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Abstract: Two new inertial-type extragradient methods are proposed to find a numerical common
solution to the variational inequality problem involving a pseudomonotone and Lipschitz continuous
operator, as well as the fixed point problem in real Hilbert spaces with a ρ-demicontractive mapping.
These inertial-type iterative methods use self-adaptive step size rules that do not require previous
knowledge of the Lipschitz constant. We also show that the proposed methods strongly converge
to a solution of the variational inequality and fixed point problems under appropriate standard test
conditions. Finally, we present several numerical examples to show the effectiveness and validation
of the proposed methods.
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convergence; tseng’s extragradient method
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1. Introduction

Assume that Y is a nonempty, closed, and convex subset of a real Hilbert space X
with the inner product 〈·, ·〉 and the induced norm ‖ · ‖. The main contribution of this study
is to investigate the convergence analysis of the iterative schemes for solving variational
inequality and fixed point problems in real Hilbert spaces. The reason and inspiration for
investigating such a common solution problem is its potential applicability to mathematical
models whose constraints can be stated as fixed point problems. This is especially relevant
in applications such as signal processing, composite minimization, optimum control, and
image restoration; see, for example, [1–5]. Let us take a look at both of the problems
highlighted by this research.

Let = : Y → X be an operator. First, we look at the classic variational inequality
problem [6,7] which is expressed as follows:

Find r∗ ∈ Y such that
〈
=(r∗), y− r∗

〉
≥ 0, ∀ y ∈ Y . (1)

The solution set of a problem (1) is denoted by VI(Y ,=). The variational inequality problem
has been widely applied to study real world applications, such as partial differential
equations, optimization, optimal control, mechanics, mathematical programming, and
finance (see [8–14]). The problem (1) is a significant one in applied sciences. Many authors
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have committed themselves to investigating not only the theory of existence and the
stability of solutions, but also iterative methods for solving such problems.

On the other hand, projection methods are important for determining the numerical
solution to variational inequalities. Several authors proposed various projection methods
to solve the problem (1) (see for details [15–32]). Most methods for solving the problem (1)
use the projection method, which is computed on the feasible set Y . Korpelevich [15] and
Antipin [33] established the extragradient method described below. Their method takes the
following form: 

u1 ∈ Y ,
yk = PY [uk − ,[(uk)=ג
uk+1 = PY [uk − ,[(yk)=ג

(2)

where 0 < ג < 1
L . According to the above method, each iteration must estimate two

projections on the feasible set Y . Of course, if the feasible set Y has a convoluted structure,
this might have an impact on the computing efficacy of the approach adopted. In this part,
we will limit our attention to giving various approaches for overcoming this obstacle. The
first is the following subgradient extragradient method proposed by Censor et al. [17]. This
method is in the following form:

u1 ∈ Y ,
yk = PY [uk − ,[(uk)=ג
uk+1 = PXk [uk − ,[(yk)=ג

(3)

where 0 < ג < 1
L and

Xk = {z ∈ X : 〈uk − −(uk)=ג yk, z− yk〉 ≤ 0}.

Furthermore, Tseng’s extragradient method [19] requires only one projection for each
iteration. This method is written as follows:

u1 ∈ Y ,
yk = PY [uk − ,[(uk)=ג
uk+1 = yk − ג

[
=(yk)−=(uk)

]
.

(4)

where 0 < ג < 1
L . In terms of computation, the method (4) is extremely efficient because

it only requires one solution to a minimization problem per iteration. As a result, the
method (4) is less computationally expensive and performs better in most situations.

Let T : X → X be a mapping and the fixed point problem (FPP) for the mapping T is
to: find r∗ ∈ X such that

T (r∗) = r∗. (5)

The solution set of a fixed point problem is known as the fixed point set of a mapping T
and is denoted by Fix(T ). Most of methods for solving the problem (5) are derived from
the standard Mann iteration, specifically, from u1 ∈ X and construct sequence {uk+1} for
all k ≥ 1 by

uk+1 = αkuk + (1− αk)T uk, (6)

where the variable sequence {αk}must meet certain requirements in order to accomplish
weak convergence. Another formalised iterative approach that is more effective in infinite-
dimensional Hilbert spaces for achieving strong convergence is the Halpern iteration. The
iterative sequence can be written as follows:

uk+1 = αku1 + (1− αk)T uk, (7)
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where u1 ∈ X and the sequence αk ⊂ (0, 1) is non-summable and slowly diminishing, i.e.,

αk → 0 and
+∞

∑
k=1

αk = +∞.

Furthermore, it is worth mentioning that, in addition to the Halpern iteration, there is
a general form of it, namely the viscosity method [20], in which the cost mapping T is
merged with a contraction mapping in the iterates. Finally, another technique that provides
strong convergence is the hybrid steepest descent method proposed in [34].

Tan et al. [35,36] recently introduced a new numerical method, namely the extragradient
viscosity method, for solving variational inequalities involving a constraint set as a fixed
point set for a ρ-demicontractive mapping. These methods were obtained by combining
the extragradient methods [15,17] with the Mann-type method [37] and the viscosity-type
method [20]. The authors proved that all methods have strong convergence when the operator
is pseudomonotone and meets the Lipschitz criterion. These methods have the advantage of
being numerically computed using optimization tools, as discussed in [35,36].

The primary disadvantage of these methods is that they rely on viscosity and Mann-
type techniques to obtain strong convergence. As we all know, achieving strong conver-
gence is critical for iterative sequences, especially in infinite-dimensional spaces. There
are only a few techniques with strong convergence that use inertial schemes. The Mann
and Viscosity types of steps may be difficult to estimate from an algorithmic perspective,
affecting the algorithm’s convergence rate and applicability. These methods increase the
number of numerical and computational steps, making the system more complex.

Hence, a natural question arises:

Is it possible to introduce strongly convergent inertial extragradient methods for solving
variational inequalities and fixed point problems with a self-adaptive step size rule without
requiring Mann and Viscosity-type methods?

Motivated by the above, as well as the works cited in [35,36], we provide the positive
answer to the above question by introducing two strong convergence extragradient-type
methods for solving pseudomonotone variational inequalities and the ρ-demicontractive
fixed point problem in real Hilbert spaces. Furthermore, we avoid the use of any hybrid
schemes, such as the Mann-type and the Viscosity scheme, in order to obtain the strong
convergence of these methods. We proposed novel methods that leverage inertial schemes
and have a strong convergence.

The paper is organized as follows: Section 2 contains basic results and identities. Sec-
tion 3 introduces two novel methods and proves their convergence analysis. Finally, Section
4 provides some numerical data to explain the practical efficacy of the proposed methods.

2. Preliminaries

Let Y be a nonempty, closed, and convex subset of X , the real Hilbert space. Assume
that the sequences uk ⇀ u and uk → u represent the weak and strong convergence of uk to
u. For each u, y ∈ X , the following information is available to us:

(1) ‖u + y‖2 = ‖u‖2 + 2〈u, y〉+ ‖y‖2;
(2) ‖u + y‖2 ≤ ‖u‖2 + 2〈y, u + y〉;
(3) ‖bu + (1− b)y‖2 = b‖u‖2 + (1− b)‖y‖2 − b(1− b)‖u− y‖2.

The definition of metric projection PY (u) of u ∈ X is defined by

PY (u) = arg min{‖u− y‖ : y ∈ Y}.

It is well-known that PY is non-expansive and PY satisfies the following conditions:

(1)
〈
u− PY (u), y− PY (u)

〉
≤ 0, ∀ y ∈ Y ;

(2) ‖PY (u)− PY (y)‖2 ≤
〈

PY (u)− PY (y), u− y
〉
, ∀ y ∈ Y .
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Definition 1. In [38] suppose that T : X → X is a nonlinear function with Fix(T ) 6= ∅. Then,
I − T is said to be demiclosed at zero if, for all {uk} in X , the following conclusion holds:

uk ⇀ u and (I − T )uk → 0⇒ u ∈ Fix(T ).

Lemma 1. In [39] let {pk} ⊂ [0,+∞), {qk} ⊂ (0, 1) and {rk} ⊂ R are three sequences meet
the following requirements:

pk+1 ≤ (1− qk)pk + qkrk, ∀ k ∈ N and
+∞

∑
k=1

qk = +∞.

