
����������
�������

Citation: Patino-Alonso, C.; Gómez-

Sánchez, M.; Gómez-Sánchez, L.;

Sánchez Salgado, B.; Rodríguez-

Sánchez, E.; García-Ortiz, L.;

Gómez-Marcos, M.A. Predictive

Ability of Machine-Learning

Methods for Vitamin D Deficiency

Prediction by Anthropometric

Parameters. Mathematics 2022, 10, 616.

https://doi.org/10.3390/

math10040616

Academic Editors: Carmen Lacave,

Ana Isabel Molina and Florin Leon

Received: 30 November 2021

Accepted: 14 February 2022

Published: 17 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Predictive Ability of Machine-Learning Methods for Vitamin D
Deficiency Prediction by Anthropometric Parameters
Carmen Patino-Alonso 1,2,* , Marta Gómez-Sánchez 2, Leticia Gómez-Sánchez 2, Benigna Sánchez Salgado 2,3,
Emiliano Rodríguez-Sánchez 2,3,4 , Luis García-Ortiz 2,3,5,† and Manuel A. Gómez-Marcos 2,3,4,†

1 Department of Statistics, University of Salamanca, 37007 Salamanca, Spain
2 Primary Care Research Unit of Salamanca (APISAL), Biomedical Research Institute of Salamanca (IBSAL),

37005 Salamanca, Spain; martas_111@hotmail.com (M.G.-S.); leticiagmzsnchz@gmail.com (L.G.-S.);
benissanchez@gmail.com (B.S.S.); emiliano@usal.es (E.R.-S.); lgarcia@usal.es (L.G.-O.); magomez@usal.es (M.A.G.-M.)

3 Health Service of Castilla and Leon (SACyL), 37005 Salamanca, Spain
4 Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
5 Department of Biomedical and Diagnostic Sciences, University of Salamanca, 37007 Salamanca, Spain
* Correspondence: carpatino@usal.es
† These authors contributed equally to this work.

Abstract: Background: Vitamin D deficiency affects the general population and is very common
among elderly Europeans. This study compared different supervised learning algorithms in a cohort
of Spanish individuals aged 35–75 years to predict which anthropometric parameter was most strongly
associated with vitamin D deficiency. Methods: A total of 501 participants were recruited by simple
random sampling with replacement (reference population: 43,946). The analyzed anthropometric
parameters were waist circumference (WC), body mass index (BMI), waist-to-height ratio (WHtR),
body roundness index (BRI), visceral adiposity index (VAI), and the Clinical University of Navarra
body adiposity estimator (CUN-BAE) for body fat percentage. Results: All the anthropometric indices
were associated, in males, with vitamin D deficiency (p < 0.01 for the entire sample) after controlling
for possible confounding factors, except for CUN-BAE, which was the only parameter that showed a
correlation in females. Conclusions: The capacity of anthropometric parameters to predict vitamin
D deficiency differed according to sex; thus, WC, BMI, WHtR, VAI, and BRI were most useful for
prediction in males, while CUN-BAE was more useful in females. The naïve Bayes approach for
machine learning showed the best area under the curve with WC, BMI, WHtR, and BRI, while the
logistic regression model did so in VAI and CUN-BAE.

Keywords: vitamin D; machine learning; decision making; anthropometric parameters

1. Introduction

Published work, at different latitudes and on both sexes, has indicated that serum
25-hydroxyvitamin D concentrations are lower in obese subjects as compared to normal-
weight subjects [1–5]. Moreover, intervention studies and clinical trials have shown an
inverse association between the duration and dosage of 25-hydroxyvitamin D supple-
mentation according to BMI and body fat [2,6,7]. Excess adiposity is associated with risk
factors for cardiovascular diseases (CVD), such as hypertension, diabetes mellitus, and
dyslipidemia. Body mass index (BMI) is the most widely used measure to evaluate the
presence of obesity in adults, and it is associated with an increase in morbimortality by
cardiovascular diseases and cancer [8]. Waist circumference (WC) has been used to evaluate
central obesity and predict the risk of mortality more accurately than BMI [9]. However,
it has some limitations, as it considers neither the height nor the weight of the individ-
ual [9]. To solve these limitations, alternatives have been developed that include height
(e.g., the waist-to-height ratio (WHtR)) [10], the lipid profile (e.g., the visceral adiposity
index (VAI)) [11], body fat percentage (e.g., the body adiposity estimator (CUN-BAE)) [12],
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and body roundness index (BRI) [13]. The epidemic of vitamin D deficiency has been corre-
lated with a wide variety of diseases [14]. The study of vitamin D deficiency and its relation
to different diseases has gained increasing interest in recent decades. Vitamin D deficiency
affects the general population and is very common in European populations, especially
among the elderly [15,16]. This deficit has also been associated with several diseases, such
as cancer and cardiovascular diseases [17,18], obesity [19], and even mortality rates for
COVID-19 [20]. Aleksova et al. [21] found a U-shaped, nonlinear relationship between
vitamin D levels and myocardial infarction. Although evidence has been found [22] for the
association of anthropometric parameters regarding vitamin D, such association is not yet
fully understood. It would be helpful to better identify individuals with a greater likelihood
of vitamin D deficiency, which could improve the efficiency of the determination.

