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Abstract: This study is concerned with dynamical investigation, electrical circuit realization, and
emulation of a fractional three-echelon supply chain system. In the financial realm, long-term
memory effects play important roles. On the other hand, most financial systems are uncertain
with unknown nonlinear dynamics. However, most studies on nonlinear supply chains neither
consider the fractional calculus nor take advantage of state-of-the-art emulation methods. These
issues motivated the current study. A fractional-order chaotic three-echelon supply chain system
is studied. At first, the system’s dynamic is studied through Lyapunov exponent and bifurcation
diagrams. It is shown that a slight deferent in some parameters of the system can dramatically
change the behavior of the system. Then, a real-time analog circuit is designed and implemented to
investigate the system’s chaotic behavior. This way, the system’s chaotic attractors are empirically
demonstrated. Finally, emulation and interpolation of the fractional-order chaotic system using the
Gaussian process have been studied, and its luminous results have been presented.

Keywords: supply chain; economy; fractional calculous; electrical circuit; Lyapunov exponent;
bifurcation diagrams; Gaussian process

1. Introduction

Supply chains are nonlinear dynamical systems triggered by various uncertain factors
such as customer demands [1–6]. In recent years, several studies have been devoted to
understanding the mechanism of supply chain systems [7–9]. A supply chain’s goal is to
meet consumer needs in the right place, at the right time, and at the right service level,
while requiring the least amount of money [10,11]. Because of rising customer expectations
and fierce competition in global markets, business enterprises have always tried to achieve
the best operation by managing their supply chain networks [12]. Although the success
of supply chains depends on various factors, including transportation fleets, machinery,
and equipment, the effectiveness of such systems is primarily determined by the quality of
management decisions [13–15]. However, uncertainties in such systems make their control
and management demanding tasks [16–18].
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Since management and control of financial systems play a vital role in human life,
this field of study has recently received extensive attention [19–32]. Due to the complexity
of today’s financial systems, applying state-of-the-art control techniques to them will be
beneficial [33]. However, the identification and prediction of nonlinear systems always
play key roles in their control [34–49]. The more we know about the dynamical behavior of
real-world financial systems, the more reliable results can be provided by management’s
decisions [50]. Actually, to move towards the best management decisions, we should
enhance our understanding of systems and processes. Although many techniques are
proposed for the regulation and synchronization of these systems, by taking advantage
of control theory, some important matters are entirely ignored in this field of study. For
instance, where chaos occurs, and which parameters can change the behavior of the three-
echelon supply chain system, are yet to be studied.

On the other hand, most of the time we have limited observations of financial systems,
and available data are noisy [51,52]. Hence, to be able to forecast and interpolate these
systems, strong emulation and regression methods are required [53]. The Gaussian process
(GP) is one of the best emulation and regression methods for nonlinear systems [54,55].
Nonetheless, to the best of our knowledge, there is no study in the literature investigating
the GP for a three-echelon supply chain system. Motivated by this, in the last part of
the current study, we have investigated the application of GP to a three-echelon supply
chain system.

The remainder of this paper is arranged as follows: In Section 2, the governing
equations of the fractional-order supply chain are presented, and its dynamical behavior
is illustrated. In Section 3, to investigate the behavior of the nonlinear system empirically,
an electrical circuit of the system is performed. In Section 4, GP is presented and applied
for emulation and regression of the system. Finally, concluding remarks are presented
in Section 5.

2. Literature Review

In Reference [56], various classes that have been proposed for modeling the dynamics
of supply chains have been studied. In that study, all approaches were categorized as fol-
lows: discrete event models, discrete-time difference models, continuous-time differential
equation models, and classical operational methods. Additionally, from another point of
view, modeling of supply chains can be classified based on the deterministic and stochastic
properties. In Reference [57], models of supply chains are classified as: deterministic mod-
els, where all the parameters are known; stochastic models, where at least one parameter is
unknown, but follows a probabilistic distribution; economic game-theoretic models; and
models based on simulation, which evaluate the performance of various supply chain
strategies. The vast majority of these models are steady-state models based on average
performance, or steady-state static models. In Table 1, some important studies on modeling,
control, and investigation of supply chains are presented.

Up to now, many scholars have attempted to model supply chain networks (see
Table 1). Additionally, in the literature, there are some useful studies that assess and
propose simulation (dynamic) models of supply chains. For instance, the specialized
program anyLogistix, built based on a simulation model, does an excellent job of modeling
supply chains of varying complexity (see [68–70]). Among the models presented for supply
chain networks, the nonlinear model proposed by Anne et al. [58] has attracted a lot of
attention. That model considers a nonlinear supply chain model that takes into account
safety stock, information distortion, and retailer order fulfillment. Nonetheless, there is still
room for modeling and investigation of these systems. For instance, since long memory
of systems is important in supply chain systems, the application of fractional calculus
can bring about luminous results for these systems. In comparison with integer-order
derivatives, fractional ones have benefits in describing the long memory of systems.
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Table 1. Some important studies on nonlinear supply chains.

The
Reference Methodology Disadvantage/Limitation/Possible Direction for

Improvement

[58]
The study has proposed a nonlinear model supply chain

network, which is now the most popular model for
these systems.

It is supposed we know all parameters of the system.
Fractional calculus is not used.

[59] A supply chain network where the evaluation of the
causes of uncertainties within the network is considered.

Assumes we know all parameters of the system.
Fractional calculus is not used.

[60] This study has used a system dynamic simulation to
investigate how agility is built into supply chains. Fractional calculus is not used.

[61]
A robust controller method has been proposed, ensuring
that shipment flows in supply chain networks remain

robustly stable in the face of interruptions.

For the controller, the effects of nonlinear external
disturbances have not been considered.

[62]
A mathematical model for a supply chain, incorporating

a computer-aided digital manufacturing process, has
been presented and controlled.

The controller is not robust.

[63]
A feedback control law has been designed for inventory
control, and several mixed inventory control strategies

have been proposed for the model.