If lim supj→+∞ rkj
≤ 0 for each subsequence {pkj

} of {pj} meet

lim inf
j→+∞

(pkj+1 − pkj
) ≥ 0.

Then, limk→+∞ pk = 0.

Definition 2. In [40,41] for any u1, u2 ∈ X ; p ∈ Fix(T ), an operator T : X → X is said to be
(1) L-Lipschitz continuous if there exists a constant L > 0 such that

‖=(u1)−=(u2)‖ ≤ L‖u1 − u2‖;

(2) pseudomonotone if 〈
=(u1), u2 − u1

〉
≥ 0 =⇒

〈
=(u2), u1 − u2

〉
≤ 0;

(3) sequentially weakly continuous if a sequence {=(uk)} weakly convergent to =(u) for any
sequence {uk} that is weakly convergent to u;
(4) ρ-demicontractive if there exists a constant 0 ≤ ρ < 1 such that

‖T (u1)− p‖2 ≤ ‖u1 − p‖2 + ρ‖(I − T )(u1)‖2,

or equivalently 〈
T (u1)− u1, u1 − p

〉
≤ ρ− 1

2
‖u1 − T (u1)‖2.

Next, in order to prove the strong convergence theorems, we assumed the following
conditions are satisfied:
(=1) The solution set Fix(T ) ∩VI(Y ,=) 6= ∅;
(=2) The mapping = is pseudomonotone, Lipschitz continuous and sequentially weakly
continuous;
(=3) The T : X → X is ρ-demicontractive and (I − T ) is demiclosed at zero.

3. Main Results

In this section, we examine at the convergence of two new inertial extragradient
methods for solving variational inequality and fixed point problems in detail. These
techniques made use of fixed and non-monotone step size criteria.

Lemma 2. A sequence {kג} generated by (15) is convergent to ג and bounded by min
{ µ

L , 1ג
}
≤

ג ≤ 1ג + P, where P =
+∞

∑
k=1

κk.
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Proof. Since the mapping = is Lipschitz continuous, there exists a positive constant L. It is
given that

〈
=(tk)−=(yk), zk − yk

〉
> 0, and

µ(‖tk − yk‖2 + ‖zk − yk‖2)

2
〈
=(tk)−=(yk), zk − yk

〉 ≥ 2µ‖tk − yk‖‖zk − yk‖
2‖=(tk)−=(yk)‖‖zk − yk‖

≥ 2µ‖tk − yk‖‖zk − yk‖
2L‖tk − yk‖‖zk − yk‖

≥ µ

L
. (8)

Using mathematical induction on the definition of ,k+1ג we have

min
{

µ

L
, 1ג

}
≤ kג ≤ 1ג + P.

Let −k+1ג] [kג
+ = max

{
0, −k+1ג kג

}
and −k+1ג] [kג

− = max
{

−k+1ג)−,0 (kג
}

. From the
definition of ,{kג} we have

+∞

∑
k=1

k+1ג) − (kג
+ =

+∞

∑
k=1

max
{

0, k+1ג − kג
}
≤ P < +∞. (9)

That is, the series
+∞

∑
k=1

k+1ג) − (kג
+ is convergent. Next, we need to prove the convergence

of
+∞

∑
k=1

k+1ג) − (kג
−. Let

+∞

∑
k=1

k+1ג) − (kג
− = +∞. For this reason, we have k+1ג − kג =

k+1ג) − (kג
+ − k+1ג) − (kג

−. Thus, we obtain

k+1ג − 1ג =
k

∑
k=0

k+1ג) − (kג =
k

∑
k=0

k+1ג) − (kג
+ −

k

∑
k=0

k+1ג) − (kג
−. (10)

By letting k→ +∞ in expression (10), we have kג → −∞ as k→ +∞. This is a contradiction.

Due to the convergence of the series
k

∑
k=0

k+1ג) − (kג
+ and

k

∑
k=0

k+1ג) − (kג
− taking k→ +∞

in expression (10), we obtain limk→+∞ kג = .ג This completes the proof of lemma.

Lemma 3. The step size sequence {kג} generated in (24) is monotonically decreasing and bounded

by min
{ µ

L , 1ג
}
≤ ג ≤ 1ג + P, where P =

+∞

∑
k=1

κk.

Proof. It is given that = is Lipschitz-continuous with constant L > 0, and we have

µ‖tk − yk‖
‖=(tk)−=(yk)‖

≥ µ‖tk − yk‖
L‖tk − yk‖

≥ µ

L
. (11)

Using mathematical induction on the definition of ,k+1ג we have

min
{

µ

L
, 1ג

}
≤ kג ≤ 1ג + P.

Let −k+1ג] [kג
+ = max

{
0, −k+1ג kג

}
and −k+1ג] [kג

− = max
{

−k+1ג)−,0 (kג
}

. From the
definition of ,{kג} we have

+∞

∑
k=1

k+1ג) − (kג
+ =

+∞

∑
k=1

max
{

0, k+1ג − kג
}
≤ P < +∞. (12)
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That is, the series
+∞

∑
k=1

k+1ג) − (kג
+ is convergent. Next, we need to prove the convergence

of
+∞

∑
k=1

k+1ג) − (kג
−. Let

+∞

∑
k=1

k+1ג) − (kג
− = +∞. For this reason, we have k+1ג − kג =

k+1ג) − (kג
+ − k+1ג) − (kג

−. Thus, we obtain

k+1ג − 1ג =
k

∑
k=0

k+1ג) − (kג =
k

∑
k=0

k+1ג) − (kג
+ −

k

∑
k=0

k+1ג) − (kג
−. (13)

By letting k→ +∞ in expression (13), we have kג → −∞ as k→ +∞. This is a contradiction.

Due to the convergence of the series
k

∑
k=0

k+1ג) − (kג
+ and

k

∑
k=0

k+1ג) − (kג
− taking k→ +∞

in (13), we obtain limk→+∞ kג = .ג This completes the proof of lemma.

Lemma 4. Let = : X → X be a mapping satisfies the conditions (=1)–(=2). Let {uk} be a
sequence is generated by Algorithm 1. For each r∗ ∈ VI(Y ,=), we have

‖zk − r∗‖2 ≤ ‖tk − r∗‖2 −
(

1− µגk
k+1ג

)
‖tk − yk‖2 −

(
1− µגk

k+1ג

)
‖zk − yk‖2.

Algorithm 1 Inertial Subgradient Extragradient Method with Non-Monotone Step Size Rule.

Step 0: Take u0, u1 ∈ Y , θ ∈ (0, 1), µ ∈ (0, 1), 1ג > 0. Moreover, select a non-negative
real sequence {κk} such that ∑+∞

k=1 κk < +∞ and {βk} ⊂ (0, 1) satisfies the following
conditions:

lim
k→+∞

βk = 0 and
+∞

∑
k=1

βk = +∞.

Step 1: Compute

tk = uk + θk(uk − uk−1)− βk
[
uk + θk(uk − uk−1)

]
,

while θk taken as follows:

0 ≤ θk ≤ θ̂k and θ̂k =

{
min

{
θ
2 , εk
‖uk−uk−1‖

}
if uk 6= uk−1,

θ
2 otherwise.

