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Abstract: In this work, we investigated the differences and similarities among some perturbation
approaches, such as the classical perturbation theory, Poincaré–Lindstedt technique, multiple scales
method, the KB averaging method, and averaging theory. The necessary conditions to construct
the periodic solutions for the spatial quantized Hill problem—in this context, the periodic solutions
emerging from the equilibrium points for the spatial Hill problem—were evaluated by using the
averaging theory, under the perturbation effect of quantum corrections. This model can be used to
develop a Lunar theory and the families of periodic orbits in the frame work for the spatial quantized
Hill problem. Thereby, these applications serve to reinforce the obtained results on these periodic
solutions and gain its own significance.

Keywords: quantized Hill problem; averaging theory; periodic solution

1. Introduction

A three-body problem plays a vital role in space science; in particular, the related fields
of solar system motions, stars, planets, and their moons. The model of this problem can be
used to characterize the dynamical behavior of the most stellar and planetary systems and
to give accurate pictures on the motion. The three-body problem acquisition is important
due to its application, not only in space science, but also in many fields, such as applied
mathematics and mathematical physics. In addition, it is considered the simplest non-
integrable dynamical system in space dynamics, and it can be approximated to more simple
systems, such as the perturbed two-body problem [1], Robe’s restricted problem [2,3], and
Hill’s problem [4,5].

Periodic solutions of a dynamical system are solutions that characterize some repeated
phenomena identically at regular intervals. These solutions play a vital role in many branches
of science, such as physics and engineering, but appear in celestial mechanics, to study the
dynamical structures of the two-body problem [6,7]; an analysis the infinitesimal body motion
within the frame of the three-body problem [8,9] or N-body problem [10–12].

Considerable contributions have been made to the periodic solutions of either the
unperturbed Kepler problem or the perturbed problem. For example, in [6], the authors
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have explored the existence of two periodic orbits at each energy level, in the framework
of the anisotropic Kepler system, which emerges from elliptic orbits of the Kepler motion
with high eccentricity, when the parameter of the anisotropy is small. Some interesting
works have been constructed to analyze the periodic solutions [13–15].

The periodic solutions have particular significance in a three-body problem, regarding
its extended applications in both space dynamics and celestial mechanics. Thereby, many
dynamical systems that could be studied by considering the problem of the restricted
three-body. Some of these systems have applications in space missions for spacecrafts in
the planet–Moons systems (such as the Earth–Moon system). Further, this problem has
application in stellar systems, to study the behavior of exoplanets in the proximity of one
or both objects of a binary star system [16–18].

In fact, periodic solutions have considerable significance, because most of the natural
phenomena in physical and engineering sciences, as well as celestial mechanics, could be
characterized by periodic solutions of dynamical systems, characterized by ordinary or
partial differential equations systems. These systems have a wide variety of applications,
i.e., in physical, mathematical, and engineering sciences, as well as in the fields of biology,
chemistry, and neural networks [19–22].

Many methods have been developed to analyze periodic solutions, such as the aver-
aging method, Poincaré–Lindstedt technique, Krylov–Bogoliubov–Mitropolsky (KBM),
and multiple scale methods, [23,24]. Periodic solutions are everywhere in the analysis of
dynamical systems. Each field of science, in particularly, celestial mechanics, has its own
oscillatory phenomena, which can be described by periodic solutions.

In this work, we aimed to find the periodic solutions of the dynamical system of the
spatial quantized Hill problem. Thus, we evaluated the equilibria points of the linear
system, and the necessary conditions were used to calculate the periodic solutions arising
from the equilibria points for the spatial quantized Hill problem, by using the averaging
theory. This system was constructed for the first time by Abouelmagd et al. (2020) [5]; this
motivated us to study the dynamical structures of this system, through finding its own
periodic solutions.

2. Perturbation Techniques

Perturbation techniques play substantial roles in analyzing non-linear dynamics; they
have become a driving force, “pushing” mathematical researchers to extreme efforts, to
explore and characterize the features of dynamical systems. These methods are considered
excellent tools, and are designed to be applied in many fields.