Machine learning (ML) is a technology that was originally intended to mimic human
intelligence [23]. Currently, it has been transformed into a tool that can use algorithms to
identify patterns and formulate predictions. ML methods have acquired great importance
in the health sector for disease prediction. Their versatility means they can derive a model
from available data without prior knowledge of the relationships between variables [24].
These methods make fewer assumptions about the data, which allows them to use variables
with a non-normal distribution. In the medical field, ML has been used to predict different
traits, such as cardiovascular disease [25], diabetes [26,27], and hypertension [28]. These
methods, in theory, can provide more accurate predictions as compared to traditional linear
methods [29]. However, one of the reasons why conventional methods such as regression
are still used is that despite the theoretical potential of ML, its practical application has not
always proven superior to traditional linear modeling. Furthermore, it has been difficult
to forecast which method will result in the higher accuracy when predicting a particular
disease [30]. In practice, there are many different ML techniques that may be suitable for
predicting a variable of interest. This challenge has resulted in a trial-and-error approach to
find the best method for each circumstance [31]. In summary, ML is an interdisciplinary
field closely related to artificial intelligence, pattern recognition, and probability theory,
through which computer algorithms can automatically extract patterns from the available
data. ML has mainly been divided into three categories: supervised, unsupervised and
semisupervised learning approaches, depending on the availability of types and categories
of training data. Supervised ML involves predetermined output attributes in addition to
the use of input attributes, and all the data are labeled. Unsupervised learning approaches
are in contrast to supervised learning approaches, in that they do not require any training
process, and all the data are unlabeled. The difference between both is the existence of
labels in the training data subset [32]. Semisupervised ML is an approach that incorporates
both unsupervised and supervised machine learning; that is, in the presence of both labeled
and unlabeled data [33]. In this paper, supervised learning approaches, which are widely
used in the data classification process, were applied. The naïve Bayes (NB) probabilistic
classifier and the linear logistic regression (LR) and random forest (RF) were used.

Recently, prediction models for 25-hydroxyvitamin D have been developed using
conventional regression analysis [34,35]. However, ML is a data analysis technique
that creates algorithms to predict outcomes by “learning” from the data. It increas-
ingly stands out as a competitive alternative to regression analysis. However, although
ML can outperform conventional regression, it develops fewer assumptions about the
data, possibly due to its ability to capture nonlinearities between predictor variables [36].
Despite this, only two studies [37,38] have used machine-learning algorithms to predict
25-hydroxyvitamin D, neither of which studied the relationship of 25-hydroxyvitamin D
deficit using anthropometric parameters.

Although ML predication models have already been tested in other pathologies, such
as coronary artery disease [39], this was the first study to use them in the analysis of the
association of different anthropometric parameters with vitamin D. Therefore, the aims of
this study were, firstly, to explore the association of the different anthropometric parameters
(i.e., BMI, WC, WHtR, BRI, VAI, and CUN-BAE) with vitamin D, and secondly, to analyze
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which anthropometric parameters were the most efficient in predicting vitamin D levels
while comparing the results to those of other methods, including LR, NB, and RF.

2. Methods
2.1. Design

This was a cross-sectional, descriptive study of individuals recruited for a study
entitled “Association between Different Risk Factors and Early Vascular Ageing (EVA
study)” (NCT02623894) [40].

2.2. Study Population

The sample was recruited from an urban population of 43,946 people from 5 healthcare
centers. Through random sampling with replacement and stratifying by age groups (35,
45, 55, 65, and 75 years) and sex, 501 individuals were selected, with 100 in each group
(i.e., 50 males and 50 females) aged between 35 and 75 years old. The recruitment was
conducted from June 2016 to November 2017. Inclusion criteria included those aged
35–75 years old and willing to sign the informed consent to participate. The exclusion
criteria included individuals with terminal illnesses, as well as those who could not move
into the healthcare centers, had a history of CVD, had a glomerular filtration rate below
30%, had chronic inflammatory disease or acute inflammatory processes in the last three
months, or were under treatment with estrogen, testosterone, or growth hormone.

2.3. Variables and Measurement Instruments

A detailed description of the variables gathered and tests performed was included in
the protocol of the EVA study [40]. The nurses who collected the tests and questionnaires
of the EVA study were previously trained following a standardized protocol.

2.3.1. Measurement of the Anthropometric Parameters

The anthropometric variables were gathered through physical examination.
Weight: mean of 2 measures recorded using an approved and calibrated Seca-770 scale

(precision ± 0.1 kg), with the participant barefoot and wearing light clothing.
Height: mean of 2 measures using a Seca-222 wall-mounted height rod, with the

participant standing barefoot and aligning their midsagittal line with the middle line of the
height rod.

BMI: this was calculated as weight in kg/height in m2. We considered obesity for
participants with BMI ≥ 30 [41].

WC: this was measured in the superior border of the iliac crest parallel to the floor,
at the end of a normal exhalation. Obesity was considered for WC values ≥88 cm in
females and ≥102 cm in males [41]. Hip circumference (HC) was measured at the level of
the trochanters.

WHtR: this was calculated using the following equation [42,43]: WHtR = waist cir-
cumference (cm)/height (cm).

CUN-BAE: the body fat percentage was calculated according to the Clinical
University of Navarra, following the recommendations of Gómez-Ambrosi et al. [12]:
CUN-BAE = −44988 + (0.503 × age) + (10689 × sex) + (3172 × BMI) − (0.026 × BMI2)
+ (0.181 × BMI sex) − (BMI 0.02 × age) − (0.005 × BMI2 sex) + (0.00021 × BMI2 age),
considering males = 0 and females = 1.