For the feedback control law, all parameters of the
system need to be known.

[64]
A new supply chain model has been proposed assuming

that demand of a product does not increase
monotonically with the increase in inventory.

Fractional calculus is not used.

[65] Effects of cooperation mechanism on the chaotic
behaviors in nonlinear supply chains have been studied. Fractional calculus is not used.

[66] A metaheuristic method, called hybrid bat algorithm,
has been used to find a near-optimum solution.

The model is considered to be fully deterministic.
Fractional calculus is not used.

[67]
A revised ant algorithm for solving location-allocation
problem with risky demand in a multi-echelon supply

chain network has been proposed.

The model is considered to be fully deterministic.
Fractional calculus is not used.

Motivated by the issues and possible directions in Table 1, in the current study we
investigate a fractional-order model. The effects of various parameters, including fractional
derivatives, are studied on the nonlinear dynamics of the system. To realize the chaotic
behavior of the system, a real-time analog circuit is designed and implemented.

Last but not least, from a management point of view, we want to design control
strategies or manage supply chains as efficiently as possible, even if we have limited
data from these systems. In this condition, rare data cannot work well for management
purposes, and this is an obstacle in the management of these systems. In the last part of
the current study, we want to propose a method to tackle this issue. One interesting way
provided in the literature for other systems (no supply chains) is to use surrogate modeling
approaches. Using surrogate methods, we can predict the behavior of the system even
in unseen conditions. There are many surrogate models in the literature, and each has
its advantages and disadvantages. Among all surrogate models, GP is known as one of
the best methods when data are rare, which is the case in some supply chains. Motivated
by this, the current study as a pioneer uses GP for surrogate modeling of fractional order
supply chain systems.

3. Fractional-Order Three-Echelon Supply Chain

Inspired by [58], we investigate a fractional-order supply chain system as follows

C
0 Dq

t x1 = m x2 − (n + 1)x1 + d1
C
0 Dq

t x2 = r x1 − x2 − x1x3 + d2
C
0 Dq

t x3 = x1 x2 + (k− 1)x3 + d3

(1)
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where qi (i = 1, 2, 3) denotes fractional derivative. The parameters of the model are listed
in Table 2.

Table 2. Parameters of the systems as well their definition and value.

Parameter Definition Value

qi Fractional derivative 0.97

m Rate of customer demand satisfaction at retailer. 13

n Distributors’ inventory levels 10

r Rate of product information distortion requested by retailers 42

k Manufacturer’s safety stock coefficient −1

Figures 1 and 2 show the chaotic attractors of the proposed system. In the current
study, MATLAB 2021b has been used for numerical simulation. The initial conditions
are considered as (x1(0), x2(0), x3(0)) = (1, 1, 1). As demonstrated in these figures, the
proposed system acts chaotically in this condition.
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Lyapunov exponents and bifurcation diagrams are used to better understand the
impact of variable-order derivatives and various parameters on the behavior of the system.
The Lyapunov exponents of the system are shown in Figure 3, indicating that the system
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is chaotic. In addition, the effects of the variable derivative on the behavior of the system
are seen in Figure 3. The system enters chaos for α > 0.971, according to the bifurcation
diagram in Figure 4.
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derivative (q).

Figure 5 shows the bifurcation diagram by changing the value of parameter m. As
illustrated, when m ∈ [5.42, 21.15]∪[23.12, 27.77], the system acts chaotically. As shown in
the bifurcation diagram, parameter m considerably affects the behavior of the system.
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Figure 5. Bifurcation diagram of proposed fractional-order system by changing parameter m.

To investigate the effects of all parameters on the behavior of the system, we have
continued extracting different bifurcation diagrams. Figure 6 illustrates the bifurcation
diagram by changing the value of parameter n. As demonstrated, when the value of n is
between 2.81 and 13.87, the system acts chaotically. The bifurcation relating to parameter
r is displayed in Figure 7. As shown in this figure, in this situation the system exhibits
antimonotonicity phenomenon for r ∈ [24.20, 93.14]∪[107.27, 123.292], which means that
the chaotic and periodic orbits are created and annihilated.
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Remark 1. There is no ground truth to be compared with both integer and fractional models, but
when we use the fractional-order model without any doubt, it will act better, since this model has
one more degree of freedom in comparison with the integer one. Additionally, in the fractional-order
model, when the fractional-order derivative approaches1, it acts like the integer one. Therefore, in
summary, the fractional-order model has more degrees of freedom and is better than the integer one,
and in some cases, the integer one can provide the same results as the fractional-order model.

4. Electrical Circuit

Here, we dealt with the realization of the fractional integrator of the chain system
(q1, q2, q3) = (0.97, 0.97, 0.97). In [71], Ahmat et al. designed the Bode plot approximation
chart in the frequency domain with maximum error of 2 and 3 dB. Following this approach,
we realized the approximation transfer function of 1

s0.97 at 1 dB approximation error in the
frequency domain. According to Reference [72], we can obtain:

1
s0.97 ≈

1.2974s + 1459.13
s2 + 1422.5s + 16

A circuit design where resistors and capacitors are connected in parallel was proposed
in Reference [73] to realize fractional calculus. When q = 0.97, the fractional-order chain
circuit unit is as shown in Figure 8.
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3.6806µF

Figure 8. The fractional-order chain circuit unit.
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By using Electronics Workbench’s MultiSIM Software, we selected LF353D as the
amplifier and AD633JN as the multiplier to design the fractional-order circuits. In order to
restrict the change in state variables to the operating voltage of the analog circuit, the state
variables are reduced by 20 times, i.e., (x1, x2, x3) → (20X1, 20X2, 20X3) . As a result,
the new chain system can be rewritten as:

dqX1
dt = 13X2− 11X1

dqX2
dt = 42X1− X2− 20X3
dqX3

dt = 20X1X2− 2X3
(2)

The schematic circuit of the fractional-order chain system is demonstrated by Figure 9.
The circuit equation is as follows:

dqX1
dt = R2

R1R4
X2− R2R5

R1R3R6
X1

dqX2
dt = R8

R7R10
X1− R8R11

R7R9R12
X2− R8R11

R7R9R13
X1X3

dqX3
dt = R15

R14R17
X1X2− R15R18

R14R16R19
X3

(3)

The input supplies are: Vcc = +9 V, and Vee = −9 V. The values of the electronic
components in Figure 4 are chosen to match the known parameters of the system:

R1 = R4 = R5 = R6 = R7 = R10 = R11 = R13 = R14 = R15 = R17 = R18 = R19 = 1 kΩ,
R2 = 1.3 kΩ, R3 = 1.18 kΩ, R8 = R9 = 4.2 kΩ, R12 = 10 kΩ, R16 = 5 kΩ.