In this chapter, we shed light on techniques that could be used to construct appropriate
analytical periodic solutions of perturbed dynamical systems. Moreover, these techniques
could be applied to some problems, where closed form solutions do not exist or where the
exact solutions are either impossible or unrealistic of their physical meanings. In general,
these systems are, often, neither linear nor autonomous in nature.

Now, we assume thatH is an n−dimensional Hamiltonian system defined in terms of
conjugate variables (X, Y), where X ∈ Γ, Γ is an open set of Rn and Y ∈ Tn, here T denotes
the standard one-dimensional torus. Then, a nearly integrable Hamiltonian systemH can
be read as

H(X, Y) = h(X, Y) + ε f (X, Y) (1)

where h and f are analytical functions called integrable (or unperturbed) Hamiltonian and
the perturbing function, respectively. However, ε is a small parameter, which measures the
size of the perturbation force.

In the case of ε = 0 , the Hamiltonian function is given by

H(X, Y) = h(X, Y), (2)
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using Hamiltonian relation (2), the associated equations of motion are given as

Ẋ = 0

Ẏ = w(X),
(3)

where, denoted with a dot, it is used for the derivatives, with respect to time, w is the
frequency vector, defined as w = ∂h(X)/∂X.

The integration of System (3) is

X(t) = X0

Y = w0t + X0,
(4)

where X0 = X(0) and w0 = w(X(0)), Solution (4) shows that the variable X is constant,
while its conjugate varies linearly with time.

In the case of the perturbing force, it has its own effect (ε 6= 0), the Hamiltonian
function is given in Relation (1); the associated equations of motion are

Ẋ = −ε
∂ f
∂Y

Ẏ = w(X) + ε
∂ f
∂X

.
(5)

System (5) may not be integrable and chaotic motion could appear.

2.1. On Perturbation Techniques
2.1.1. Importance of Perturbation Techniques

Physical phenomena in nature are mostly nonlinear and non-autonomous in their
structures. The descriptions of these phenomena, within a linear sense, are not realistic,
and present inaccurate information about their behaviour. Thus, it is necessary to preform
the nonlinear dynamical systems, which describe these phenomena, but there are more
difficulties in treating these systems by direct methods, and the perturbation techniques
are considered the best choices in most cases. The perturbation techniques are employed
for the dynamical systems, which consist of ordinary or partial differential equations.

Numerous methods can be used to obtain periodic solutions. For example the aver-
aging method, for details, see [25–29]. The Liouville–Green method, which is known as
the LG or WKB method, Lyapunov’s theorem, Poincaré–Lindstedt technique, and KBM
method [30,31]. There are more methods, such as the straightforward expansion technique
(classical perturbation theory), but this method may fail in removing secular terms. More-
over, the multiple scales method is considered one of the strongest techniques in obtaining
periodic solutions [32].

2.1.2. Advantages and Disadvantages of Perturbation Techniques

Exact solution of the dynamical system is rare, not only in celestial mechanics, but
also in branches of applied mathematics: quantum mechanics, fluid mechanics, solid
mechanics, and theoretical physics. This concerns nonlinearity behavior of a physical
phenomenon. Therefore, engineers, physicists, and mathematicians are forced to find
approximate solutions for mathematical models. These solutions may be purely analytical,
purely numerical, or a combination of analytical and numerical techniques.

Perturbation techniques provide the most multilateral tools obtainable in non-linear
sets of differential equations, which can be applied and employed to even more complex
models. However, perturbation techniques have their own limitations, which mainly de-
pend on presumptions, and very small parameters must appear in the prevailing equations.
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2.2. Validity of Perturbation Techniques

Many applications of perturbation methods are not available without the existence
of a small parameter. An overwhelming number of non-linear dynamical systems, in
particular, have “strong non-linearity” and no small parameters. In some estimation cases,
this parameter is more the result of a technical procedure than scientific methodology. The
convenient selection of small parameters could lead to intelligible results. On the contrary,
incorrect choice for these parameters create inaccurate or even unrealistic solutions. Even
if there exist appropriate small parameters that the perturbation methods provide us with
by analytical solutions, they are adequate in cases of bounding the parameters.