(14)

Moreover, a positive sequence εk = ◦(βk) such that limk→+∞
εk
βk

= 0.
Step 2: Compute

yk = PY (tk − .(k=(tk)ג

If tk = yk, then STOP. Else, move to Step 3.
Step 3: First, construct a half-space Xk = {z ∈ X : 〈tk − −k=(tk)ג yk, z− yk〉 ≤ 0} and
compute

zk = PXk (tk − .(k=(yk)ג

Step 4: Compute uk+1 = (1− αk)zk + αkT (zk).
Step 5: Compute

k+1ג =

min
{
kג +κk, µ‖tk−yk‖2+µ‖zk−yk‖2

2
[〈
=(tk)−=(yk),zk−yk

〉]} if
〈
=(tk)−=(yk), zk − yk

〉
> 0,

kג +κk, otherwise.
(15)

Set k := k + 1 and go back to Step 1.
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Proof. First, we have to compute the following∥∥zk − r∗
∥∥2

=
∥∥PXk [tk − −[k=(yk)ג r∗

∥∥2

=
∥∥PXk [tk − [k=(yk)ג + [tk − −[k=(yk)ג [tk − −[k=(yk)ג r∗

∥∥2

=
∥∥[tk − −[k=(yk)ג r∗

∥∥2
+
∥∥PXk [tk − −[k=(yk)ג [tk − [k=(yk)ג

∥∥2

+ 2
〈

PXk [tk − −[k=(yk)ג [tk − ,[k=(yk)ג [tk − −[k=(yk)ג r∗
〉
. (16)

It is hypothesized that r∗ ∈ VI(Y ,=) ⊂ Y ⊂ Xk. Thus, we have∥∥PXk [tk − −[k=(yk)ג [tk − [k=(yk)ג
∥∥2

+
〈

PXk [tk − −[k=(yk)ג [tk − ,[k=(yk)ג [tk − −[k=(yk)ג r∗
〉

=
〈
[tk − −[k=(yk)ג PXk [tk − ,[k=(yk)ג r∗ − PXk [tk − [k=(yk)ג

〉
≤ 0. (17)

It also indicates that〈
PXk [tk − −[k=(yk)ג [tk − ,[k=(yk)ג [tk − −[k=(yk)ג r∗

〉
≤ −

∥∥PXk [tk − −[k=(yk)ג [tk − [k=(yk)ג
∥∥2. (18)

We obtain by combining Equations (16) and (18)

‖zk − r∗‖2 ≤
∥∥tk − −k=(yk)ג r∗

∥∥2 −
∥∥PXk [tk − −[k=(yk)ג [tk − [k=(yk)ג

∥∥2

≤ ‖tk − r∗‖2 − ‖tk − zk‖2 + kג2
〈
=(yk), r∗ − zk

〉
. (19)

We acquire = on Y as a result of the definition of a mapping = on Y . Thus, we have

〈=(r∗), y− r∗〉 − 〈=(y), y− r∗〉 ≤ 0, ∀ y ∈ Y .

Since r∗ ∈ VI(Y ,=), we have

〈=(y), y− r∗〉 ≥ 0, ∀ y ∈ Y .

By letting y = yk ∈ Y , we have

〈=(yk), yk − r∗〉 ≥ 0.

Thus, we have〈
=(yk), r∗ − zk

〉
=
〈
=(yk), r∗ − yk

〉
+
〈
=(yk), yk − zk

〉
≤
〈
=(yk), yk − zk

〉
. (20)

We obtain by combining formulas (19) and (20)

‖zk − r∗‖2 ≤ ‖tk − r∗‖2 − ‖tk − zk‖2 + kג2
〈
=(yk), yk − zk

〉
≤ ‖tk − r∗‖2 − ‖tk − yk + yk − zk‖2 + kג2

〈
=(yk), yk − zk

〉
≤ ‖tk − r∗‖2 − ‖tk − yk‖2 − ‖yk − zk‖2 + 2

〈
tk − −k=(yk)ג yk, zk − yk

〉
. (21)

From given zk = PXk [tk − [k=(yk)ג we have

2
〈
tk − −k=(yk)ג yk, zk − yk

〉
= 2

〈
tk − −k=(tk)ג yk, zk − yk

〉
+ kג2

〈
=(tk)−=(yk), zk − yk

〉
≤ kג

k+1ג
k+1ג2

〈
=(tk)−=(yk), zk − yk

〉
≤ µגk

k+1ג
‖tk − yk‖2 +

µגk
k+1ג
‖zk − yk‖2.

(22)
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From (21) and (22) we obtain

‖zk − r∗‖2 ≤ ‖tk − r∗‖2 − ‖tk − yk‖2 − ‖yk − zk‖2 +
kג
k+1ג

[
µ‖tk − yk‖2 + µ‖zk − yk‖2]

≤ ‖tk − r∗‖2 −
(

1− µגk
k+1ג

)
‖tk − yk‖2 −

(
1− µגk

k+1ג

)
‖zk − yk‖2.

(23)

Lemma 5. Let = : X → X satisfies the items (=1)–(=2). Let {uk} be a sequence is generated by
Algorithm 2. Then, for each r∗ ∈ VI(Y ,=), we have

‖zk − r∗‖2 ≤
∥∥tk − r∗

∥∥2 −
(

1− µ2 2ג
k

2ג
k+1

)∥∥tk − yk
∥∥2.

Algorithm 2 Inertial Tseng’s Extragradient Method with Non-Monotone Step Size Rule.

Step 0: Take u0, u1 ∈ Y , θ ∈ (0, 1), µ ∈ (0, 1), 1ג > 0. Moreover, select a non-negative
real sequence {κk} such that ∑+∞

k=1 κk < +∞ and {βk} ⊂ (0, 1) satisfies the following
conditions:

lim
k→+∞

βk = 0 and
+∞

∑
k=1

βk = +∞.

Step 1: Compute

tk = uk + θk(uk − uk−1)− βk
[
uk + θk(uk − uk−1)

]
,

while θk taken as follows:

0 ≤ θk ≤ θ̂k and θ̂k =

{
min

{
θ
2 , εk
‖uk−uk−1‖

}
if uk 6= uk−1,

θ
2 otherwise.

(24)

Moreover, a positive sequence εk = ◦(βk) such that limk→+∞
εk
βk

= 0.
Step 2: Compute

yk = PY (tk − .(k=(tk)ג

If tk = yk, then STOP. Otherwise, go to Step 3.
Step 3: Compute

zk = yk + kג
[
=(tk)−=(yk)

]
.

Step 4: Compute
uk+1 = (1− αk)zk + αkT (zk).

Step 5: Computemin
{
kג +κk, µ‖tk−yk‖

‖=(tk)−A(yk)‖

}
if =(tk) 6= =(yk),

kג +κk, otherwise.
(25)

Set k := k + 1 and move back to Step 1.
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Proof. From r∗ ∈ VI(Y ,=) and due to value of zk, we may write∥∥zk − r∗
∥∥2

=
∥∥yk + −k[=(uk)−=(yk)]ג r∗

∥∥2

=
∥∥yk − r∗

∥∥2
+ 2ג

k
∥∥=(uk)−=(yk)

∥∥2
+ k〈ykג2 − r∗,=(uk)−=(yk)〉

=
∥∥yk + uk − uk − r∗

∥∥2
+ 2ג

k
∥∥=(uk)−=(yk)

∥∥2
+ k〈ykג2 − r∗,=(uk)−=(yk)〉

=
∥∥yk − uk

∥∥2
+
∥∥uk − r∗

∥∥2
+ 2〈yk − uk, uk − r∗〉

+ 2ג
k
∥∥=(uk)−=(yk)

∥∥2
+ k〈ykג2 − r∗,=(uk)−=(yk)〉

=
∥∥uk − r∗

∥∥2
+
∥∥yk − uk

∥∥2
+ 2〈yk − uk, yk − r∗〉+ 2〈yk − uk, uk − yk〉

+ 2ג
k
∥∥=(uk)−=(yk)

∥∥2
+ k〈ykג2 − r∗,=(uk)−=(yk)〉. (26)

Due to the value of yk = PY [uk − [k=(uk)ג we have

〈uk − −k=(uk)ג yk, y− yk〉 ≤ 0, ∀ y ∈ Y . (27)

For some r∗ ∈ VI(Y ,=) we may write

〈uk − yk, r∗ − yk〉 ≤ ,k〈=(uk)ג r∗ − yk〉. (28)

From Equations (26) and (28) we obtain∥∥zk − r∗
∥∥2

≤
∥∥uk − r∗

∥∥2
+
∥∥yk − uk

∥∥2
+ ,k〈=(uk)ג2 r∗ − yk〉 − 2〈uk − yk, uk − yk〉

+ 2ג
k
∥∥=(uk)−=(yk)

∥∥2 − ,k〈=(uk)−=(yk)ג2 r∗ − yk〉

=
∥∥uk − r∗

∥∥2 −
∥∥uk − yk

∥∥2
+ 2ג

k
∥∥=(uk)−=(yk)

∥∥2 − ,k〈=(yk)ג2 yk − r∗〉. (29)

Due to the definition of a mapping = on Y , we obtain

〈=(r∗), y− r∗〉 − 〈=(y), y− r∗〉 ≤ 0, ∀ y ∈ Y .

