556145825203227, γ5 = 0.494497106631637, γ6 = 0.8105140017857914,

γ7 = 0.898444913211217 and β̂′9 = 0.02601695275050284.

In Table 5 we present the derived pair. Coefficients that did not appea ·r there a ·re ze ·ro.

Table 5. Coefficients of the proposed here NEW8(6) pair, accurate for double precision computations.

γ2 = 0.0854544187688376031, γ3 = 0.170908837537675206, γ4 = 0.455614582520322714,
γ5 = 0.494497106631637020, γ6 = 0.810514001785791327, γ7 = 0.898444913211216931,

γ8 = γ9 = 1, β1 = 0.0495023778457969496, β3 = 0.223315864614348454,
β4 = 5.864310848696467 · 10−4, β5 = 0.176658022702874654, β6 = 0.0453762194992222526,
β7 = 0.00456108425288804292, β̂1 = 0.0493217331530729867, β̂3 = 0.224007190882142852,

β̂4 = −0.00580373475137855214, β̂5 = 0.183035611932723099, β̂6 = 0.0443854481831987883,
β̂7 = 0.00505375060024082628, β′1 = β1, β̂′1 = β̂1, β′3 = 0.269350192988574135,
β′4 = 0.00107723510961154486, β′5 = 0.349469854713854025, β′6 = 0.239470039616994250,
β′7 = 0.0449124154890862874, β′8 = 0.0462178842360828093, β̂′3 = 0.270184029240960690,

β̂′4 = −0.0106610768125419417, β̂′5 = 0.362086180581648925, β̂′6 = 0.234241308600661186,
β̂′7 = 0.0497636382385428827, β̂′8 = 0.0190472342471524293, β̂′9 = 0.0260169527505028420,

a32 = 0.00973661024949315254, a42 = −0.122821108259130461, a43 = 0.153641587946575897,
a52 = −0.0264148295270339516, a53 = 0.103470702345032179, a54 = 0.0103732869329210154,
a62 = 0.0839513409881428112, a63 = 0.142671597223573008, a64 = −0.164005790762850565,
a65 = 0.266751419874429655, a72 = −0.273030769247765195, a73 = 0.160122716797143754,
a74 = 1.25849331157904383, a75 = −1.02650962278825033, a76 = 0.0629905335176362299,

a82 = −0.0238094759938050803, a83 = 0.322215841053004229, a84 = −0.448160499830497980,
a85 = 0.581476734552232745, a86 = 0.0318063480094925576, a87 = 0.00501106135437686956,

a9j = β j, j = 1, 2, · · · , 8, ai1 = 1
2 γ2

i −
i−1
∑

j=2
ai,j.

For the above selection of the f ·ree pa ·rameters, we get the efficiency rations tabulated
in Table 6.

Table 6. Efficiency ratios of DEP8(6) vs. NEW8(6) for various problems and end-point errors achieved.

Error︸ ︷︷ ︸ 1 2 3 4 5 6 7 8 9 10 11 12 13 14

10−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.95 ∗ ∗
10−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.00 ∗ 0.85
10−1 ∗ ∗ ∗ ∗ 1.03 ∗ ∗ ∗ ∗ ∗ 0.84 1.05 0.89 0.89
10−1 ∗ 1.15 0.94 ∗ 1.06 ∗ ∗ ∗ ∗ ∗ 0.91 1.11 0.92 0.93
10−1 1.51 1.14 0.98 0.86 1.09 1.52 1.52 1.51 1.54 1.49 0.98 1.17 0.95 0.97
10−1 1.52 1.14 1.02 0.94 1.11 1.53 1.54 1.52 1.53 1.51 1.06 1.24 0.98 1.02
10−1 1.53 1.13 1.06 1.03 1.14 1.55 1.55 1.54 1.53 1.52 1.15 1.31 1.02 1.07
10−1 1.54 1.13 1.10 1.13 1.17 1.57 1.57 1.55 1.53 1.53 1.24 ∗ 1.06 1.12
10−1 1.55 1.12 1.14 1.24 1.20 1.58 1.58 1.56 1.52 1.54 1.34 ∗ 1.09 1.17
10−1 1.56 1.12 1.19 1.36 ∗ 1.60 1.59 1.58 1.52 1.55 ∗ ∗ 1.13 1.23
10−1 1.57 1.11 1.23 ∗ ∗ 1.62 1.61 1.59 1.52 1.56 ∗ ∗ ∗ ∗
10−1 1.58 ∗ ∗ ∗ ∗ 1.64 1.62 1.60 1.51 1.58 ∗ ∗ ∗ ∗
10−1 1.59 ∗ ∗ ∗ ∗ 1.65 1.64 1.61 1.51 1.59 ∗ ∗ ∗ ∗

mean-> 1.55 1.13 1.08 1.10 1.11 1.59 1.58 1.56 1.52 1.54 1.08 1.12 1.01 1.03

The ave ·rage efficiency is 1.29, i.e., DEP8(6) is about 29% mo ·re expensive for these 98
runs over the selected 14 o ·rbital p ·roblems. In reve ·rse, this means that about

log10 1.298 ≈ 0.88

digits were gained in ave ·rage for NEW8(6) at the same costs.
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6. Nume ·rical Tests

We tested NEW8(6) p ·resented here in comparison with the DEP8(6) pair, which
appeared in [6]. DEP8(6) is the most widely used Runge–Kutta-Nystöm pair of o ·rders
8(6) [12]. Both pai ·rs we ·re run for tole ·rances of 10−5, 10−6, · · · , 10−11. We set NEW8(6) as
the refe ·rence pair and thus numbe ·rs g ·reater than 1 indicate that NEW8(6) is mo ·re efficient.
Thus, we c·an inte ·rpret the number 1.30 as DEP8(6) being 0.3 = 30% mo ·re expensive than
NEW8(6).