The structures and analyses of perturbation approaches, such as classical perturbation
theory, Poincaré–Lindstedt technique, multiple scales method, Krylov–Bogoliubov (KB) averaging
method and averaging theory are familiar in the literature, as we have mentioned in the
previous subsections. However, we will show the differences and similarities among the
methods and rationales in choosing the averaging theory to find the periodic solution for
the spatial quantized Hill problem.

The aforementioned techniques demand that the dynamical system be weakly non-
linear or weakly non-autonomous, meaning that those terms in the equation, including
non-linearity or non-autonomy, are small. Alternatively systems of this structure can be
thought of as almost linear or quasi–linear. One consequence of almost linear systems is
that differential equations will have linear terms and small non-linear or non-autonomous
terms separated from each other. These techniques can be applied to nearly integrable
Hamiltonian systems, as in System (5).

The classical perturbation theory is called the straightforward expansion technique. It
is used to find analytically solutions in the power series of the following form:

X(t, ε) =
∞

∑
k=0

εkXk(t). (6)

In general, this method has secular terms that will provide unbounded solutions in the
case of long intervals. Straightforward application of the classical perturbation theory to
periodic nonlinear motion gives a result with secular terms, which will be proportional
with time, in spite of the fact that the behavior of motion is known to be bounded. One
of the common approaches used to remove those unwanted secular terms is the Poincaré–
Lindstedt technique (also called the continuation method).

The multiple-scales technique is a generalized formula for the Poincaré–Lindstedt
method. The latter method is dependant on the angular velocity of the non–linear os-
cillation and it may depend on its amplitude. The angular velocity is expanded in an
asymptotic series, and the coefficients of each term in the series are evaluated in such a
way that the solution has no secular terms.

In a similar manner, in the multiple-scales technique, the solution varies on fast
and slow time separation scales. The first variable, “fast time scale”, with respect to the
first linear order in Poincaré–Lindstedt expansion, and every slow scale, matches with
the second and higher terms in this expansion. The major difference is that multiple
scales suppose that the coefficients of each scale are fixed, equal, and employ a variation-
of-parameters approach, considering the integration constants that appear in the linear
solution be functions in the slow time scales variables. This process results in the dynamical
system of partial differential equations at each order that has to be solved, to obtain a
uniform solution of the dynamical system. The multiple-scales technique is a much more
powerful tool than the Poincaré–Lindstedt method, because the former “admits” the
constants compared to the slow time scale variables, while the latter only introduces one
free variable at each order in the perturbed parameter. However, this method may result in
a system, where the solution for obtaining periodicity conditions is more difficult than the
main system.



Mathematics 2022, 10, 614 5 of 17

The Krylov–Bogolyubov averaging method is a technique used to find the periodic
solution of a non-linear system, based on the averaging principle, where the exact system is
replaced by an averaged one. To obtain the solution of the perturbed system or non-linear
motion, using this method, the constants of linear motion vary slowly with time t and
the perturbation parameter ε. The significance of this method is that a general averaging
approach is developed and proves that the solutions of the averaged systems give precise
approximation to the original system [7].

Averaging is a mathematical method to replace a given field by its own average over
a specified variable, such as time or an angular variable to get asymptotic approximation
to the original system, aiming to obtain a periodic solution. In dynamical systems, the
averaging method or the averaging theory utilizes systems, including time scale separation:
fast oscillation versus a slow drift. We propose averaging over a certain interval of time
to iron out the fast oscillation and monitor the qualitative behaviour from the resulting
dynamics. It is a familiar problem where a trade-off exists between how perfect the
approximate solution is balanced by how much time it holds to be similar to the original
solution [27].

In this work, we used the averaging theory of dynamical systems, because it is
especially worthy in the case of systems that can have isolated periodic orbits, such as in
this case. In the next section, we will apply this method to Hill’s version of the quantized
three-body problem to find periodic solutions.

3. Mathematical Model

Hill’s version of the quantized three-body problem was derived and analyzed for first
time in [5], and the equations of motion are given by

ξ̈ − 2η̇ = 3ξ + 2(α1 − α11)−
1
r3

[
1 +

2α21

r
+

3α22

r2

]
ξ,

η̈ + 2ξ̇ =− 1
r3

[
1 +

2α21

r
+

3α22

r2

]
η,

ζ̈ =− ζ − 1
r3

[
1 +

2α21

r
+

3α22

r2

]
ζ.