BRI: this was based on height (m) and waist perimeter (m), and it was calculated using
the following equation [13]:

(BRI) = 364.2 − (365.5 × SQR(1 − ((WC/(2 × 3.141516))2)/(0.5 × Height)2))

VAI: this was calculated using the following equations [11]:

Males : VAI =
(

WC
39.68 + (1.88× BMI)

)
×

(
TG
1.03

)
×

(
1.31
HDL

)
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Females : VAI =
(

WC
36.58 + (1.89× BMI)

)
×

(
TG
0.81

)
×

(
1.51
HDL

)
2.3.2. Vitamin Intake

The level of 25-hidroxyvitamin D was calculated using an immunoassay technique
in a venous blood sample taken at 8–9 a.m. The participants fasted and were instructed
not to consume any alcohol or caffeine for 12 h prior to the collection of the blood samples.
Fasting plasma glucose, creatinine, total serum cholesterol, high-density lipoprotein (HDL)
cholesterol, and triglycerides were measured by standard automatized enzymatic methods.

Vitamin D deficiency was determined as levels below 20 ng/mL [44].

2.4. Statistical Analysis

The continuous variables were expressed as means ± standard deviations, whereas
the categorical variables were expressed as numbers and percentages. The comparison
of the means between two independent groups was carried out using Student’s t-test,
applying χ2 for the categorical variables.

The missing values were imputed according to the rate of missing values. If the rate
was <1%, the missing values were replaced with the mean in the continuous variables.
The missing values of the variables with a proportion of missing values between >1% and
<5% were replaced with the hot-deck imputation.

Three logistic regression models were performed, using each of the anthropometric
parameters (i.e., BMI, WC, WHtR, VAI, BRI, and CUN-BAE) as independent variables and
vitamin D as the dependent variable in two categories (model 0 for ≥20 ng/mL; model 1
for <20 ng/mL). Model 1 was carried out without controlling for any variables, model 2
was controlled for age and sex, and model 3 was controlled for age, sex, cardiovascular risk
score, and consumption of hypotensive, hypoglycemic, and hypolipidemic drugs (0 = no
consumption; 1 = consumption).

In this study, three classifiers were used: LR, NB, and RF. The data were divided into a
training set and a test set (70% and 30%, respectively). The training set was used to build
the classifier; however, to calculate the precision measurements of the models in order to
validate them, the data from the test set were applied. The parameters used to evaluate
the efficacy of the individual classifiers and compare them included sensitivity, specificity,
precision, and error.

All the ML methods used in this study could provide a confidence score on the
classification of vitamin D deficiency vs. no vitamin D deficiency. By varying the threshold
of this confidence score, it was possible to compensate for the rate of true positive outcomes
(sensitivity) with the rate of false positive outcomes (1-specificity) and, therefore, generate
a curve of the receiver operating characteristic (ROC). The standard measure of the area
under the ROC curve (AUC) was used to report and compare the efficiency of the models.

2.4.1. Machine Learning Techniques: LR, NB, RF

ML is a form of artificial intelligence that enables machines to learn and respond under
specific conditions. It employs techniques and algorithms that can predict future events or
classify data by identifying and learning the patterns in the existing data.

2.4.2. Logistic Regression

Logistic regression (LR) is a statistical-inferential machine-learning technique em-
ployed by researchers to analyze and classify binary and proportional response datasets
that dates back to the 1960s [45,46]. LR analysis extends multiple regression analysis tech-
niques to research situations in which the outcome variable is categorical. The model for
logistic regression analysis assumes that the outcome variable, Y, is categorical, but LR does
not model this outcome variable directly. It is based on probabilities associated with the
values of Y. It is a type of regression that predicts the probability of an occurrence by fitting
data to a logistic function; that is, it is about finding a sigmoid function that maximizes
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the probability of the observed values in the dataset [47]. The logit of the LR model is
transformed by the following equation:

logit (y) = b0 + b1x1 + b2x2 + . . . + bnxn

where b0 is the intercept of the equation, and b1, b2, . . . , bn are the coefficients of indepen-
dent variables x1, x2, . . . , xn. The logistic (logit) transformation is the logarithm of the
odds of the positive response, and it is defined as:

ln
(

p
1− p

)
= xβ

The probability P(Y = 1/X) is calculated in the LR model as follows:

P(Y = 1/x1, x2 . . . xn ) = p(x)

The general equation is:

p(x) =
1

1 + e−βxi
=

1
1 + e−(b0+b1x1+b2x2+...+bnxn)

=
1

1 + e−(b0+∑ βiXi)

The regression coefficients are usually estimated using maximum likelihood (ML)
estimation [48]. The ML method is based on the joint probability density of the observed
data, and acts as a function of the unknown parameters in the model. Now, with the
assumption that the observations are independent, the likelihood function is:

L(β) = ∏n
i=1(pi)

yi (1− pi)
1−yi= ∏n

i=1

(
exi β

1 + exi β

)yi( 1
1 + exi β

)1−yi

The log-likelihood is:

ln L(β) = ∑n
i=1

(
yi ln

(
exi β

1 + exi β

)
+ (1− yi) ln

(
1

1 + exi β

))
Some of the main advantages of LR are that it can naturally provide probabilities and

extend to multiclass classification problems [49].

2.4.3. Naïve Bayes

Naïve Bayes (NB) is a supervised classifier based on Bayes’ theorem. An NB classifier
assumes that the existence or absence of a specific feature of a class is independent of and
unrelated to the presence (or absence) of any other feature [50]. The method is based on the
class-conditional independence assumption. Despite the naïve design, some studies have
exhibiting the effectiveness of the NB [51]. NB presents several advantages: the structure is
predefined, it is very efficient when the features are not strongly correlated, and it requires
a small amount of training data to estimate the necessary parameters [52]. One limitation is
that the attribute independence assumption is often violated in the real world.