Since r∗ ∈ VI(Y ,=), we have

〈=(y), y− r∗〉 ≥ 0, ∀ y ∈ Y .

Substituting y = yk ∈ Y , we have

〈=(yk), yk − r∗〉 ≥ 0. (30)

From Equations (29) and (30) we obtain

∥∥zk − r∗
∥∥2 ≤

∥∥uk − r∗
∥∥2 −

∥∥uk − yk
∥∥2

+ µ2 2ג
k

2ג
k+1

∥∥uk − yk
∥∥2

=
∥∥uk − r∗

∥∥2 −
(

1− µ2 2ג
k

2ג
k+1

)∥∥uk − yk
∥∥2. (31)

Theorem 1. Let = : X → X be an operator satisfies the conditions (=1)–(=3). Then, sequence
{uk} generated by Algorithm 1 strongly converges to r∗ ∈ VI(Y ,=) ∩ Fix(T ) where r∗ =
PVI(Y ,=)∩Fix(T )(0).
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Proof. Claim 1: The sequence {uk} is bounded.
Indeed, we have uk+1 = (1− αk)zk + αkT (zk). Thus, we obtain∥∥uk+1 − r∗

∥∥2
=
∥∥(1− αk)zk + αkT (zk)− r∗

∥∥2

=
∥∥zk − r∗

∥∥2
+ 2αk

〈
zk − r∗, T (zk)− zk

〉
+ α2

k
∥∥T (zk)− zk

∥∥2

≤
∥∥zk − r∗

∥∥2
+ αk(ρ− 1)

∥∥T (zk)− zk
∥∥2

+ α2
k
∥∥T (zk)− zk

∥∥2

=
∥∥zk − r∗

∥∥2 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2. (32)

Due to the definition of sequence {tk}, we can write∥∥tk − r∗
∥∥ =

∥∥uk + θk(uk − uk−1)− βkuk − θkβk(uk − uk−1)− r∗
∥∥

=
∥∥(1− βk)(uk − r∗) + (1− βk)θk(uk − uk−1)− βkr∗

∥∥ (33)

≤ (1− βk)
∥∥uk − r∗

∥∥+ (1− βk)θk
∥∥uk − uk−1

∥∥+ βk
∥∥r∗
∥∥

≤ (1− βk)‖uk − r∗‖+ βkK1, (34)

for some K1 we have

(1− βk)
θk
βk

∥∥uk − uk−1
∥∥+ ∥∥r∗

∥∥ ≤ K1.

The above expression is derived from Equation (14) as follows:

lim
k→+∞

θk
βk

∥∥uk − uk−1
∥∥ ≤ lim

k→+∞

εk
βk

= 0.

Since by Lemma 2, step size sequence kג → ג implies that there exists a fixed number
ϑ ∈ (0, 1− µ) such that

lim
k→+∞

(
1− µגk

k+1ג

)
= 1− µ > ϑ > 0.

As a result, there exists a finite natural number N1 ∈ N such that(
1− µגk

k+1ג

)
> ϑ > 0, ∀ k ≥ N1. (35)

By Lemma 4, we may rewrite

‖zk − r∗‖2 ≤ ‖tk − r∗‖2, ∀ k ≥ N1. (36)

From expressions (32), (34) and (36) infer that

‖uk+1 − r∗‖ ≤ (1− βk)‖uk − r∗‖+ βkK1 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2. (37)

Since {αk} ⊂ (a, 1− ρ) we obtain

‖uk+1 − r∗‖ ≤ (1− βk)‖uk − r∗‖+ βkK1

≤ max
{
‖uk − r∗‖, K1

}
...

≤ max
{
‖uN1 − r∗‖, K1

}
. (38)

Therefore, we can conclude that the sequence {uk} is bounded.
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Claim 2:

(
1− µגk

k+1ג

)
‖tk − yk‖2 +

(
1− µגk

k+1ג

)
‖zk − yk‖2 + αk(1− ρ− αk)

∥∥T (zk)− zk
∥∥2

≤ ‖uk − r∗‖2 − ‖uk+1 − r∗‖2 + βkK2. (39)

for some K2 > 0. Indeed, it follows from definition of {uk+1} that∥∥uk+1 − r∗
∥∥2

=
∥∥(1− αk)zk + αkT (zk)− r∗

∥∥2

=
∥∥zk − r∗

∥∥2
+ 2αk

〈
zk − r∗, T (zk)− zk

〉
+ α2

k
∥∥T (zk)− zk

∥∥2

≤
∥∥zk − r∗

∥∥2
+ αk(ρ− 1)

∥∥T (zk)− zk
∥∥2

+ α2
k
∥∥T (zk)− zk

∥∥2

=
∥∥zk − r∗

∥∥2 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2. (40)

Using expression (23) we have

‖zk − r∗‖2 ≤ ‖tk − r∗‖2 −
(

1− µגk
k+1ג

)
‖tk − yk‖2 −

(
1− µגk

k+1ג

)
‖zk − yk‖2. (41)

Indeed, it follow from expression (34) that∥∥tk − r∗
∥∥2 ≤ (1− βk)

2‖uk − r∗‖2 + β2
kK2

1 + 2K1βk(1− βk)‖uk − r∗‖
≤ ‖uk − r∗‖2 + βk

[
βkK2

1 + 2K1(1− βk)‖uk − r∗‖
]

≤ ‖uk − r∗‖2 + βkK2, (42)

for some K2 > 0. Combining expressions (40)–(42) we obtain

‖uk+1 − r∗‖2 ≤ ‖uk − r∗‖2 + βkK2 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2

−
(

1− µגk
k+1ג

)
‖tk − yk‖2 −

(
1− µגk

k+1ג

)
‖zk − yk‖2. (43)

Claim 3: From definition of {tk} we can write∥∥tk − r∗
∥∥2

=
∥∥uk + θk(uk − uk−1)− βkuk − θkβk(uk − uk−1)− r∗

∥∥2

=
∥∥(1− βk)(uk − r∗) + (1− βk)θk(uk − uk−1)− βkr∗

∥∥2

≤
∥∥(1− βk)(uk − r∗) + (1− βk)θk(uk − uk−1)

∥∥2
+ 2βk〈−r∗, tk − r∗〉

= (1− βk)
2∥∥uk − r∗

∥∥2
+ (1− βk)

2θ2
k
∥∥uk − uk−1

∥∥2

+ 2θk(1− βk)
2∥∥uk − r∗

∥∥∥∥uk − uk−1
∥∥+ 2βk〈−r∗, tk − uk+1〉+ 2βk〈−r∗, uk+1 − r∗〉

≤ (1− βk)
∥∥uk − r∗

∥∥2
+ θ2

k
∥∥uk − uk−1

∥∥2
+ 2θk(1− βk)

∥∥uk − r∗
∥∥∥∥uk − uk−1

∥∥
+ 2βk

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2βk〈−r∗, uk+1 − r∗〉

= (1− βk)
∥∥uk − r∗

∥∥2
+ βk

[
θk
∥∥uk − uk−1

∥∥ θk
βk

∥∥uk − uk−1
∥∥

+ 2(1− βk)
∥∥uk − r∗

∥∥ θk
βk

∥∥uk − uk−1
∥∥+ 2

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2〈r∗, r∗ − uk+1〉
]
.

(44)
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Combining expressions (36) and (44) we obtain∥∥uk+1 − r∗
∥∥2

≤ (1− βk)
∥∥uk − r∗

∥∥2
+ βk

[
θk
∥∥uk − uk−1

∥∥ θk
βk

∥∥uk − uk−1
∥∥

+ 2(1− βk)
∥∥uk − r∗

∥∥ θk
βk

∥∥uk − uk−1
∥∥+ 2

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2〈r∗, r∗ − uk+1〉
]
. (45)

Claim 4: The sequence
∥∥uk − r∗

∥∥2 converges to zero.