The proposed circuit is drawn using Electronic Work Bench (EWB). Figure 10 shows the
obtained phase portraits in (X1, X2)-plane, (X1, X3)-plane, and (X2, X3)-plane, respectively.
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5. GP for Regression and Emulation

Mathematical models have been extensively used in science and technology fields
to visualize complex dynamic processes. However, accurate models are frequently so
complex that they necessitate a considerable amount of computing time or other resources
to function. Therefore, emulators have recently attracted a lot of attention. Emulators are
known as techniques that focus on creating a mathematical description of the systems and
processes. Emulators generally try to use available data, either noisy or not, to provide
metamodels for processes. GP is among the most widely used methods for developing
emulators [74–76]. We use GP to create an emulator for the three-echelon supply chain
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system in the current study. In fact, the aim is to create a metamodel based on GP and
available noisy data.

Consider the following input–output relationship as a single realization of the
random process:

η(z) =
h

∑
i=1

βi fi(z) + ξ(z) (4)

where the inputs in the training data are denoted by z = [z1, z2, . . . , zd]
T . The prede-

termined set of basis functions is presented by f (z) = [ f1(z), . . . , fm(z)]. Additionally,
β = [β1, . . . , βh]

T indicate unknown coefficients of these bases. ξ(x) indicates a zero-mean
GP, with the following parametric covariance function:

cov
(
ξ(z), ξ

(
z′
))

= c
(
z, z′

)
= σ2r

(
z, z′

)
(5)

where σ2 stands for the process variance, and r(·) is the correlation function. The Gaussian
correlation function, which is given by the following formula, is the most widely utilized
correlation function.

r
(
z, z′

)
= exp {−

(
z− z′

)TΩ
(
z− z′

)
} (6)

in which σ2 and ω are hyperparameters and to be estimated based on the available data.
Additionally, Ω = diag(10ω) and ω = [ω(1), ω(2), . . . , ω(d )]T ,−∞ < ω(i) < ∞ are the
scale parameters.

To determine hyperparameters β, ω, and σ2, we can apply maximum likelihood
estimation (MLE) or cross-validation (CV). Additionally, Bayes’ rule can be applied to find
the posterior distributions in the cases where there is prior knowledge about the value of
hyperparameters. Herein, we consider a constant process means (i.e., hi = 1) and employ
MLE to determine hyperparameters [77–79].

MLE necessitates the maximization of the multivariate Gaussian likelihood function,
which is given by

[β̂, σ̂2, ω̂] = argmin
β,σ2,ω

(
n
2

log
(

σ2
)
+

1
2

log(|R|) + 1
2σ2 (y− 1β)T R−1(y− 1β)

)
(7)

where log(.) represents the natural logarithm, R indicates the n× n correlation matrix, and
each element of it is given by r

(
zi, zj

)
where i, j = 1, . . . , n. Additionally, 1 represents an

n× 1 vector of ones. By putting the partial derivatives with respect to β and σ2 equal to
zero, we reach

β̂ =
[
1T R−11

]−11T R−1y
σ̂2 = 1

n (
(
y− 1β̂

)T R−1(y− 1β̂))
(8)

Simply replacing these obtained values into Equation (7) and removing the constants
results in:

L = (n log (σ̂2) + log(|R|)),
ω̂ = argmin

ω
(n log (σ̂2) + log(|R|)) = argmin

ω
(L) (9)

and by numerically minimizing the above equation, one may determine ω̂. To minimize
L, several global optimization methodologies have been used [80–82]. However, among
all of them, gradient-based optimization approaches are most common because of their
ease of use and improved computational efficiency [83,84]. To achieve global optimality,
the optimization is performed numerous times with different beginning guesses.

After calculating hyperparameters, we will finally be able to obtain the mean and
variance of the prediction probability distribution at any x∗ through the following formula:

E(ŷ∗) = f (z∗)β̂ + gT(z∗)V−1(y− Fβ̂
)
, (10)
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cov(ŷ∗, y′) = c(z∗, z′)− gT(z∗)V−1g(z′)
+h(z∗)T(FTV−1F

)−1h(z′)
h(z∗) =

(
f (z∗)− FTV−1g(z∗)

) (11)

In which y = [y(z1), . . . , y(zn)]
T indicates the n× 1 vector of outputs in the training

data and g(z∗) is an n× 1 vector with i-th element c(zi, z∗) = σ̂2r(zi, z∗). Additionally,
f (z∗) = [ f1(z∗), . . . , fh(z∗)], and V is the covariance matrix at which its (i, j) th ele-
ment is given by σ̂2r

(
zi, zj

)
. F is the n×m matrix with (k, l) th element Fkl = fl(xk) for

k = 1, . . . , n and l = 1, . . . , m.

Numerical Results of Emulation and Regression

Herein, we apply the presented GP in order to estimate and interpolate the chaotic
fractional three-echelon supply chain system. In fact, we suppose there are only some noisy
data due to limitations, thus for management purposes, finding the noiseless states in each
time step is essential.