It is defined as:

• X < X1, . . . , Xk > as an instance (vector of random variables denoting observed
attribute values);

• x < x < x1, . . . , xk > as a particular instance;
• C as a random variable denoting the class of an instance;
• c represents the value that C takes.
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Each instance is assumed to belong to one class C ∈ {c1 , c2, . . . , cm}. In NB, all
attributes are assumed to be independent given the value of the class variable (conditional
independence assumption): P(C = cs/X = xi). Applying Bayes’ theorem, it is obtained by:

P(cs/xi) =
P(xi/cs)P(cs)

P(xi)

P(xi/cs)P(cs) is the joint probability of xi and cs. Let us assume that the individual xi
are independent from each other. Thus, the joint probability of x and cs is:

P(x/cs)P(cs) = P(x1/cs) . . . P(xk/cs)P(cs) =

k

∏
n=1

P(xk/cs)P(cs)

Thus, it is obtained by:

P(cs/X) =
∏k

n=1 P(xk/cs)P(cs)

P(x)

P(x) does not depend on the class; it is the same for all classes. NB aims to determine
the class using the maximum a posteriori (MAP) decision rule, and it is calculated as ŷ for
the instance x as follows:

ŷ = argmaxcs

k

∏
n=1

P(xn/cs)P(cs)

2.4.4. Random Forest

The Random Forest (RF) algorithms form a family of classification methods that rely
on several decision trees for building a predictor ensemble with a set of decision trees
that grow in randomly selected subspaces of data. The RF algorithm was introduced by
Breiman [53], and it is defined as the group of decision trees whose nodes are defined at
the preprocessing step. RF handles a huge number of input variables without the deletion
of variables. It uses two randomizations: bagging and random feature selection, which
introduces randomization in the choice of the splitting test designed for each node of the
tree. The choice is usually based on an impurity measure that is used as a criterion to
determine the best feature for the partition of the current node into several child nodes [54].
Each tree in the collection is formed by first selecting at random, at each node, a small
group of input coordinates on which to split, and secondly, by calculating the best split
based on these features in the training set. The tree is grown using the CART methodology
of Breiman et al. [55] to maximum size without pruning.

A random forest is a classifier consisting of a of a collection of randomized base
regressions {k(x, Θn), n = 1, . . . ,J} in which {Θk} are independent and identically distributed
random vectors, and each tree h(x, Θn) casts a unit vote for the most popular class at input
x [53].

The general growing and voting process of RF was as follows. A bootstrap sample
was chosen from the training set to grow each tree of RF. In the RF, the number of trees
and the number of predictor variables chosen at each node were the tuning parameters
determining the RF overall fit. Because the RF was composed of many individual decision
trees (DTs), an RF algorithm was required to determine the suitable number. The error of
the RF was approximated by the out-of-bag (OOB) score. This method allowed us to find
the proper size of the RF. Each tree was built on a different bootstrap sample.

Machine learning has been used in different fields of health and medicine. Various
other machine-learning techniques have attracted attention in recent years. A low vitamin
D status is common in the general population. This finding is of concern because it has been
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associated with several chronic diseases, including cardiovascular diseases (CVD) [17,18],
the leading causes of death. Therefore, different artificial intelligence methods, such as
classification algorithms, should be used to significantly improve the efficiency of vitamin
D deficiency detection. This study compared multiple LR, a linear method, with NB and
RF, two nonlinear machine-learning methods. All the analyses were performed using the
statistical software SPSS for Windows, version 23.0 (IBM Corp, Armonk, NY, USA), and
R, version 3.4.1. In the hypothesis test, an α risk of 0.05 was established as the limit of
statistical significance.

Figure 1 presents a summary flow diagram of the approach proposed in this study.
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3. Results
3.1. Characteristics of the Population

The general characteristics of the individuals included in this study are shown in
Table 1, including their sex and their levels of vitamin D. The mean age was 55.90 ± 14.24 years.
The males showed higher values of arterial pressure, blood glucose, triglycerides, LDL
cholesterol, and RCV, and lower values of HDL cholesterol, as compared to the females.
The prevalence of smokers, hypertensives, and diabetics was greater in males. The mean
values of BMI, WC, WhtR, and BRI were higher in males, whereas hip circumference and
CUN-BAE were greater in females. A total of 174 individuals (%) presented values of
vitamin D of <20 ng/mL. The patients with <20 ng/mL vitamin D presented greater values
in all the analyzed anthropometric parameters.
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Table 1. Baseline demographic and clinical characteristics of participants in the overall sample by sex and with and without vitamin D deficiency.

Variables Overall (n = 501) Females (n = 252) Males (n = 249) p1 Normal Levels of Vitamin D (n = 327) Vitamin D Deficit (n = 174) p2