Set
pk := ‖uk − r∗‖2

and

rk := θk
∥∥uk − uk−1

∥∥ θk
βk

∥∥uk − uk−1
∥∥+ 2(1− βk)

∥∥uk − r∗
∥∥ θk

βk

∥∥uk − uk−1
∥∥+ 2

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2〈r∗, r∗ − uk+1〉.

Then, Claim 4 can be rewritten as follows:

pk+1 ≤ (1− βk)pk + βkrk.

Indeed, from Lemma 1, it suffices to show that lim supj→+∞ rkj
≤ 0 for every subsequence

{pkj
} of {pk} satisfying

lim inf
j→+∞

(pkj+1 − pkj
) ≥ 0.

This is equivalently to need to show that

lim sup
j→+∞

〈r∗, r∗ − ukj+1〉 ≤ 0

and
lim sup

j→+∞

∥∥tkj
− ukj+1

∥∥ ≤ 0,

for every subsequence {‖ukj
− r∗‖} of {‖uk − r∗‖} satisfying

lim inf
j→+∞

(
‖ukj+1 − r∗‖ − ‖ukj

− r∗‖
)
≥ 0.

Suppose that {‖ukj
− r∗‖} is a subsequence of {‖uk − r∗‖} satisfying

lim inf
j→+∞

(
‖ukj+1 − r∗‖ − ‖ukj

− r∗‖
)
≥ 0.

Then

lim inf
j→+∞

(
‖ukj+1 − r∗‖2 − ‖ukj

− r∗‖2)
= lim inf

j→+∞

(
‖ukj+1 − r∗‖ − ‖ukj

− r∗‖
)(
‖ukj+1 − r∗‖+ ‖ukj

− r∗‖
)
≥ 0. (46)

It follows from Claim 2 that
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lim sup
j→+∞

[(
1−

µגkj

kj+1ג

)
‖tkj
− ykj

‖2 +
(

1−
µגkj

kj+1ג

)
‖zkj
− ykj

‖2 + αkj
(1− ρ− αkj

)
∥∥T (zkj

)− zkj

∥∥2
]

≤ lim sup
j→+∞

[
‖ukj
− r∗‖2 − ‖ukj+1 − r∗‖2

]
+ lim sup

j→+∞
βkj

K2

= − lim inf
j→+∞

[
‖ukj+1 − r∗‖2 − ‖ukj

− r∗‖2
]

≤ 0.

(47)

The above relation implies that

lim
j→+∞

‖tkj
− ykj

‖ = 0, lim
j→+∞

‖zkj
− ykj

‖ = 0, lim
j→+∞

∥∥T (zkj
)− zkj

∥∥ = 0. (48)

Therefore, we obtain
lim

j→+∞
‖zkj
− tkj
‖ = 0. (49)

Now, we compute

‖tkj
− ukj

‖ = ‖ukj
+ θkj

(ukj
− ukj−1)− βkj

[
ukj

+ θkj
(ukj
− ukj−1)

]
− ukj

‖

≤ θkj
‖ukj
− ukj−1‖+ βkj

‖ukj
‖+ θkj

βkj
‖ukj
− ukj−1‖

= βkj

θkj

βkj

‖ukj
− ukj−1‖+ βkj

‖ukj
‖+ β2

kj

θkj

βkj

‖ukj
− ukj−1‖ −→ 0.

(50)

This together with limj→+∞ ‖zkj
− tkj
‖ = 0, yields that

lim
j→+∞

‖zkj
− ukj

‖ = 0. (51)

From ukj+1 = (1− αkj
)zkj

+ αkj
T (zkj

), one sees that

lim
j→+∞

‖ukj+1 − zkj
‖ = αkj

‖T (zkj
)− zkj

‖ ≤ (1− ρ)‖T (zkj
)− zkj

‖. (52)

Thus, we obtain
lim

j→+∞
‖ukj+1 − zkj

‖ = 0. (53)

The above expression implies that

lim
j→+∞

‖ukj
− ukj+1‖ ≤ lim

j→+∞
‖ukj
− zkj

‖+ lim
j→+∞

‖zkj
− ukj+1‖ = 0, (54)

and
lim

j→+∞
‖tkj
− ukj+1‖ ≤ lim

j→+∞
‖tkj
− zkj

‖+ lim
j→+∞

‖zkj
− ukj+1‖ = 0. (55)

Since the sequence {ukj
} is a bounded, without loss of generality we can assume that

{ukj
} converges weakly to some û ∈ X . Next, we need to prove that û ∈ VI(Y ,=). We

have expression (48) and limk→ kג = .ג Since {tkj
} weakly convergent to û and due to

limj→+∞ ‖tkj
− ykj

‖ = 0, sequence {ykj
} also weakly convergent to û. Next, we need to

prove that û ∈ VI(Y ,=). It gives that

ykj
= PY [tkj

− kjג
=(tkj

)]
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that is equivalent to

〈tkj
− kjג

=(tkj
)− ykj

, y− ykj
〉 ≤ 0, ∀ y ∈ Y . (56)

As a result of the aforementioned inequality, we have

〈tkj
− ykj

, y− ykj
〉 ≤ kjג

〈=(tkj
), y− ykj

〉, ∀ y ∈ Y . (57)

Consequently, we obtain

1
kjג

〈tkj
− ykj

, y− ykj
〉+ 〈=(tkj

), ykj
− tkj
〉 ≤ 〈=(tkj

), y− tkj
〉, ∀ y ∈ Y . (58)

Since min
{ µ

L , 1ג
}
≤ ג ≤ 1ג and {tkj

} is a bounded sequence. By the use of limj→+∞ ‖tkj
−

ykj
‖ = 0 and j→ +∞ in (58), we obtain

lim inf
j→+∞

〈=(tkj
), y− tkj

〉 ≥ 0, ∀ y ∈ Y . (59)

Additionally, it follows that

〈=(ykj
), y− ykj

〉 = 〈=(ykj
)−=(tkj

), y− tkj
〉+ 〈=(tkj

), y− tkj
〉+ 〈=(ykj

), tkj
− ykj

〉. (60)

Since limj→+∞ ‖tkj
− ykj

‖ = 0 and Lipschitz condition on mapping =, we obtain

lim
j→+∞

‖=(tkj
)−=(ykj

)‖ = 0, (61)

which together with (60) and (61), we obtain

lim inf
j→+∞

〈=(ykj
), y− ykj

〉 ≥ 0, ∀ y ∈ Y . (62)

To prove further, let us take a positive sequence {εj} that is convergent to zero and decreas-
ing. For every {εj} there exists a least positive integer represented by mj such that

〈=(tki
), y− tki

〉+ εj > 0, ∀ i ≥ mj, (63)

where the existence of mj follows from expression (62). Since {εj} is decreasing, it is easy
to see that the sequence mj is increasing. If there exists a natural number N0 ∈ N such that
=((unmk

) 6= 0, for all nmk ≥ N0. Thus, we consider that

h̄kmn
=
=(tkmn

)

‖=(tkmn
)‖2 , ∀ kmn ≥ N0. (64)

Using the above value of h̄kmn
, we obtain

〈=(tkmn
), h̄kmn

〉 = 1, ∀ kmn ≥ N0. (65)

Combining expressions (63) and (65), we obtain

〈=(tkmn
), y + εk h̄kmn

− tkmn
〉 > 0. (66)

Along with the definition of pseudomonotone mapping =, we can write

〈=(y + εk h̄kmn
), y + εk h̄kmn

− tkmn
〉 > 0. (67)
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For all kmn ≥ N0, we have

〈=(y), y− tkmn
〉 ≥ 〈=(y)−=(y + εk h̄kmn

), y + εk h̄kmn
− tkmn

〉 − εk〈=(y), h̄kmn
〉. (68)

Since the sequence {tkn} weakly converges to û ∈ Y . Thus, {=(tkn)} weakly converges to
=(û). Let =(û) 6= 0, that implies that

‖=(û)‖ ≤ lim inf
n→+∞

‖=(tkn)‖. (69)