Figure 11 demonstrates the results of the GP. As depicted by this figure, the findings
closely match the real value of the fractional-order chaotic system. To summarize, the
GP plays two key roles: (1) removing noises that are generated during the process and
while data are collected; (2) interpolating data, which provides a noiseless time series of
the results based on the noisy available data for all passed time units.
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6. Conclusions

In the current research, dynamical behaviors, chaos realization, as well as emulation
and regression of a fractional three-echelon supply chain, were studied. At first, through
Lyapunov exponent and bifurcation diagrams, the presence of chaos within the system
was verified, and was is demonstrated that a slight deferent in some system parameters
can considerably change the behavior of the system. Then, a real-time analog circuit was
designed, and the chaotic attractors of the system were empirically demonstrated. Lastly,
due to the advantages of metamodeling, GP, which is a strong candidate for metamodeling
and emulation when data are rare, is employed for regression and interpolation of the
three-echelon supply chain system. The results of the GP emulation clearly confirm that,
by utilizing GP, we can extract accurate information about unknown points of the system’s
time series, which is an important concern in supply chains. Another advantage of GP
is the uncertainty bound that it provides (see the prediction interval in Figure 11). GP
provides the bound of uncertainty for the points that have been estimated, which can be
considered as a level for accuracy for management applications. Consequently, the output
of the GP emulator can be used as a reliable source for management and control purposes,
which are considered as a direction of future study by the authors.

Author Contributions: Conceptualization, Q.D., H.J., O.A.A., M.O.A. and W.-H.H.; methodology,
Q.D., H.J., O.A.A., M.O.A. and W.-H.H.; software, Q.D., H.J., O.A.A., M.O.A. and W.-H.H.; validation,
Q.D., H.J., O.A.A., M.O.A. and W.-H.H.; formal analysis, Q.D., H.J., O.A.A., M.O.A. and W.-H.H.;
investigation, Q.D., H.J., O.A.A., M.O.A. and W.-H.H.; writing—original draft preparation, Q.D.,
H.J., O.A.A., M.O.A. and W.-H.H.; writing—review and editing, Q.D., H.J., O.A.A., M.O.A. and
W.-H.H.; supervision, Q.D., H.J., O.A.A., M.O.A. and W.-H.H. All authors have read and agreed to
the published version of the manuscript.

Funding: The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi
Arabia has funded this project, under grant No. (FP-152-43). This work was supported by the
Hunan Provincial Department of Education Scientific Research Outstanding Youth Project (Grant
No.: 20B093), the Hunan Philosophy and Social Science Foundation Project (Grant No.: 20JD008) and
the Natural Science Foundation of China (Grant No.: 71873045).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Min, H.; Zhou, G. Supply chain modeling: Past, present and future. Comput. Ind. Eng. 2002, 43, 231–249. [CrossRef]
2. Guo, Z.; Ma, J. Dynamics and implications on a cooperative advertising model in the supply chain. Commun. Nonlinear Sci. Numer.

Simul. 2018, 64, 198–212. [CrossRef]
3. Di Giacomo, L.; Patrizi, G. Dynamic nonlinear modelization of operational supply chain systems. J. Glob. Optim. 2006, 34, 503–534.

[CrossRef]
4. Wang, B.; Jahanshahi, H.; Volos, C.; Bekiros, S.; Yusuf, A.; Agarwal, P.; Aly, A. Control of a symmetric chaotic supply chain system

using a new fixed-time super-twisting sliding mode technique subject to control input limitations. Symmetry 2021, 13, 1257.
[CrossRef]

5. Liu, Z.; Jahanshahi, H.; Gómez-Aguilar, J.F.; Fernandez-Anaya, G.; Torres-Jiménez, J.; Aly, A.A.; Aljuaid, A.M. Fuzzy adaptive
control technique for a new fractional-order supply chain system. Phys. Scripta 2021, 96, 124017. [CrossRef]

6. Liu, Z.; Jahanshahi, H.; Volos, C.; Bekiros, S.; He, S.; Alassafi, M.O.; Ahmad, A.M. Distributed Consensus Tracking Control of Chaotic
Multi-Agent Supply Chain Network: A New Fault-Tolerant, Finite-Time, and Chatter-Free Approach. Entropy 2021, 24, 33. [CrossRef]

7. Chilmon, B.; Tipi, N.S. Modelling and simulation considerations for an end-to-end supply chain system. Comput. Ind. Eng.
2020, 150, 106870. [CrossRef]

8. Li, X.; Wang, Q. Coordination mechanisms of supply chain systems. Eur. J. Oper. Res. 2007, 179, 1–16. [CrossRef]
9. Sarimveis, H.; Patrinos, P.; Tarantilis, C.D.; Kiranoudis, C.T. Dynamic modeling and control of supply chain systems: A review.

Comput. Oper. Res. 2008, 35, 3530–3561. [CrossRef]
10. Alvarado, U.Y.; Kotzab, H. Supply chain management: The integration of logistics in marketing. Ind. Mark. Manag. 2001, 30, 183–198.

[CrossRef]
11. Zokaei, K.; Hines, P. Achieving consumer focus in supply chains. Int. J. Phys. Distrib. Logist. Manag. 2007, 37, 223. [CrossRef]

http://doi.org/10.1016/S0360-8352(02)00066-9
http://doi.org/10.1016/j.cnsns.2018.04.017
http://doi.org/10.1007/s10898-005-4234-5
http://doi.org/10.3390/sym13071257
http://doi.org/10.1088/1402-4896/ac1fad
http://doi.org/10.3390/e24010033
http://doi.org/10.1016/j.cie.2020.106870
http://doi.org/10.1016/j.ejor.2006.06.023
http://doi.org/10.1016/j.cor.2007.01.017
http://doi.org/10.1016/S0019-8501(00)00142-5
http://doi.org/10.1108/09600030710742434


Mathematics 2022, 10, 625 13 of 15

12. Simchi-Levi, D.; Kaminsky, P.; Simchi-Levi, E.; Shankar, R. Designing and Managing the Supply Chain: Concepts, Strategies and Case
Studies; Tata McGraw-Hill Education: New York, NY, USA, 2008.