Cardiovascular risk factors

Age, years 55.90 ± 14.24 55.85 ± 14.19 55.95 ± 14.30 0.934 55.77 ± 14.43 56.14 ± 13.90 0.782
Smoker, n (%) 90 (18.00) 41 (16.30) 49 (19.70) 0.320 47 (14.4) 43 (24.7) 0.004
SBP, mmHg 120.69 ± 23.13 114.99 ± 24.96 126.47 ± 19.52 <0.001 120.62 ± 25.78 120.83 ± 17.14 0.921
DBP, mmHg 75.53 ± 10.10 73.67 ± 10.46 77.40 ± 9.37 <0.001 75.30 ± 10.39 75.95 ± 9.54 0.496
Hypertension, n (%) 147 (25.80) 65 (29.30) 82 (32.90) 0.079 96 (29.4) 51 (29.3) 0.991
Total cholesterol, (mg/dL) 194.76 ± 32.50 196.88 ± 32.64 192.61 ± 32.26 0.142 193.96 ± 32.21 196.27 ± 33.07 0.450
LDL-C, mg/dL 115.51 ± 29.37 113.61 ± 28.54 117.43 ± 14.12 0.148 114.37 ± 28.68 117.65 ± 30.59 0.236
HDL-C, mg/dL 58.88 ± 16.15 64.27 ± 16.14 53.43 ± 14.23 <0.001 60.27 ± 16.33 56.27 ± 15.51 0.008
Triglycerides, mg/dL 103.12 ± 53.11 94.07 ± 50.48 112.27 ± 54.23 <0.001 97.90 ± 46.63 112.93 ± 62.51 0.002
Dyslipidemia, n (%) 191 (38.1) 96 (38.2) 95 (38.1) 0.905 208 (64.0) 118 (67.8) 0.393
Glycemia, mg/dL 88.21 ± 17.37 86.30 ± 15.73 90.14 ± 18.71 0.013 87.05 ± 15.20 90.39 ± 20.72 0.040
HbA1c, (%) 5.49 ± 0.56 5.44 ± 0.47 5.54 ± 0.63 0.043 5.48 ± 0.50 5.51 ± 0.65 0.466
Diabetes mellitus, n (%) 38 (7.60) 12 (4.8) 26 (10.50) 0.016 23 (7.0) 15 (8.6) 0.523
CVR score (%) 11.80 ± 13.00 6.48 ± 6.67 17.22 ± 15.43 <0.001 10.99 ± 12.38 13.33 ± 14.02 0.056
Vitamin D 25.56 ± 19.30 26.55 ± 25.60 24.61 ± 10.11 0.276 — — —

Drugs

Antihypertensive drugs, n (%) 96 (19.20) 46 (18.30) 50 (20.10) 0.604 58 (17.7) 38 (21.8) 0.267
Lipid-lowering drugs, n (%) 102 (20.40) 53 (21.00) 49 (19.70) 0.707 72 (22.0) 30 (17.2) 0.206
Antidiabetic drugs, n (%) 35 (7.00) 12 (4.8) 23 (9.20) 0.049 22 (6.7) 13 (7.5) 0.756

Anthropometric parameters

Height, cm 165.11 ± 9.68 158.70 ± 6.98 171.60 ± 7.46 <0.001 165.59 ± 9.67 164.21 ± 9.67 0.128
Weight, kg 72.41 ± 13.61 65.67 ± 11.87 79.22 ± 11.75 <0.001 71.68 ± 12.99 73.76 ± 4.65 0.104
WC, (cm) 93.33 ± 11.99 87.95 ± 11.68 98.76 ± 9.65 <0.001 92.32 ± 11.78 95.21 ± 12.20 0.010
Hip circumference, (cm) 103.13 ± 9.24 103.55 ± 9.34 102.71 ± 9.13 0.313 102.29 ± 9.38 104.72 ± 8.78 0.005
BMI ≥ 30, n (%) 94 (18.80) 52 (20.6) 42 (16.90) 0.280 52 (15.9) 42 (24.1) 0.025
BMI, (kg/m2) 26.52 ± 4.23 26.14 ± 4.79 26.90 ± 3.54 0.044 26.11 ± 4.08 27.28 ± 4.40 0.003
WHtR 0.57 ± 0.07 0.56 ± 0.08 0.58 ± 0.06 0.001 0.56 ± 0.07 0.58 ± 0.07 0.001
BRI 4.79 ± 1.57 4.59 ± 1.73 4.98 ± 1.36 0.005 4.62 ± 1.55 5.09 ± 1.56 0.002
VAI 3.26 ± 2.42 3.22 ± 2.59 3.30 ± 2.25 0.728 3.02 ± 2.26 3.71 ± 2.65 0.002
CUN-BAE 33.20 ± 7.86 38.50 ± 6.37 27.82 ± 5.07 <0.001 32.73 ± 7.74 34.07 ± 8.02 0.068

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure, HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;
HbA1c, glycohemoglobin; WC, waist circumference; WHtR, waist-to-height ratio; VAI, visceral adiposity index; BRI, body roundness index; CUN-BAE, Clinical University of Navarra
body adiposity estimator. Normal value if vitamin D ≥ 20 ng/mL, and a deficiency if vitamin D < 20 ng/mL. The continuous variables are presented as average ± standard deviation;
the categorical variables are presented as numbers and percentages. Column p1 shows differences between males and females, and column p2 shows differences between participants in
the sample with and without vitamin D deficiency.
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3.2. Association of the Anthropometric Parameters with Vitamin D

The logistic regression analysis, both globally and stratified by sex, is presented in
Table 2. In the global analysis, higher values of all the parameters analyzed in the three
models were associated with lower 25-hydroxyvitamin D values. In model 3, the OR ranged
from 1.249 with BRI to 1.005 with WHTr*1000. No statistically significant association was
found with CUN-BAE in any of the three models. In the analysis by sex, the association
was maintained in males for all parameters except CUN-BAE, with an OR ranging between
1.467 for BRI and 1.008 for WHtR*1000. Therefore, we concluded that the results for
males were similar to the overall sample. In contrast, in females, the only anthropometric
parameter associated with 25-hydroxyvitamin D deficiency was CUN-BAE, with an OR
ranging from 1.044 to 1.060.

Table 2. Anthropometric parameters associated with low values of vitamin D levels determined
using logistic regression analysis.