Since {tkmn
} ⊂ {tkn} and limk→+∞ εk = 0, we have

0 ≤ lim
n→+∞

‖εk h̄kmn
‖ = lim

n→+∞

εk
‖=(tkmn

)‖ ≤
0

‖=(û)‖ = 0. (70)

By letting n→ +∞ in expression (68), we obtain

〈=(y), y− û〉 ≥ 0, ∀ y ∈ Y . (71)

Let u ∈ Y be arbitrary element and 0 < v ≤ 1. Let us consider that

ûv = vu + (1−v)û. (72)

Then ûv ∈ Y . From expression (71), we have

v
〈
=(ûv), u− û

〉
≥ 0. (73)

Hence, we have 〈
=(ûv), u− û

〉
≥ 0. (74)

Let v → 0. Then ûv → û along a line segment. By the continuity of an operator, =(ûv)
converges to =(û) as v → 0. It follows from (74) that〈

=(û), u− û
〉
≥ 0. (75)

Therefore, û is a solution of problem (1). From given r∗ = PVI(Y ,=)∩Fix(T )(0), we have

〈0− r∗, y− r∗〉 ≤ 0, ∀ y ∈ VI(Y ,=) ∩ Fix(T ). (76)

From (50), one obtains {tkj
} converges weakly to û ∈ X . It follows from (51) that {zkj

}
converges weakly to û ∈ X . By the demiclosedness of (I − T ), we obtain that û ∈ Fix(T ).
Thus, û ∈ VI(Y ,=) ∩ Fix(T ). Thus, we have

lim
j→+∞

〈r∗, r∗ − ukj
〉 = 〈r∗, r∗ − û〉 ≤ 0. (77)

Using the fact limj→+∞
∥∥ukj+1 − ukj

∥∥ = 0. Thus, we have

lim sup
j→+∞

〈r∗, r∗ − ukj+1〉

≤ lim sup
j→+∞

〈r∗, r∗ − ukj
〉+ lim sup

j→+∞
〈r∗, ukj

− ukj+1〉 ≤ 0. (78)

Combining Claim 3 and in the light of Lemma 1, we observe that uk → r∗ as k→ +∞. The
proof of Theorem 1 is completed.

Theorem 2. Let = : X → X be an operator satisfies the conditions (=1)–(=3). Then, sequence
{uk} generated by Algorithm 2 is strongly convergent to r∗ ∈ VI(Y ,=) ∩ Fix(T ) where r∗ =
PVI(Y ,=)∩Fix(T )(0).
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Proof. Claim 1: The sequence {uk} is bounded.

Indeed, we have
uk+1 = (1− αk)zk + αkT (zk).

Due to the definition of a sequence {uk+1}, we have∥∥uk+1 − r∗
∥∥2

=
∥∥(1− αk)zk + αkT (zk)− r∗

∥∥2

=
∥∥zk − r∗

∥∥2
+ 2αk

〈
zk − r∗, T (zk)− zk

〉
+ α2

k
∥∥T (zk)− zk

∥∥2

≤
∥∥zk − r∗

∥∥2
+ αk(ρ− 1)

∥∥T (zk)− zk
∥∥2

+ α2
k
∥∥T (zk)− zk

∥∥2

=
∥∥zk − r∗

∥∥2 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2. (79)

Thus, we have∥∥tk − r∗
∥∥ =

∥∥uk + θk(uk − uk−1)− βkuk − θkβk(uk − uk−1)− r∗
∥∥

=
∥∥(1− βk)(uk − r∗) + (1− βk)θk(uk − uk−1)− βkr∗

∥∥ (80)

≤ (1− βk)
∥∥uk − r∗

∥∥+ (1− βk)θk
∥∥uk − uk−1

∥∥+ βk
∥∥r∗
∥∥

≤ (1− βk)‖uk − r∗‖+ βk M1, (81)

where M1 is

(1− βk)
θk
βk

∥∥uk − uk−1
∥∥+ ∥∥r∗

∥∥ ≤ M1.

The above expression is derived from Equation (24) as follows:

lim
k→+∞

θk
βk

∥∥uk − uk−1
∥∥ ≤ lim

k→+∞

εk
βk

= 0.

Using Lemma 3, step size sequence kג → ג such that ε ∈ (0, 1− µ2) and

lim
k→+∞

(
1− µ2 2ג

k
2ג

k+1

)
= 1− µ2 > ε > 0.

Thus, there exists a finite number k0 ∈ N such that(
1− µ2 2ג

k
2ג

k+1

)
> ε > 0, ∀ k ≥ k0. (82)

By the use of Lemma 5, we may rewrite

‖zk − r∗‖2 ≤ ‖tk − r∗‖2, ∀ k ≥ k0. (83)

From expressions (79), (81) and (83) infer that

‖uk+1 − r∗‖ ≤ (1− βk)‖uk − r∗‖+ βk M1 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2. (84)

Since {αk} ⊂ (a, 1− ρ), we obtain

‖uk+1 − r∗‖ ≤ (1− βk)‖uk − r∗‖+ βk M1

≤ max
{
‖uk − r∗‖, M1

}
...

≤ max
{
‖uk0 − r∗‖, M1

}
. (85)

Finally, we can conclude that {uk} is a bounded sequence.
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Claim 2:

(
1− µ2 2ג

k
2ג

k+1

)∥∥tk − yk
∥∥2

+ αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2

≤ ‖uk − r∗‖2 − ‖uk+1 − r∗‖2 + βk M2, (86)

for some M2 > 0. Indeed, it follows from definition of {uk+1} that∥∥uk+1 − r∗
∥∥2

=
∥∥(1− αk)zk + αkT (zk)− r∗

∥∥2

=
∥∥zk − r∗

∥∥2
+ 2αk

〈
zk − r∗, T (zk)− zk

〉
+ α2

k
∥∥T (zk)− zk

∥∥2

≤
∥∥zk − r∗

∥∥2
+ αk(ρ− 1)

∥∥T (zk)− zk
∥∥2

+ α2
k
∥∥T (zk)− zk

∥∥2

=
∥∥zk − r∗

∥∥2 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2. (87)

Using Lemma 5, we have

‖zk − r∗‖2 ≤
∥∥tk − r∗

∥∥2 −
(

1− µ2 2ג
k

2ג
k+1

)∥∥tk − yk
∥∥2. (88)

Indeed, it follow from expression (81) that∥∥tk − r∗
∥∥2 ≤ (1− βk)

2‖uk − r∗‖2 + β2
k M2

1 + 2M1βk(1− βk)‖uk − r∗‖
≤ ‖uk − r∗‖2 + βk

[
βk M2

1 + 2M1(1− βk)‖uk − r∗‖
]

≤ ‖uk − r∗‖2 + βk M2, (89)

for some M2 > 0. Combining expressions (87)–(89) we obtain

‖uk+1 − r∗‖2 ≤ ‖uk − r∗‖2 + βk M2 − αk(1− ρ− αk)
∥∥T (zk)− zk

∥∥2

−
(

1− µ2 2ג
k

2ג
k+1

)∥∥tk − yk
∥∥2. (90)

Claim 3: From definition of {tk} we can write∥∥tk − r∗
∥∥2

=
∥∥uk + θk(uk − uk−1)− βkuk − θkβk(uk − uk−1)− r∗

∥∥2

=
∥∥(1− βk)(uk − r∗) + (1− βk)θk(uk − uk−1)− βkr∗

∥∥2

≤
∥∥(1− βk)(uk − r∗) + (1− βk)θk(uk − uk−1)

∥∥2
+ 2βk〈−r∗, tk − r∗〉

= (1− βk)
2∥∥uk − r∗

∥∥2
+ (1− βk)

2θ2
k
∥∥uk − uk−1

∥∥2

+ 2θk(1− βk)
2∥∥uk − r∗

∥∥∥∥uk − uk−1
∥∥+ 2βk〈−r∗, tk − uk+1〉+ 2βk〈−r∗, uk+1 − r∗〉

≤ (1− βk)
∥∥uk − r∗

∥∥2
+ θ2

k
∥∥uk − uk−1

∥∥2
+ 2θk(1− βk)

∥∥uk − r∗
∥∥∥∥uk − uk−1

∥∥
+ 2βk

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2βk〈−r∗, uk+1 − r∗〉

= (1− βk)
∥∥uk − r∗

∥∥2
+ βk

[
θk
∥∥uk − uk−1

∥∥ θk
βk

∥∥uk − uk−1
∥∥

+ 2(1− βk)
∥∥uk − r∗

∥∥ θk
βk

∥∥uk − uk−1
∥∥+ 2

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2〈r∗, r∗ − uk+1〉
]
. (91)
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Combining expressions (83) and (91) we obtain∥∥uk+1 − r∗
∥∥2

≤ (1− βk)
∥∥uk − r∗

∥∥2
+ βk

[
θk
∥∥uk − uk−1

∥∥ θk
βk

∥∥uk − uk−1
∥∥

+ 2(1− βk)
∥∥uk − r∗

∥∥ θk
βk

∥∥uk − uk−1
∥∥+ 2

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2〈r∗, r∗ − uk+1〉
]
. (92)

Claim 4: The sequence
∥∥uk − r∗

∥∥2 converges to zero.