The main difference here is that we recorded the global errors observed over all grid
points of the integrations. We proceed by presenting in Table 7 the r·atios for glob·al errors
for Kepler and perturbed Kepler (i.e., problems 1–10) in the intervals [0, 100] changing
the parameters. Thus let us name as problems 1b, 2b, 3b, 4b, 5b Kepler orbits with var-
ious random eccentricities, namely τ = 0.01, 0.24, 0.37, 0.48 and 0.77, respectively. We
also name as problems 6b, 7b, 8b, 9b, 10b the perturbed Kepler orbits with parameters
δ = 0.015, 0.025, 0.035, 0.045 and 0.055, respectively.

We also recorded the global errors for Arenstorf for intervals through xend = 30 and
xend = 40, now naming the problems 11b and 12b, respectively. Finally we run Pleiades to
xend = 1.75 and xend = 3 now naming the problems 13b and 14b, respectively. The efficiency
ratios for these 14 problems are presented in Table 7. The latter four problems come with
no analytical solutions. Thus the true values were approximated by a parallel integration
with much stringent tolerance.

Table 7. Efficiency ratios of DEP8(6)(4) vs. NEW8(6) for problems 1b–14b and global errors achieved.

Error︸ ︷︷ ︸ 1b 2b 3b 4b 5b 6b 7a 8b 9b 10b 11b 12b 13b 14b

100 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1.13 ∗ ∗
10−1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0.93 1.14 ∗ ∗
10−2 ∗ ∗ ∗ ∗ 0.91 ∗ ∗ ∗ ∗ ∗ 0.98 1.15 ∗ ∗
10−3 ∗ 1.11 ∗ ∗ 0.96 ∗ ∗ ∗ ∗ ∗ 1.03 1.16 ∗ 0.89
10−4 1.56 1.11 1.03 0.92 1.01 1.54 1.49 1.50 1.54 1.55 1.07 1.17 0.87 0.92
10−5 1.52 1.10 1.07 0.97 1.07 1.55 1.52 1.52 1.55 1.55 1.13 1.18 0.92 0.95
10−6 1.48 1.09 1.11 1.02 1.14 1.56 1.54 1.55 1.56 1.56 1.18 ∗ 0.96 0.98
10−7 1.43 1.08 1.15 1.07 1.20 1.57 1.57 1.57 1.57 1.57 1.23 ∗ 1.02 1.02
10−8 1.39 1.08 1.19 1.12 1.27 1.57 1.60 1.59 1.58 1.58 ∗ ∗ 1.07 1.06
10−9 1.36 1.07 1.24 1.18 ∗ 1.58 1.63 1.61 1.59 1.59 ∗ ∗ 1.13 1.09
10−10 1.32 1.06 1.28 ∗ ∗ 1.59 1.66 1.63 1.60 1.60 ∗ ∗ 1.18 1.13
10−11 1.28 ∗ ∗ ∗ ∗ 1.60 1.69 1.66 1.61 1.61 ∗ ∗ 1.25 ∗
10−12 1.25 ∗ ∗ ∗ ∗ 1.61 1.72 1.68 1.62 1.61 ∗ ∗ ∗ ∗

mean-> 1.40 1.09 1.15 1.04 1.08 1.57 1.60 1.59 1.58 1.58 1.08 1.16 1.05 1.01

The overall image is almost the same as the one observed in the previous Table, which
is also quite a positive result.

The implementation of Runge-Kutta-Nyström methods is a subject of ongoing interest.
This year we presented the Runge-Kutta-Nyström pair RKNST7(5) of orders 7(5) [13].
Another issue of research is producing methods that are symplectic. The latter methods
have the property of linear error growth with respect to the length of integration interval
when applied to Kepler problems [14]. Their disadvantage is having higher truncation
errors and that they need more stages per step. On the contrary, conventional methods
(like the one presented here) have quadratic error growth. One of the most known eighth
order symplectic methods is the 15-stages Y8, given by Yoshida [15] in Table 1, column D.

We run the methods NEW8(6), DEP8(6), RKNST7(5) and Y8 on problems 1b and 6b.
The intervals of integration were lengthened to 10,000π and 10,000π/1.015, respectively,
in favor of symplectic methods. We recorded the stages taken versus the end-point error
achieved and plot it in Figures 2 and 3.
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Figure 2. Efficiency curves for problem 1b in the interval [0, 10,000π].
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Figure 3. Efficiency curves for problem 6b in the interval [0, 10,000π/1.015].

RKNTS7(5) pair was less efficient at higher tolerances than eighth order pairs since
it attains lesser algebraic accuracy and it was not designed to perform best on Keplerian
type orbits. DEP8(6) remains less efficient than NEW8(6) on these intervals and problems.
Symplectic methods are not competitive at all. It seems to share interesting properties
for geometers but not for numerical analysts. Their poor performance has already been
remarked elsewhere [16].

7. Conclusions

In this study, we considered the Runge-Kutta-Nyström pairs of orders 8(6) for ad-
dressing the special second order Initial Value Problem. We focused on problems of the
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Keplerian type. Thus, we proposed a pair with coefficients specially trained in order to
address such kinds of orbits. Extensive results justified our effort.
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