Overall Females Males

Variable OR IC 95% p OR IC 95% p OR IC 95% p

WC
Model 1 1.021 1.005–1.037 0.011 1.016 0.993–1.038 0.177 1.038 1.009–1.067 0.009
Model 2 1.021 1.005–1.038 0.010 1.017 0.994–1.041 0.149 1.039 1.009–1.070 0.010
Model 3 1.022 1.005–1.039 0.011 1.014 0.990–1.040 0.252 1.040 1.010–1.071 0.010

BMI
Model 1 1.068 1.022–1.116 0.003 1.061 1.005–1.121 0.034 1.080 1.003–1.163 0.042
Model 2 1.069 1.022–1.118 0.004 1.065 1.007–1.127 0.027 1.078 1.001–1.162 0.048
Model 3 1.068 1.021–1.118 0.004 1.059 0.999–1.123 0.056 1.078 1.000–1.163 0.050

WHtR*1000
Model 1 1.004 1.002–1.007 0.001 1.003 1.000–1.006 0.089 1.007 1.002–1.011 0.003
Model 2 1.005 1.002–1.008 0.001 1.003 1.000–1.007 0.055 1.008 1.003–1.013 0.002
Model 3 1.005 1.002–1.008 0.001 1.003 0.999–1.007 0.118 1.008 1.003–1.014 0.001

VAI
Model 1 1.119 1.038–1.207 0.003 1.073 0.973–1.183 0.157 1.188 1.054–1.339 0.005
Model 2 1.120 1.038–1.208 0.003 1.080 0.976–1.194 0.135 1.189 1.055–1.340 0.005
Model 3 1.122 1.039–1.212 0.003 1.064 0.959–1.181 0.242 1.203 1.064–1.360 0.003

BRI
Model 1 1.209 1.073–1.361 0.002 1.126 0.969–1.308 0.122 1.362 1.118–1.660 0.002
Model 2 1.250 1.095–1.426 0.001 1.157 0.982–1.363 0.080 1.447 1.152–1.818 0.002
Model 3 1.249 1.092–1.430 0.001 1.126 0.945–1.340 0.184 1.467 1.163–1.851 0.001

CUN-BAE
Model 1 1.022 0.998–1.046 0.068 1.044 1.001–1.089 0.044 1.052 0.998–1.108 0.061
Model 2 1.024 0.999–1.050 0.065 1.060 1.011–1.113 0.016 1.057 0.996–1.122 0.067
Model 3 1.025 0.999–1.052 0.062 1.056 1.005–1.110 0.030 0.070 0.995–1.122 0.070

%CI, 95% confidence interval; WC, waist circumference; BMI, body mass index; WHtR, waist-to-height ratio;
VAI, visceral adiposity index; BRI, body roundness index, CUN-BAE, Clinical University of Navarra body
adiposity estimator; OR, odds ratio. Dependent variable in the logistic regression analysis was vitamin D
(0 = ≥20 ng/mL; 1 = levels less than 20 ng/mL). Independent variables were WC, BMI, WHtR, and VAI, and
adjustment variables were age, cardiovascular risk score, hypotensive, hypoglycemic, and hypolipidemic drugs.
For risk factors: 1 = presence and 0 = absence. Model 1: unadjusted; Model 2: adjusted by age; Model 3: adjusted
by age, cardiovascular risk score, hypotensive, hypoglycemic, and hypolipidemic drugs (1 = yes, 0 = no).

3.3. Comparing the Performance of Data-Mining Algorithms in the Prediction of Vitamin D Deficiency

Table 3 presents the percentages of success, error, sensitivity, specificity, and AUC-ROC
obtained for each classifier. It can be observed that the logistic regression built models
with the greatest precision in WC and CUN-BAE (92.4%), BMI (91.9%), WHtR (91%), and
BRI (91%). In the case of CUN-BAE, the RL was closely followed by the NB classifier
(92.3%). However, for the anthropometric parameter VAI, it was the NB classifier that
presented the highest value, 94.2%. NB exceeded the logistic regression in the area under
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the curve for WC (AUC = 0.528; CI: 0.494–0.563), BMI (AUC = 0.538; CI: 0.502–0.574), WHtR
(AUC = 0.538; CI: 0.499–0.575), and BRI (AUC = 0.533; CI: 0.497–0.570). However, for VAI
and CUN-BAE, the logistic regression presented higher values in the area under the curve
(AUC = 0.531, CI: 0.494–0.568; and AUC= 0.536, CI: 0.501–0.572, respectively).

Table 3. Comparison of area under receiver-operating characteristic curve among the different models
for prediction.

Variable Accuracy Error Precision Specificity Sensitivity AUC-ROC
(95% CI)

Algorithms

Logistic Regression
WC 0.635 0.365 0.924 0.500 0.650 0.528 (0.494–0.563)
BMI 0.641 0.359 0.919 0.526 0.655 0.538 (0.502–0.574)
WHtR 0.638 0.362 0.910 0.512 0.654 0.538 (0.499–0.575)
BRI 0.635 0.365 0.910 0.500 0.653 0.533 (0.497–0.570)
VAI 0.633 0.367 0.906 0.488 0.652 0.531 (0.494–0.568)
CUN-BAE 0.641 0.359 0.924 0.528 0.654 0.536 (0.501–0.572)