Set
pk := ‖uk − r∗‖2

and

rk := θk
∥∥uk − uk−1

∥∥ θk
βk

∥∥uk − uk−1
∥∥+ 2(1− βk)

∥∥uk − r∗
∥∥ θk

βk

∥∥uk − uk−1
∥∥+ 2

∥∥r∗
∥∥∥∥tk − uk+1

∥∥+ 2〈r∗, r∗ − uk+1〉.

Then, Claim 4 can be rewritten as follows:

pk+1 ≤ (1− βk)pk + βkrk.

Indeed, from Lemma 1, it suffices to show that lim supj→+∞ rkj
≤ 0 for every subsequence

{pkj
} of {pk} satisfying

lim inf
j→+∞

(pkj+1 − pkj
) ≥ 0.

This is equivalently to need to show that

lim sup
j→+∞

〈r∗, r∗ − ukj+1〉 ≤ 0

and
lim sup

j→+∞

∥∥tkj
− ukj+1

∥∥ ≤ 0,

for every subsequence {‖ukj
− r∗‖} of {‖uk − r∗‖} satisfying

lim inf
j→+∞

(
‖ukj+1 − r∗‖ − ‖ukj

− r∗‖
)
≥ 0.

Suppose that {‖ukj
− r∗‖} is a subsequence of {‖uk − r∗‖} satisfying

lim inf
j→+∞

(
‖ukj+1 − r∗‖ − ‖ukj

− r∗‖
)
≥ 0.

Then

lim inf
j→+∞

(
‖ukj+1 − r∗‖2 − ‖ukj

− r∗‖2)
= lim inf

j→+∞

(
‖ukj+1 − r∗‖ − ‖ukj

− r∗‖
)(
‖ukj+1 − r∗‖+ ‖ukj

− r∗‖
)
≥ 0. (93)
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It follows from Claim 2 that

lim sup
j→+∞

[(
1−

µ22ג
kj

2ג
kj+1

)
‖tkj
− ykj

‖2 + αkj
(1− ρ− αkj

)
∥∥T (zkj

)− zkj

∥∥2
]

≤ lim sup
j→+∞

[
‖ukj
− r∗‖2 − ‖ukj+1 − r∗‖2

]
+ lim sup

j→+∞
βkj

K2

= − lim inf
j→+∞

[
‖ukj+1 − r∗‖2 − ‖ukj

− r∗‖2
]

≤ 0. (94)

The above relation implies that

lim
j→+∞

‖tkj
− ykj

‖ = 0, lim
j→+∞

∥∥T (zkj
)− zkj

∥∥ = 0. (95)

It follows that

‖zkj
− ykj

‖ = ‖ykj
+ kjג

[=(tkj
)−=(ykj

)]− ykj
‖ ≤ kjג

L‖tkj
− ykj

‖. (96)

The above expression implies that

lim
j→+∞

‖zkj
− ykj

‖ = 0. (97)

The proof is similar to the Claim 4 of Theorem 1. So we omit it here.

4. Numerical Illustrations

In contrast to some previous work in the literature, this part describes the algorithmic
repercussions of the presented techniques, as well as an analysis of how differences in
control parameters affect the numerical efficacy of the proposed algorithms.

Example 1. Consider the HpHard problem, which is taken from [42]. Many researchers have
considered this example for numerical experiments (see for details, [43–45]). Let us say a mapping
= : Rm → Rm is defined by

=(u) = Mu + q

and q = 0 where
M = NNT + B + D.

We used N = rand(m) as a random matrix and B = 0.5K− 0.5KT as a skew-symmetric matrix
with K = rand(m) and D = diag(rand(m, 1)) during this experiment denotes a diagonal matrix.
The practicable set Y is interpreted as follows:

Y = {u ∈ Rm : −10 ≤ ui ≤ 10}.

It is obvious that = is monotone and that Lipschitz is continuous by L = ‖M‖. Let T : X → X
be provided by T u = 1

2 u. The starting point for this experiment are u0 = u1 = (2, 2, · · · , 2) and
dimension of the space is taken differently with stopping criterion Dk = ‖tk− yk‖ ≤ 10−10. Numer-
ical observations for Example 1 are shown in Figures 1–4 and Tables 1 and 2. Control criteria applied
are as follows: (1) Algorithm 1 (shortly, alg-1): 1ג = 0.55, θ = 0.45, µ = 0.44, εk = 100

(1+k)2 , βk =
1

(2k+4) , αk = k
(2k+1) . (2) Algorithm 2 (shortly, alg-2): 1ג = 0.55, θ = 0.45, µ = 0.44, εk =

100
(1+k)2 , βk = 1

(2k+4) , αk = k
(2k+1) . (3) Algorithm 1 in [36] (shortly, mtalg-1): γ1 = 0.55, δ =

0.45, φ = 0.44, θk =
1

(2k+4) , kג =
1
2 (1− θk), εk =

100
(1+k)2 . (4) Algorithm 2 in [36] (shortly, mtalg-

2): γ1 = 0.55, δ = 0.45, φ = 0.44, θk = 1
(2k+4) , kג = 1

2 (1− θk), εk = 100
(1+k)2 . (5) Algorithm

1 in [35] (shortly, vtalg-1): τ1 = 0.55, θ = 0.45, µ = 0.44, εk = 100
(1+k)2 , βk = 1

(2k+4) , αk =
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k
(2k+1) , f (u) = u

2 . (6) Algorithm 2 in [35] (shortly, vtalg-2): τ1 = 0.55, θ = 0.45, µ = 0.44, εk =
100

(1+k)2 , βk =
1

(2k+4) , αk =
k

(2k+1) , f (u) = u
2 .

Table 1. Example 1 obtained numerical values.

Total Number of Iterations

m alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

5 36 19 94 78 60 49
10 46 24 102 80 62 51
20 42 25 93 85 59 53
50 38 25 86 87 57 55
100 37 32 84 88 56 56
200 38 36 84 94 56 62

Table 2. Example 1 obtained numerical values.

Required CPU Time

m alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

5 0.246841 0.1317703 0.5865135 0.4009539 0.360533465 0.3001653
10 0.284076 0.1523123 0.5159276 0.4722816 0.375091336 0.3097725
20 0.2602246 0.1633652 0.4246998 0.4630932 0.393142367 0.3358743
50 0.293302 0.1854808 0.4320612 0.5335381 0.331728156 0.3663686
100 0.2566573 0.2301228 0.4752024 0.5067862 0.358997537 0.3936471
200 0.3544296 0.3695034 0.7371152 0.8441844 0.516623963 0.6142675
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10-4

10-2

100

102

(b)

Figure 1. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when m = 5.
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Figure 2. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when m = 10.
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Figure 3. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when m = 50.
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Figure 4. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when m = 200.