13. Nunes, L.J.R.; Causer, T.P.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain.
Energy Rev. 2020, 120, 109658. [CrossRef]

14. Panfilova, E.; Dzenzeliuk, N.; Domnina, O.; Morgunova, N.; Zatsarinnaya, E. The impact of cost allocation on key decisions of
supply chain participants. Int. J. Supply Chain. Manag. 2020, 9, 552–558.

15. Halldorsson, A.; Kotzab, H.; Mikkola, J.H.; Skjøtt-Larsen, T. Complementary theories to supply chain management. Supply Chain.
Manag. Int. J. 2007, 12, 284–296. [CrossRef]

16. Peng, H.; Shen, N.; Liao, H.; Xue, H.; Wang, Q. Uncertainty factors, methods, and solutions of closed-loop supply chain—A
review for current situation and future prospects. J. Clean. Prod. 2020, 254, 120032. [CrossRef]

17. Sato, Y.; Tse, Y.K.; Tan, K.H. Managers’ risk perception of supply chain uncertainties. Ind. Manag. Data Syst. 2020, 120, 1617–1634.
[CrossRef]

18. Abdel-Basset, M.; Mohamed, R.; Sallam, K.; Elhoseny, M. A novel decision-making model for sustainable supply chain finance
under uncertainty environment. J. Clean. Prod. 2020, 269, 122324. [CrossRef]

19. Shi, J.; He, K.; Fang, H. Chaos, Hopf bifurcation and control of a fractional-order delay financial system. Math. Comput. Simul.
2021, 194, 348–364. [CrossRef]

20. Cao, Y. Chaotic synchronization based on fractional order calculus financial system. Chaos Solitons Fractals 2020, 130, 109410.
[CrossRef]

21. Zhou, S.-S.; Jahanshahi, H.; Din, Q.; Bekiros, S.; Alcaraz, R.; Alassafi, M.O.; Alsaadi, F.E.; Chu, Y.-M. Discrete-time macroeconomic
system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control. Chaos Solitons Fractals 2021, 142, 110378.
[CrossRef]

22. Jahanshahi, H.; Sajjadi, S.S.; Bekiros, S.; Aly, A.A. On the development of variable-order fractional hyperchaotic economic system
with a nonlinear model predictive controller. Chaos Solitons Fractals 2021, 144, 110698. [CrossRef]

23. Chu, Y.-M.; Bekiros, S.; Zambrano-Serrano, E.; Orozco-López, O.; Lahmiri, S.; Jahanshahi, H.; Aly, A.A. Artificial macro-economics:
A chaotic discrete-time fractional-order laboratory model. Chaos Solitons Fractals. 2021, 145, 110776. [CrossRef]

24. Ding, Q.; Jahanshahi, H.; Wang, Y.; Bekiros, S.; Alassafi, M.O. Optimal Reinforcement Learning-Based Control Algorithm for a
Class of Nonlinear Macroeconomic Systems. Mathematics 2022, 10, 499. [CrossRef]

25. Jahanshahi, H.; Yousefpour, A.; Wei, Z.; Alcaraz, R.; Bekiros, S. A financial hyperchaotic system with coexisting attractors:
Dynamic investigation, entropy analysis, control and synchronization. Chaos Solitons Fractals 2019, 126, 66–77. [CrossRef]

26. Wang, S.; He, S.; Yousefpour, A.; Jahanshahi, H.; Repnik, R.; Perc, M. Chaos and complexity in a fractional-order financial system
with time delays. Chaos Solitons Fractals 2020, 131, 109521. [CrossRef]

27. Soradi-Zeid, S.; Jahanshahi, H.; Yousefpour, A.; Bekiros, S. King algorithm: A novel optimization approach based on variable-order
fractional calculus with application in chaotic financial systems. Chaos Solitons Fractals 2020, 132, 109569. [CrossRef]

28. Wang, S.; Bekiros, S.; Yousefpour, A.; He, S.; Castillo, O.; Jahanshahi, H. Synchronization of fractional time-delayed financial
system using a novel type-2 fuzzy active control method. Chaos Solitons Fractals 2020, 136, 109768. [CrossRef]

29. Chen, S.-B.; Jahanshahi, H.; Abba, O.A.; Solís-Pérez, J.E.; Bekiros, S.; Gómez-Aguilar, J.F.; Yousefpour, A.; Chu, Y.-M. The effect
of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit
realization. Chaos Solitons Fractals 2020, 140, 110223. [CrossRef]

30. Wang, B.; Jahanshahi, H.; Bekiros, S.; Chu, Y.-M.; Gomez-Aguilar, J.F.; Alsaadi, F.E.; Alassafi, M.O. Tracking con-
trol and stabilization of a fractional financial risk system using novel active finite-time fault-tolerant controls. Fractals
2021, 29, 2150155–2150177. [CrossRef]

31. Wang, Y.-L.; Jahanshahi, H.; Bekiros, S.; Bezzina, F.; Chu, Y.-M.; Aly, A.A. Deep recurrent neural networks with finite-time
terminal sliding mode control for a chaotic fractional-order financial system with market confidence. Chaos Solitons Fractals
2021, 146, 110881. [CrossRef]

32. Bekiros, S.; Jahanshahi, H.; Bezzina, F.; Aly, A.A. A novel fuzzy mixed H2/H∞ optimal controller for hyperchaotic financial
systems. Chaos Solitons Fractals 2021, 146, 110878. [CrossRef]

33. Yousefpour, A.; Jahanshahi, H.; Munoz-Pacheco, J.M.; Bekiros, S.; Wei, Z. A fractional-order hyper-chaotic economic system with
transient chaos. Chaos Solitons Fractals 2020, 130, 109400. [CrossRef]

34. Liu, J.; Zhao, S.; Xie, Y.; Gui, W.; Tang, Z.; Ma, T.; Niyoyita, J.P. Learning local Gabor pattern-based discriminative dictionary of
froth images for flotation process working condition monitoring. IEEE Trans. Ind. Inform. 2020, 17, 4437–4448. [CrossRef]