Naïve Bayes
WC 0.607 0.393 0.856 0.118 0.669 0.546 (0.487–0.604)
BMI 0.653 0.347 0.885 0.333 0.697 0.555 (0.495–0.616)
WHtR 0.620 0.380 0.875 0.133 0.674 0.556 (0.499–0.613)
BRI 0.620 0.380 0.875 0.133 0.674 0.556 (0.499–0.613)
VAI 0.687 0.313 0.942 0.455 0.705 0.503 (0.458–0.547)
CUN-BAE 0.640 0.360 0.923 0.000 0.676 0.503 (0.465–0.542)

Random Forest
WC 0.580 0.420 0.786 0.185 0.667 0.449 (0.388–0.509)
BMI 0.607 0.393 0.817 0.240 0.680 0.474 (0.412–0.536)
WHtR 0.640 0.360 0.885 0.250 0.687 0.486 (0.434–0.537)
BRI 0.653 0.347 0.894 0.313 0.694 0.501 (0.447–0.556)
VAI 0.633 0.367 0.846 0.304 0.693 0.499 (0.436–0.562)
CUN-BAE 0.613 0.387 0.827 0.250 0.683 0.479 (0.417–0.540)

CI, confidence interval; AUC-ROC, area under the receiver-operating characteristic curve; BMI, body mass index;
WC, waist circumference; WHtR, waist-to-height ratio; VAI, visceral adiposity index; BRI, body roundness index,
CUN-BAE, Clinical University of Navarra body adiposity estimator.

The highest values in terms of sensitivity were obtained by NB in WC, BMI, and VAI
(66.9%, 69.7%, and 70.5%, respectively), and by RF in WHtR, BRI, and CUN-BAE (68.7%,
69.4%, and 68.3%, respectively). Regarding specificity in all the anthropometric parameters,
the highest values were obtained by LR. Sensitivity for all three algorithms and for all
anthropometric parameters showed similar results, with values ranging from 0.650 to 0.705.
The highest values in terms of sensitivity for the anthropometric parameters VAI, BMI, and
WC (70.5%, 69.7%, and 66.9%, respectively) were obtained with NB. The highest values in
terms of sensitivity for BRI, WHtR, and CUN-BAE (69.4%, 68.7%, and 68.3%, respectively)
were achieved with RF. Regarding specificity in all the anthropometric parameters, the
highest values were obtained by LR, ranging from 0.488 to 0.528. RF and NB presented
very low values in specificity in all anthropometric parameters, with the exception of the
NB algorithm for the anthropometric parameter VAI.

4. Discussion and Conclusions

Through a logistic regression model, we explored the capacity of anthropometric
parameters to predict vitamin D deficiency, and we concluded that the behavior of these
parameters differed according to sex; thus, in males, WC, WHtR, VAI, and BRI were
associated with low levels of vitamin D, whereas in females, CUN-BAE was associated
with low vitamin D.
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To the best of our knowledge, this was the first study to use ML algorithms for the
detection of vitamin D and investigate its predictability using anthropometric parameters.

Vitamin D deficiency (<20 ng/mL) in our study affected 34.7% of the participants.
These results were in line with the systematic review conducted by Manios et al. [56], who
reported that in Southern European countries, over one-third of the population had vitamin
D levels <20 ng/mL, and 10% of the population had values <10 ng/mL. A cross-sectional,
retrospective study with 21,490 patients (74.3% females) aged between 14 and 105 years who
had used primary healthcare in La Rioja (Spain) showed that the mean levels of 25(OH)D
were 18.3 (SD, 11.6) ng/mL in the entire sample [57], with males presenting lower values
than females (17.6 vs. 18.5 ng/mL, p < 0.001). However, our study did not obtain significant
differences according to sex, and the mean levels were above 25.56 (SD, 19.30), likely due to
the differences in age, sex, and associated diseases between the study populations.

The relationship between low concentrations of 25(OH)D and obesity has been previ-
ously reported [58,59]. Jääskeläine et al. [60] used data from the 2000–2011 Health Survey
and suggested that vitamin D deficiency may be a risk factor for abdominal obesity among
males, but not among females. These results were in line with those of our study; in males,
in the logistic regression analysis, WC and BMI were associated with vitamin D deficiency.
Nevertheless, these results disagreed with those of Cătoi et al. [61], who explored the com-
plex relationship between the levels of 25(OH)D and overweight/obesity, insulin resistance,
systemic inflammation, and oxidative stress, revealing that overweight and an increasing
degree of obesity were not significantly associated with a decrease in the levels of 25(OH)D.

A Danish study with 4909 children and adolescents in the Danish Childhood Obesity
Biobank (2860 females) found that vitamin D deficiency was common among Danish
children and adolescents with obesity. Our results were in line with those of that study,
as the individuals with vitamin D deficiency showed greater BMI, WHtR, and frequency
in males, which indicated that the degree of obesity was independently associated with
lower serum concentrations of 25(OH)D [62]. Moreover, it is known that obese people need
higher vitamin D loading doses to reach the same amount of serum 25-hydroxyvitamin D as
people with normal body weight [5]. However, not all studies have found this association.
The results of Pereira Santos et al. [4] indicated that overweight and obese individuals in
different age groups have a similar probability of presenting with vitamin D deficiency.
These discrepancies could be due to the origins of the different study populations.

In a study conducted with young Italian females, Adami et al. [15] found that the main
determinants of vitamin D deficiency were an increase in BMI and exposure to sunlight. In
a more recent study performed to identify the best combination of predictors for the serum
concentration of vitamin D in adults aged between 18 and 70 years old, the multivariate
linear regression model included age, sex, BMI, sunlight exposure in the previous week and
during the month of blood sample collection, skin phototype, job position, smoking status,
physical activity, latitude, and administration of vitamin D supplements in the previous
year [63]. However, these results differed from some of our results, in that BMI was not
found to be significant in females; we considered that these differences could be due to
differences in age ranges and ethnicities.