(7)

System (7) characterizes the perturbed spatial Hill problem, the system is perturbed
by quantum corrections; hence, this system is called the spatial quantized Hill problem
(SQHP). Furthermore, this system is considered a “limiting case” from the spatial quantized
restricted three-bodies problem; it was developed in [33]. In addition, this system can be
described by the style of writing of the restricted three-body problem,

ξ̈ − 2η̇ =Ψξ(ξ, η, ζ),

η̈ + 2ξ̇ =Ψη(ξ, η, ζ),

ζ̈ =Ψζ(ξ, η, ζ),

(8)

where

Ψ(ξ, η, ζ) =
1
2

[
3 ξ2 + 4(α1 − α11)ξ − ζ2

]
+

1
r

[
1 +

α21

r
+

α22

r2

]
, (9)

and Ψξ , Ψβ, Ψζ refer to the partial derivatives of the potential function, with respect to the
variables ξ, β, and ξ, while the separation distance r is given by r =

√
ξ2 + β2 + ζ2.

Here, α1, α11, and α21 are very small quantities with order O(1/c2), while α22 is
more smaller with order O(1/c3), where c is the speed of light; for comprehensive details,
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see [33]. Since α1, α11, and α21 have the same order, then α1 − α11
∼= 0, and System (8) and

the potential function can be simplified and rewritten

ξ̈ − 2η̇ = Ψ̄ξ(ξ, η, ζ),

η̈ + 2ξ̇ = Ψ̄η(ξ, η, ζ),

ζ̈ = Ψ̄ζ(ξ, η, ζ),

(10)

where

Ψ(ξ, η, ζ) =
1
2

[
3 ξ2 − ζ2

]
+

1
r

[
1 +

α21

r
+

α22

r2

]
. (11)

Although many different analyses in celestial mechanics have been accomplished in
the framework of the three-body problem, but there are also many dynamical concepts
can be carried out within frame of Hill problem [34] without loosing the required accuracy
underlying of using simple model. Furthermore, the perturbed model of this problem can
be used to study the effect of some perturbed forces on the dynamical properties, such as
the emerging periodic solutions from the equilibria points, which will be analyzed in the
next sections.

4. Periodic Solutions

Periodic solutions or periodic orbits are considered one the major reasons of stability
and are continuous in life; for example, the periodicity motion of the Sun and Moon. When
the Hill model was constructed, the researchers devoted their work toward calculating
the families of periodic orbits. More work was developed to analyze the lunar theory
dependent on Hill’s problem. For the importance of Hill’s problem, we to explore the
presence of periodic solutions emerged from equilibria points by underlying SQHP.

By taking α1 = α11 = α21 = 1.5 × 10−3, α22 = 1.5 × 10−5 of the differential Sys-
tem (7), we get the following equilibrium points E1 = (δ, 0, 0) and E2 = (−δ, 0, 0) where
δ ≈ 0.694035.

Thus, we study the presence of periodic solutions, which emerge from equilibria points
E1 and the same ones are valid for E2. To study the motion around or in the proximity of
the equilibria points E1 and E2, we first have to linearize System (8). Thus, we impose that
ξ = x1 − δ, η = y1, ζ = z1, where x1, y1 z1 are very small displacements from the equilibria
points; thereby, the associated linear system to non-linear System (8) are given by

d2x1

dt2 − 2
dy1

dt
− αx1 = 0,

d2y1

dt2 + 2
dx1

dt
+ βy1 = 0,

d2z1

dt2 + γz1 = 0,

(12)

with α ≈ 9.03, β ≈ 3 and γ ≈ 3.
Since the means of the averaging theory is one of the powerful tools for finding

periodic solutions, then we will apply this method to study the existence of periodic
solutions of the following system

d2x1

dt2 − 2
dy1

dt
− αx1 = εF1

(
t, x1,

dx1

dt
, y1,

dy1

dt
, , z1,

dz1

dt

)
,

d2y1

dt2 + 2
dx1

dt
+ βy1 = εF2

(
t, x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
,

d2z1

dt2 + γz1 = εF3

(
t, x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
,

(13)
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where ε is the perturbation parameter; it is a very small quantity and the functions F1,F2,
F3 represent the non-linear terms, which will be ignored when ε = 0, but this function
satisfies the following properties:

• F1,F2, F3 are smooth functions;
• F1,F2, F3 are periodic functions in variable t;
• F1,F2, F3 are resonance in ι1 : ι2 with periodic solutions for System (12);

where ι1 and ι2 are primes numbers.
There is a unique singular point for the unperturbed System (12) at the origin with

eigenvalues±Ω,±ω1i,±ω2i, where Ω ≈ 2.51, ω1 ≈ 2.07 and ω2 ≈ 1.73. In the phase space(
x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
the aforementioned system (the unperturbed system) has two planes filed of periodic
solutions with the exception of the origin, where the periods of solutions are

T1 = 2π/ω1 or 2π/ω2,

here, periods T1 and T2 are related to the eigenvalues ±ω1i or ±ω2i, respectively. We will
explore which of the periodic solutions continue for the perturbed System (13), where the
parameter of perturbation ε is small enough and there are two periods, either ι1T1/ι2 or
ι1T2/ι2, for the perturbed function Fi for i ∈ {1, 2, 3}.

Consider Z0 = (Z0
1 , Z0

2), andH = (H1,H2) for the System (13), with

H1

(
Z0
)

=
1

ι1T2

∫ ι1T2

0
〈(cos(ω2t),− sin(ω2t)), (F ∗5 (t),F ∗6 (t))〉dt

=
1

ι1T2

∫ ι1T2

0
− sin(ω2t)F ∗6 (t)dt, (14)

H2

(
Z0
)

=
1

pT2

∫ pT2

0
〈(sin(ω2t), cos(ω2t)), (F ∗5 (t),F ∗6 (t))〉dt

=
1

pT2

∫ pT2

0
cos(ω2t)F ∗6 (t)dt,

where 〈, 〉 is the scalar product and F ∗5 (t) = 0, F ∗6 = 1.12F3, F3 = F3
(
η2

1(t), . . . , η2
6(t)

)
and η2

j (t) = 0, j = 1, . . . , 4, while

η2
5(t) = 0.50

(
Z0

1 cos(ω2t) + Z0
2 sin(ω2t)

)
,

η2
6(t) = 0.86

(
Z0

2 cos(ω2t)− Z0
1 sin(ω2t)

)
.

Now, we impose that Z0∗ = (Z0∗
1 , Z0∗

2 ) is the zero of non-linear system H
(
Z0) = 0

where ∣∣∣∣ ∂H
∂Z0

∣∣∣∣ 6= 0 when Z0 = Z0∗,

Then, we can state that the system has a simple zero [35]. The expression of simple zero or
pole is used to describe the zero or pole of order one, and sometimes the term of “degree”
is used instead of “order”. The property of this zero or pole leading to this zero can be
isolated and its neighbourhood has no other zero.

We emphasize that if the Malkin bifurcation function H has a simple zero Z0∗ and
the solution of the unperturbed system has a period T2 by using initial value Z0∗, then the
perturbed system will has also T2−periodic solution.
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The periodic solution of the dynamical System (13) is considered the main result in this
work, where this solution will bifurcate from the T2−periodic solution of the unperturbed
system; hence, we present the following theorem:

Theorem 1. We impose that ι1 and ι2 are prime numbers, and

• F1,F2, and F3 are smooth functions of System (13)
• F1,F2, and F3 are periodic, with period ι1T2/ι2 in variable t

For each simple zero, Z0∗ 6= 0 of the non-linear system H
(
Z0) = 0 when ε 6= 0 and enough

small, we can find a periodic solution for the perturbed System (13) takes the form (x1(t, ε), y1(t, ε),
z1(t, ε)) and tends to the periodic solution
(x1(t), y1(t), z1(t)) = (η2

1(t), η2
3(t), η2

5(t))|Z0Z0∗ of the unperturbed System (12) traveled ι1
times.