35. Liu, J.; He, J.; Xie, Y.; Gui, W.; Tang, Z.; Ma, T.; Niyoyita, J.P. Illumination-invariant flotation froth color measuring via Wasserstein
distance-based CycleGAN with structure-preserving constraint. IEEE Trans. Cybern. 2021, 51, 839–852. [CrossRef]

36. Liu, J.; Zhou, J.; Tang, Z.; Gui, W.; Xie, Y.; He, J.; Niyoyita, J.P. Toward flotation process operation-state identification via statistical
modeling of biologically inspired Gabor filtering responses. IEEE Trans. Cybern. 2019, 50, 4242–4255. [CrossRef]

37. Zhang, S.; Li, C.; Zheng, J.; Wang, X.; Zeng, Z.; Peng, X. Generating Any Number of Initial Offset-boosted Coexisting Chua’s
Double-scroll Attractors via Piecewise-nonlinear Memristor. IEEE Trans. Ind. Electron. 2021, 69, 7202–7212. [CrossRef]

38. Zhang, S.; Zheng, J.; Wang, X.; Zeng, Z.; Peng, X. A novel nonideal flux-controlled memristor model for generating arbitrary
multi-double-scroll and multi-double-wing attractors. Int. J. Bifurc. Chaos 2021, 31, 2150086. [CrossRef]

http://doi.org/10.1016/j.rser.2019.109658
http://doi.org/10.1108/13598540710759808
http://doi.org/10.1016/j.jclepro.2020.120032
http://doi.org/10.1108/IMDS-01-2020-0049
http://doi.org/10.1016/j.jclepro.2020.122324
http://doi.org/10.1016/j.matcom.2021.12.009
http://doi.org/10.1016/j.chaos.2019.109410
http://doi.org/10.1016/j.chaos.2020.110378
http://doi.org/10.1016/j.chaos.2021.110698
http://doi.org/10.1016/j.chaos.2021.110776
http://doi.org/10.3390/math10030499
http://doi.org/10.1016/j.chaos.2019.05.023
http://doi.org/10.1016/j.chaos.2019.109521
http://doi.org/10.1016/j.chaos.2019.109569
http://doi.org/10.1016/j.chaos.2020.109768
http://doi.org/10.1016/j.chaos.2020.110223
http://doi.org/10.1142/S0218348X21501553
http://doi.org/10.1016/j.chaos.2021.110881
http://doi.org/10.1016/j.chaos.2021.110878
http://doi.org/10.1016/j.chaos.2019.109400
http://doi.org/10.1109/TII.2020.3016317
http://doi.org/10.1109/TCYB.2020.2977537
http://doi.org/10.1109/TCYB.2019.2909763
http://doi.org/10.1109/TIE.2021.3099231
http://doi.org/10.1142/S0218127421500863


Mathematics 2022, 10, 625 14 of 15

39. Zhang, S.; Zheng, J.; Wang, X.; Zeng, Z. A novel no-equilibrium HR neuron model with hidden homogeneous extreme
multistability. Chaos Solitons Fractals 2021, 145, 110761. [CrossRef]

40. Kosari, A.; Jahanshahi, H.; Razavi, S.A. An optimal fuzzy PID control approach for docking maneuver of two spacecraft:
Orientational motion. Eng. Sci. Technol. Int. J. 2017, 20, 293–309. [CrossRef]

41. Kosari, A.; Jahanshahi, H.; Razavi, S.A. Optimal FPID control approach for a docking maneuver of two spacecraft: Translational
motion. J. Aerosp. Eng. 2017, 30, 04017011. [CrossRef]

42. Jahanshahi, H.; Sari, N.N.; Pham, V.-T.; Alsaadi, F.E.; Hayat, T. Optimal adaptive higher order controllers subject to sliding modes
for a carrier system. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418782097. [CrossRef]

43. Jahanshahi, H. Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision.
Eur. Phys. J. Spec. Top. 2018, 227, 707–718. [CrossRef]

44. Jahanshahi, H.; Shahriari-Kahkeshi, M.; Alcaraz, R.; Wang, X.; Singh, V.P.; Pham, V.-T. Entropy analysis and neural network-based
adaptive control of a non-equilibrium four-dimensional chaotic system with hidden attractors. Entropy 2019, 21, 156. [CrossRef]
[PubMed]

45. Wang, B.; Jahanshahi, H.; Volos, C.; Bekiros, S.; Khan, M.A.; Agarwal, P.; Aly, A. A new RBF neural network-based fault-tolerant
active control for fractional time-delayed systems. Electronics 2021, 10, 1501. [CrossRef]

46. Li, J.-F.; Jahanshahi, H.; Kacar, S.; Chu, Y.-M.; Gómez-Aguilar, J.F.; Alotaibi, N.D.; Alharbi, K.H. On the variable-order fractional
memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust
control. Chaos Solitons Fractals 2021, 145, 110681. [CrossRef]

47. Wang, H.; Jahanshahi, H.; Wang, M.-K.; Bekiros, S.; Liu, J.; Aly, A.A. A Caputo–Fabrizio Fractional-Order Model of HIV/AIDS
with a Treatment Compartment: Sensitivity Analysis and Optimal Control Strategies. Entropy 2021, 23, 610. [CrossRef]

48. Wang, B.; Jahanshahi, H.; Dutta, H.; Zambrano-Serrano, E.; Grebenyuk, V.; Bekiros, S.; Aly, A.A. Incorporating fast and intelligent
control technique into ecology: A Chebyshev neural network-based terminal sliding mode approach for fractional chaotic
ecological systems. Ecol. Complex. 2021, 47, 100943. [CrossRef]

49. Wang, B.; Derbeli, M.; Barambones, O.; Yousefpour, A.; Jahanshahi, H.; Bekiros, S.; Aly, A.A. Experimental validation of
disturbance observer-based adaptive terminal sliding mode control subject to control input limitations for SISO and MIMO
systems. Eur. J. Control. 2021, 63, 151–163. [CrossRef]

50. Wang, B.; Liu, J.; Alassafi, M.O.; Alsaadi, F.E.; Jahanshahi, H.; Bekiros, S. Intelligent parameter identification and predic-
tion of variable time fractional derivative and application in a symmetric chaotic financial system. Chaos Solitons Fractals
2021, 154, 111590. [CrossRef]

51. Bensaïda, A. Noisy chaos in intraday financial data: Evidence from the American index. Appl. Math. Comput. 2014, 226, 258–265.
[CrossRef]

52. Magdon-Ismail, M.; Nicholson, A.; Abu-Mostafa, Y.S. Financial markets: Very noisy information processing. Proc. IEEE
1998, 86, 2184–2195. [CrossRef]

53. Abdulkadir, S.J.; Yong, S.-P. Unscented Kalman Filter for Noisy Multivariate Financial Time-Series Data; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 87–96.