Example 2. Consider a nonlinear operator = : R2 → R2 is defined by

=(u, y) = (u + y + sin u;−u + y + sin y)

and the feasible set Y is a set expressed by Y = [−1, 1]× [−1, 1]. It is easy to check that = is
monotone and Lipschitz continuous with the constant L = 3. Let E be a 2× 2 matrix defined by

E =

(
1 0
0 2

)
We consider the mapping T : R2 → R2 by T z = ‖E‖−1Ez, where z = (u, y)T . It is obvious to see
that T is 0-demicontractive and thus ρ = 0. The solution of the problem is r∗ = (0, 0)T . The starting
points for this experiment are used differently with stopping criterion Dk = ‖tk − yk‖ ≤ 10−10.
Numerical observations for Example 2 are shown in Figures 5–8 and Table 3 and 4. Control criteria
applied are as follows: (1) Algorithm 1 (shortly, alg-1): 1ג = 0.45, θ = 0.35, µ = 0.33, εk =

10
(1+k)2 , βk = 1

(3k+6) , αk = k
(3k+1) . (2) Algorithm 2 (shortly, alg-2): 1ג = 0.45, θ = 0.35, µ =

0.33, εk = 10
(1+k)2 , βk = 1

(3k+4) , αk = k
(3k+1) . (3) Algorithm 1 in [36] (shortly, mtalg-1): γ1 =

0.45, δ = 0.35, φ = 0.33, θk = 1
(3k+6) , kג = 1

2.5 (1− θk), εk = 10
(1+k)2 . (4) Algorithm 2 in [36]

(shortly, mtalg-2): γ1 = 0.45, δ = 0.35, φ = 0.33, θk = 1
(3k+6) , kג = 1

2.5 (1− θk), εk = 10
(1+k)2 .

(5) Algorithm 1 in [35] (shortly, vtalg-1): τ1 = 0.45, θ = 0.35, µ = 0.33, εk = 10
(1+k)2 , βk =

1
(3k+6) , αk = k

(3k+1) , f (u) = u
2 . (6) Algorithm 2 in [35] (shortly, vtalg-2): τ1 = 0.45, θ =

0.35, µ = 0.33, εk =
10

(1+k)2 , βk =
1

(3k+6) , αk =
k

(3k+1) , f (u) = u
2 .

Table 3. Example 2 obtained numerical values.

Total Number of Iterations

u0 = u1 alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

(1, 1)T 49 35 68 75 82 85
(2, 2)T 48 36 61 65 77 78
(1,−1)T 44 33 72 83 86 92
(−2, 3)T 51 37 65 70 81 79
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Table 4. Example 2 obtained numerical values.

Required CPU Time

u0 = u1 alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

(1, 1)T 0.2284193 0.1631707 0.2969821 0.3224385 0.3469049 0.3625844
(2, 2)T 0.2297859 0.1757931 0.3720656 0.3078242 0.3847476 0.4105755
(1,−1)T 0.1986126 0.1512495 0.3220028 0.3729462 0.3787876 0.4068135
(−2, 3)T 0.2380988 0.1703252 0.2690971 0.3069672 0.3448697 0.3428332
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Number of iterations
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10-4

10-2

100

102

Figure 5. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = (1, 1)T .
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Figure 6. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = (2, 2)T .
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Figure 7. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = (1,−1)T .
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Figure 8. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = (−2,−3)T .

Example 3. Suppose that X = L2([0, 1]) be a Hilbert space through an inner product

〈u, y〉 =
∫ 1

0
u(t)y(t)dt, ∀ u, y ∈ X ,

where the induced norm

‖u‖ =

√∫ 1

0
|u(t)|2dt.

Let Y := {u ∈ L2([0, 1]) : ‖u‖ ≤ 1} be the unit ball and = : Y → X is defined by

=(u)(t) =
∫ 1

0

(
u(t)− H(t, s) f (u(s))

)
ds + g(t),
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where

H(t, s) =
2tse(t+s)

e
√

e2 − 1
, f (u) = cos u, g(t) =

2tet

e
√

e2 − 1
.

It is evident that = is Lipschitz-continuous with Lipschitz constant L = 2 and monotone [44]. The
projection on Y is inherently explicit, that is,

PC(u) =


u
‖u‖ if ‖u‖ > 1,

u, ‖u‖ ≤ 1.

An operator T : L2([0, 1])→ L2([0, 1]) is of form

T (u)(t) =
∫ 1

0
tu(s)ds, t ∈ [0, 1].

A straightforward computation implies that T is 0-demicontractive. The solution of the problem
is r∗(t) = 0. The starting point for this experiment are taken differently with stopping criterion
Dk = ‖tk − yk‖ ≤ 10−6. Numerical observations for Example 3 are shown in Figures 9–12 and
Tables 5 and 6. Control criteria applied are as follows: (1) Algorithm 1 (shortly, alg-1): 1ג =
0.33, θ = 0.66, µ = 0.55, εk =

1
(1+k)2 , βk =

1
(4k+8) , αk =

k
(5k+1) . (2) Algorithm 2 (shortly, alg-2):

1ג = 0.33, θ = 0.66, µ = 0.55, εk = 1
(1+k)2 , βk = 1

(4k+8) , αk = k
(5k+1) . (3) Algorithm 1 in [36]

(shortly, mtalg-1): γ1 = 0.33, δ = 0.66, φ = 0.55, θk = 1
(4k+8) , kג = 1

2 (1− θk), εk = 1
(1+k)2 .

(4) Algorithm 2 in [36] (shortly, mtalg-2): γ1 = 0.33, δ = 0.66, φ = 0.55, θk = 1
(4k+8) , kג =

1
2 (1− θk), εk = 1

(1+k)2 . (5) Algorithm 1 in [35] (shortly, vtalg-1): τ1 = 0.33, θ = 0.66, µ =

0.55, εk =
1

(1+k)2 , βk =
1

(4k+8) , αk =
k

(4k+1) , f (u) = u
3 . (6) Algorithm 2 in [35] (shortly, vtalg-2):

τ1 = 0.33, θ = 0.66, µ = 0.55, εk =
1

(1+k)2 , βk =
1

(4k+8) , αk =
k

(4k+1) , f (u) = u
3 .

Table 5. Example 3 obtained numerical values.

Total Number of Iterations

u0 = u1 alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

1 44 33 76 70 66 57
t 42 31 89 84 58 48

sin(t) 45 34 75 64 58 51
cos(t) 47 35 74 94 58 51

Table 6. Example 3 obtained numerical values.

Required CPU Time

u0 = u1 alg-1 alg-2 mtalg-1 mtalg-2 vtalg-1 vtalg-2

1 0.1310831 0.1149104 0.2380825 0.2171721 0.1915358 0.178602
t 0.0583617 0.0538350 0.1154974 0.1059993 0.0784157 0.0548289

sin(t) 0.1372786 0.1029274 0.2692971 0.185825 0.1745996 0.1476468
cos(t) 0.1364229 0.1253482 0.2207376 0.2697567 0.172504 0.1452834
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Figure 9. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = 1.
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Figure 10. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = t.
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Figure 11. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = sin(t).
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Figure 12. Computational illustration of Algorithms 1 and 2 with Algorithm 1 in [36], Algorithm 2
in [36] and Algorithm 1 in [35], Algorithm 2 in [35] when u0 = u1 = cos(t).

5. Discussion about Numerical Illustrations

Regarding the above-mentioned numerical experiments, we have the following findings:

(1) Examples 1–3 reported results for several algorithms in both finite and infinite-
dimensional spaces. It is clear to see that the provided algorithms outperformed
in terms of number of iterations and elapsed time in almost all situations. All ex-
periments show that the proposed algorithms perform better the previously existing
algorithms.

(2) The appearance of unsuitable variable step size causes a hump in the graph of algo-
rithms in Example 2. It does not really effect the overall performance of the algorithms.

(3) Examples 1–3 reported results for different algorithms for both finite and infinite-
dimensional spaces. In most cases, we can see that the algorithm’s performance is
determined by the nature of the problem and the tolerance value employed.
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(4) For large-dimensional problems, all approaches typically took longer and showed
significant variation in execution time. The number of iterations, on the other hand,
changes slightly less.

(5) It is also observed that a specific formula for stepsize evaluation enhances the algo-
rithm’s efficiency and the pace of convergence. In other words, rather than the fixed
stepsize, the appropriate variable stepsize improves the performance of algorithms.

(6) In Examples 2 and 3, it can also be shown that the initial point choice and the com-
plexity of the operators have an influence on the performance of algorithms in terms
of the number of iterations and time of execution in seconds.
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