We will presented the proof of Theorem 1 in Section 5. Further, the following corollary
is considered the application of this theorem and its proof will be presented in Section 6.

Corollary 1. Considering that F1(t, x1, ẋ1, y1, ẏ1, z1, ż1) = 0, F2(t, x1, ẋ1, y1, ẏ1, z1, ż1) = 0,
F3(t, x1, ẋ1, y1, ẏ1, z1, ż1) = z5 + sin(ω2t)ż2. Thus, the System (13) with ε 6= 0 is enough
small, and has one periodic solution (x1(t, ε), y1(t, ε), z1(t, ε)) approximating to the periodic
solutions (x1(t), y1(t), z1(t)) =

(
η2

1(t), η2
3(t), η2

5(t)
)∣∣

Z0=Z0∗ of (2) when ε→ 0, given by Z0∗ =
(0,−2.11).

Now, we impose that Y0 = (Y0
1 , Y0

2 ), and considering the Malkin bifurcation function
H̄ = (H3,H4) for the System (13) controlled by

H3

(
Y0
)
=

1
pT1

∫ pT1

0
〈(cos(ω1t),− sin(ω1t)), (F ∗3 (t),F ∗4 (t))〉dt

=
1

pT1

∫ pT1

0
(cos(ω1t)F ∗3 (t)− sin(ω1t)F ∗4 (t))dt,

H4

(
Y0
)
=

1
pT1

∫ pT1

0
〈(sin(ω1t), cos(ω1t)), (F ∗3 (t),F ∗4 (t))〉dt

=
1

pT1

∫ pT1

0
(cos(ω1t)F ∗4 (t) + sin(ω1t)F ∗3 (t))dt,

where
F ∗3 = −0.45F1, F ∗4 = −1.46F2,

with Fi = Fi
(
η1

1(t), . . . , η1
6(t)

)
, i ∈ {1, 2} and η2

j (t) = 0, j = 5, 6,

η1
1(t) = 0.12

(
Y0

2 cos(ω1t)− Y0
1 sin(ω1t)

)
,

η1
2(t) = −0.26

(
Y0

1 cos(ω1t) + Y0
2 sin(ω1t)

)
,

η1
3(t) = −0.41

(
Y0

1 cos(ω1t) + Y0
2 sin(ω1t)

)
,

η1
4(t) = −0.85

(
Y0

2 cos(ω1t)− Y0
1 sin(ω1t)

)
,

As we aforementioned with the existence of a simple zero Y0∗ of the Malkin bifurcation
function H̄, one will obtain from T1−periodic solution of the unperturbed system, with
initial value Y0∗, emerges the solution of a perturbed system with T1−periodic solution,
because the simple zero can be isolated and its neighbourhood has no other zero.

The second result related to the periodic solutions, which is associated to unperturbed
System (13), will be stated in the following theorem:



Mathematics 2022, 10, 614 9 of 17

Theorem 2. We impose that ι1 and ι2 are primes numbers and

• F1,F2, and F3 are smooth functions of System (13)
• F1,F2, and F3 are periodic with period ι1T1/ι2 in variable t

For each simple zero Y0∗ 6= 0 of the non-linear system H̄
(
Y0) = 0, when ε 6= 0 is enough

small, then the perturbed System (13) has a periodic solution (x1(t, ε), y1(t, ε), z1(t, ε)) going
to the periodic solution (x1(t), y1(t), z1(t)) = (η1

1(t), η1
3(t), η1

5(t))|Y0=Y0∗ of the unperturbed
System (12) traveled ι1 times.

The application of Theorem 2 can be stated in the following corollary:

Corollary 2. Considering that F1(t, x1, ẋ1, y1, ẏ1, z1, ż1) = sin(ω1t) + x1 + 3x2
1y1 + y1,

F2(t, x1, ẋ1, y1, ẏ1, z1, ż1) = cos(ω1t)− (ẏ1)
2 + x1, F3(t, x1, ẋ1, y1, ẏ1, z1, ż1) = 0. Then the

System (13) for ε 6= 0 sufficiently small has one periodic solution (x1(t, ε), y1(t, ε), z1(t, ε)) tending
to the periodic solutions (x1(t), y1(t), z1(t)) =

(
η1

1(t), η1
3(t), η1

5(t)
)∣∣

Y0=Y0∗ of System (12) when
ε→ 0, given by Y0∗ = (2.59 , 9.21).