54. Wang, J.; Hertzmann, A.; Fleet, D.J. Gaussian process dynamical models. In Advances in Neural Information Processing Systems;
University of Toronto: Toronto, ON, Canada, 2005; Volume 18. Available online: http://www.dgp.toronto.edu/~{}jmwang/
gpdm/nips05final.pdf (accessed on 18 December 2021).

55. Oyebamiji, O.K.; Wilkinson, D.J.; Jayathilake, P.G.; Curtis, T.P.; Rushton, S.P.; Li, B.; Gupta, P. Gaussian process emulation of an
individual-based model simulation of microbial communities. J. Comput. Sci. 2017, 22, 69–84. [CrossRef]

56. Riddalls, C.E.; Bennett, S.; Tipi, N.S. Modelling the dynamics of supply chains. Int. J. Syst. Sci. 2000, 31, 969–976. [CrossRef]
57. Beamon, B.M. Supply chain design and analysis: Models and methods. Int. J. Prod. Econ. 1998, 55, 281–294. [CrossRef]
58. Anne, K.R.; Chedjou, J.C.; Kyamakya, K. Bifurcation analysis and synchronisation issues in a three-echelon supply chain. Int. J.

Logist. Res. Appl. 2009, 12, 347–362. [CrossRef]
59. Anne, K.R.; Chedjou, J.C.; Bhagavatula, S.K.; Kyamakya, K. Modeling of a Three-Echelon Supply Chain: Stability Anal-

ysis and Synchronization Issues. 2008. Available online: https://www.researchgate.net/profile/Koteswara-Rao-Anne/
publication/267224704_Modeling_of_a_Three-Echelon_Supply_Chain_Stability_Analysis_and_Synchronization_Issues/links/
546b1ee80cf20dedafd3f287/Modeling-of-a-Three-Echelon-Supply-Chain-Stability-Analysis-and-Synchronization-Issues.pdf
(accessed on 18 December 2021).

60. Helo, P.T. Dynamic modelling of surge effect and capacity limitation in supply chains. Int. J. Prod. Res. 2000, 38, 4521–4533.
[CrossRef]

61. Cuong, T.N.; Kim, H.-S.; Nguyen, D.A.; You, S.-S. Nonlinear analysis and active management of production-distribution in
nonlinear supply chain model using sliding mode control theory. Appl. Math. Model. 2021, 97, 418–437. [CrossRef]

62. Yan, L.; Liu, J.; Xu, F.; Teo, K.L.; Lai, M. Control and synchronization of hyperchaos in digital manufacturing supply chain. Appl.
Math. Comput. 2021, 391, 125646. [CrossRef]

63. Zhao, W.; Wang, D. Simulation-based optimization on control strategies of three-echelon inventory in hybrid supply chain with
order uncertainty. IEEE Access 2018, 6, 54215–54223. [CrossRef]

64. Mondal, S. A new supply chain model and its synchronization behaviour. Chaos Solitons Fractals 2019, 123, 140–148. [CrossRef]

http://doi.org/10.1016/j.chaos.2021.110761
http://doi.org/10.1016/j.jestch.2016.07.018
http://doi.org/10.1061/(ASCE)AS.1943-5525.0000720
http://doi.org/10.1177/1729881418782097
http://doi.org/10.1140/epjst/e2018-800016-7
http://doi.org/10.3390/e21020156
http://www.ncbi.nlm.nih.gov/pubmed/33266872
http://doi.org/10.3390/electronics10121501
http://doi.org/10.1016/j.chaos.2021.110681
http://doi.org/10.3390/e23050610
http://doi.org/10.1016/j.ecocom.2021.100943
http://doi.org/10.1016/j.ejcon.2021.09.010
http://doi.org/10.1016/j.chaos.2021.111590
http://doi.org/10.1016/j.amc.2013.10.064
http://doi.org/10.1109/5.726786
http://www.dgp.toronto.edu/~{}jmwang/gpdm/nips05final.pdf
http://www.dgp.toronto.edu/~{}jmwang/gpdm/nips05final.pdf
http://doi.org/10.1016/j.jocs.2017.08.006
http://doi.org/10.1080/002077200412122
http://doi.org/10.1016/S0925-5273(98)00079-6
http://doi.org/10.1080/13675560903181527
https://www.researchgate.net/profile/Koteswara-Rao-Anne/publication/267224704_Modeling_of_a_Three-Echelon_Supply_Chain_Stability_Analysis_and_Synchronization_Issues/links/546b1ee80cf20dedafd3f287/Modeling-of-a-Three-Echelon-Supply-Chain-Stability-Analysis-and-Synchronization-Issues.pdf
https://www.researchgate.net/profile/Koteswara-Rao-Anne/publication/267224704_Modeling_of_a_Three-Echelon_Supply_Chain_Stability_Analysis_and_Synchronization_Issues/links/546b1ee80cf20dedafd3f287/Modeling-of-a-Three-Echelon-Supply-Chain-Stability-Analysis-and-Synchronization-Issues.pdf
https://www.researchgate.net/profile/Koteswara-Rao-Anne/publication/267224704_Modeling_of_a_Three-Echelon_Supply_Chain_Stability_Analysis_and_Synchronization_Issues/links/546b1ee80cf20dedafd3f287/Modeling-of-a-Three-Echelon-Supply-Chain-Stability-Analysis-and-Synchronization-Issues.pdf
http://doi.org/10.1080/00207540050205271
http://doi.org/10.1016/j.apm.2021.04.007
http://doi.org/10.1016/j.amc.2020.125646
http://doi.org/10.1109/ACCESS.2018.2870856
http://doi.org/10.1016/j.chaos.2019.03.027