The relationship we found between vitamin D deficiency and VAI was in disagreement
with the study by Izadi et al. [64], who analyzed a sample of 57 males and 26 females with
nonalcoholic fatty liver disease (NAFLD) and despite controlling for age and sex, they
found a reverse association between VAI and vitamin D levels. Nevertheless, a study by
Zubiaga et al. [65] reported that body fat percentage (BFP), when calculated with CUN-BAE
as a predictive marker of cardiovascular risk in patients with morbid obesity before and
after being subjected to vertical gastrectomy (VG), was significantly correlated with three
biochemical factors associated with greater cardiovascular risk (i.e., cortisol, vitamin D,
and TG/HDL-C ratio), which was in line with our results, as we only found an association
between CUN-BAE and vitamin D in females.

Several studies have analyzed the association (i.e., predictive ability) of 25-hydroxyvitamin D
concentrations with various health problems, using different ML techniques. Luo et al. [66]
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analyzed whether 25-hydroxyvitamin D deficiency was associated with an increased inci-
dence of COVID-19 and disease severity using multivariable logistic regression techniques
in order to propose a predictive model. These authors observed that subjects with COVID-
19 had lower 25-hydroxyvitamin D concentrations as compared to the controls without
COVID-19, and that 25-hydroxyvitamin D deficiency influenced both hospitalization rates
and the severity of COVID-19 in the Chinese subjects. Deschasaux et al. [67] used logistic
regression in 1557 middle-aged adults without prior 25-hydroxyvitamin D treatment to
develop a scale to predict 25-hydroxyvitamin D deficiency and identify adults at risk of de-
ficiency. This scale indicated that in subjects with scores of ≥7 points, 70% were deficient in
25-hydroxyvitamin D, and when the score was >9, 80% were deficient in 25-hydroxyvitamin
D, with a sensitivity of 0.67 and a specificity of 0.63. Therefore, the application of this scale
could avoid unjustified 25-hydroxyvitamin D supplementation and unnecessary blood
tests. Garcia-Carretero et al. [37] analyzed 1002 hypertensive patients to establish predictive
models to identify patients unlikely to have 25-hydroxyvitamin D deficiency or to undergo
plasma 25-hydroxyvitamin D concentration measurements. To do so, they used the clas-
sifiers logistic regression, support vector machine (SVM), RF, NB, and extreme gradient
boosting to calculate classification accuracy, sensitivity, specificity, and predictive values
to assess the performance of each method. These authors found that the radial kernel,
SVM-based method performed better than the other algorithms in terms of sensitivity
(98%), negative predictive value (71%), and classification accuracy (73%). Therefore, they
concluded that the combination of a feature-selection method such as elastic regularization,
as well as a classification approach, produced well-fitted models. This combined approach
allowed them to develop a prediction model with high sensitivity but low specificity, which
was consistent with the results of our study, to identify the population that could benefit
from a laboratory determination of serum 25-hydroxyvitamin D levels. Guo et al. [38]
analyzed MLR and RBF-SVR techniques in 594 Caucasian adults to develop a score for
predicting serum 25-hydroxyvitamin D concentration. The best results were found using
the RBF-SVR model, which provided a better prediction of serum 25-hydroxyvitamin D
concentrations and vitamin D deficiency, as compared to an MLR model. Lopes et al. [68]
analyzed 908 community-dwelling older people using logistic regression to propose a
model for detecting 25-hydroxyvitamin D deficiency. The model was able to identify older
people at risk of 25-hydroxyvitamin D deficiency with a sensitivity of 55.9%, a specificity of
72.3%, and an ROC area of 0.685. These authors suggested that a clinical use of these pa-
rameters could help to identify and design appropriate public health interventions. Finally,
Sohl et al. [69], in a longitudinal aging study in Amsterdam with 1509 subjects, developed
a risk profile based on backward logistic regression to identify older people at high risk
of 25-hydroxyvitamin D deficiency. In this study, two total risk scores were developed
that included either 10 or 13 variables that were capable of predicting serum 25(OH)D
concentrations of less than 0.50 and 0.30 nmol/L, respectively. This scale may be useful in
clinical practice to identify individuals at risk of 25-hydroxyvitamin D deficiency.

Given the association between 25-hydroxyvitamin D deficiency and obesity, and that
healthcare professionals deal with many variables that can influence health problems, ML
algorithms have potential clinical application.

Recent research has further explored linking these techniques to provide hybrid ML
algorithms. Therefore, the approach of this paper, which indicated that the predictive
ability of different anthropometric parameters differed according to sex, could be useful in
future research. However, additional studies are needed to confirm our results.

4.1. Limitations of the Study

This study had several limitations. Firstly, this was a cross-sectional study, which
hindered the establishment of causal relationships between vitamin D levels and anthropo-
metric parameters. Secondly, there may have been confounding variables that were not
considered in this study. Lastly, the number of patients with vitamin D deficiency in our
study was unbalanced as compared to the number of people with normal levels.
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4.2. Conclusions

The capacity of anthropometric parameters to predict vitamin D deficiency differed
according to sex; thus, WC, BMI, WHtR, VAI, and BRI were useful predictors in males,
while CUN-BAE was more useful in females. In all the anthropometric parameters, the LR
model presented the highest values in terms of specificity to predict vitamin D deficiency.
The NB approach of ML showed the best area under the curve in WC, BMI, WHtR, and
BRI, whereas the LR model did so for VAI and CUN-BAE.
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