Mathematics 2022, 10, 625 15 of 15

65. Han, W.; Wang, J. The impact of cooperation mechanism on the chaotic behaviours in nonlinear supply chains. Eur. J. Ind. Eng.
2015, 9, 595–612. [CrossRef]

66. Sadeghi, J.; Mousavi, S.M.; Niaki, S.T.A.; Sadeghi, S. Optimizing a bi-objective inventory model of a three-echelon supply chain
using a tuned hybrid bat algorithm. Transp. Res. Part E Logist. Transp. Rev. 2014, 70, 274–292. [CrossRef]

67. Wang, K.-J.; Lee, C.H. A revised ant algorithm for solving location–allocation problem with risky demand in a multi-echelon
supply chain network. Appl. Soft Comput. 2015, 32, 311–332. [CrossRef]

68. d’Apice, C.; Göttlich, S.; Herty, M.; Piccoli, B. Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach;
SIAM: Philadelphia, PN, USA, 2010.

69. Towill, D.R.; Naim, M.M.; Wikner, J. Industrial dynamics simulation models in the design of supply chains. Int. J. Phys. Distrib.
Logist. Manag. 1992, 22, 3–13. [CrossRef]

70. Barykin, S.Y.; Bochkarev, A.A.; Kalinina, O.V.; Yadykin, V.K. Concept for a supply chain digital twin. Int. J. Math. Eng. Manag. Sci.
2020, 5, 1498–1515. [CrossRef]

71. Ahmad, W.M.; Sprott, J.C. Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fractals 2003, 16, 339–351.
[CrossRef]

72. Cuomo, K.M.; Oppenheim, A.V. Circuit implementation of synchronized chaos with applications to communications. Phys. Rev.
Lett. 1993, 71, 65. [CrossRef]

73. Zhe, X.; Chong-Xin, L. Realization of fractional-order Liu chaotic system by a new circuit unit. Chin. Phys. B 2008, 17, 4033.
[CrossRef]

74. von Rohr, A.; Neumann-Brosig, M.; Trimpe, S. Probabilistic Robust Linear Quadratic Regulators with Gaussian Processes. In
Proceedings of the 3rd Conference on Learning for Dynamics and Control, Online, 6 August 2021; pp. 324–335.

75. Kontoudis, G.P.; Stilwell, D.J. Decentralized nested Gaussian processes for multi-robot systems. In Proceedings of the 2021 IEEE
International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May 2021; pp. 8881–8887.

76. Briffa, R.; Capozziello, S.; Said, J.L.; Mifsud, J.; Saridakis, E.N. Constraining teleparallel gravity through Gaussian processes. Class.
Quantum Gravity 2021, 38, 055007. [CrossRef]

77. Plumlee, M.; Apley, D.W. Lifted Brownian kriging models. Technometrics 2017, 59, 165–177. [CrossRef]
78. Bilionis, I.; Zabaras, N. Multi-output local Gaussian process regression: Applications to uncertainty quantification. J. Comput.

Phys. 2011, 231, 5718–5746. [CrossRef]
79. Nguyen-Tuong, D.; Seeger, M.; Peters, J. Model learning with local gaussian process regression. Adv. Robot. 2009, 23, 2015–2034.

[CrossRef]
80. Toal, D.J.J.; Bressloff, N.W.; Keane, A.J.; Holden, C.M.E. The development of a hybridized particle swarm for kriging hyperparam-

eter tuning. Eng. Optim. 2011, 43, 675–699. [CrossRef]
81. Alamaniotis, M.; Ikonomopoulos, A.; Tsoukalas, L.H. A Pareto optimization approach of a Gaussian process ensemble for

short-term load forecasting. In Proceedings of the 2011 16th International Conference on Intelligent System Applications to Power
Systems, Hersonissos, Greece, 25–28 September 2011; pp. 1–6.

82. Toal, D.J.J.; Bressloff, N.W.; Keane, A.J. Kriging hyperparameter tuning strategies. AIAA J. 2008, 46, 1240–1252. [CrossRef]
83. Chu, W.; Ghahramani, Z. Preference learning with Gaussian processes. In Proceedings of the ICML’05: Proceedings of the 22nd

International Conference on Machine Learning, New York, NY, USA, 7–11 August 2005; pp. 137–144.
84. Snelson, E.; Ghahramani, Z. Sparse Gaussian processes using pseudo-inputs. Adv. Neural Inf. Proces Syst. 2006, 18, 1257.

http://doi.org/10.1504/EJIE.2015.071773
http://doi.org/10.1016/j.tre.2014.07.007
http://doi.org/10.1016/j.asoc.2015.03.046
http://doi.org/10.1108/09600039210016995
http://doi.org/10.33889/IJMEMS.2020.5.6.111
http://doi.org/10.1016/S0960-0779(02)00438-1
http://doi.org/10.1103/PhysRevLett.71.65
http://doi.org/10.1088/1674-1056/17/11/016
http://doi.org/10.1088/1361-6382/abd4f5
http://doi.org/10.1080/00401706.2016.1211555
http://doi.org/10.1016/j.jcp.2012.04.047
http://doi.org/10.1163/016918609X12529286896877
http://doi.org/10.1080/0305215X.2010.508524
http://doi.org/10.2514/1.34822

	Introduction 
	Literature Review 
	Fractional-Order Three-Echelon Supply Chain 
	Electrical Circuit 
	GP for Regression and Emulation 
	Conclusions 
	References