The proof of Corollary 2 will be given in Section 6.

5. Proof of the Theorems 1 and 2

To accomplish the proofs of Theorems 1 and 2, we will use the following variables:

(x1, x2, y1, y2, z1, z2) =

(
x1,

dx1

dt
, y1,

dy1

dt
, z1,

dz1

dt

)
Thus, the dynamical System (13) can be rewritten in the form of a first order in R6

dx1

dt
= x2 ,

dx2

dt
= αx1 + 2y2 + εF1(x1, x2, y1, y2, z1, z2),

dy1

dt
= y2 ,

dy2

dt
= −2x2 − βy1 + εF2(x1, x2, y1, y2, z1, z2),

dz1

dt
= z2 ,

dz2

dt
= −γz1 + εF3(x1, x2, y1, y2, z1, z2).

(15)

It is clear that the perturbed System (15) (ε 6= 0) can be reduced to the unperturbed
System (12) when ε = 0. Now we write the perturbed System (15) with the style that the
linear part at the origin point will take the real Jordan expression, after that, we can change
the variables to the following form:

(x1, x2, y1, y2, z1, z2)→ (X1, X2, Y1, Y2, Z1, Z2)

given by 

x1

x2

y1

y2

z1

z2


=



−0.32 0.32 0.0 0.12 0.0 0.0

−0.81 −0.81 −0.26 0 0.0 0.0

0.17 0.17 −0.41 0 0.0 0.0

0.44 −0.44 0.0 −0.85 0.0 0.0

0.0 0.0 0.0 0.0 0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.86





X1

X2

Y1

Y2

Z1

Z2


, (16)
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and 

X1

X2

Y1

Y2

Z1

Z2


=



−1.92 −0.53 0.34 −0.28 0.0 0.0

1.92 −0.53 0.34 0.28 0.0 0.0

0.0 −0.45 −2.11 0.0 0.0 0.0

−1.98 0.0 0.0 −1.46 0.0 0.0

0.0 0.0 0.0 0.0 2.0 0.0

0.0 0.0 0.0 0.0 0.0 1.15





x1

x2

y1

y2

z1

z2


,

the differential System (15) becomes

Ẋ1 =ΩX1 + εF ∗1 ,

Ẋ2 = −ΩX2 + εF ∗2 ,

Ẏ1 =ω1Y2 + εF ∗3 ,

Ẏ2 = −ω1Y1 + εF ∗4 ,

Ż1 =ω2Z2 + εF ∗5 ,

Ż2 = −ω2Z1 + εF ∗6 ,

(17)

where

F ∗1 = −0.53F1 − 0.28F2,

F ∗2 = −0.53F1 + 0.28F2,

F ∗3 = −0.45F1,

F ∗4 = −1.46F2,

F ∗5 = 0,

F ∗6 = 1.15F3,

with Fi = Fi(η1, . . . , η6), i ∈ {1, 2, 3} and

η1 = −0.32X1 + 0.32X2 + 0.12Y2,

η2 = −0.81X1 − 0.81X2 − 0.26Y1,

η3 = 0.17X1 + 0.17X2 − 0.41Y1,

η4 = 0.44X1 − 0.44X2 − 0.85Y2,

η5 = 0.5Z1,

η6 = 0.86Z2,

To prove Theorems 1 and 2, we first depict the periodic solution of the unperturbed
system through the following Lemma

Lemma 1. The periodic solutions (X1(t), X2(t), Y1(t), Y2(t), Z1(t), Z2(t)) of System (17) when
ε = 0 are (

0, 0, Y0
1 cos(ω1t) + Y0

2 sin(ω1t), Y0
2 cos(ω1t)− Y0

1 sin(ω1t), 0, 0
)

, (18)

where T1 is the period of motion, and(
0, 0, 0, 0, Z0

1 cos(ω2t) + Z0
2 sin(ω2t), Z0

2 cos(ω2t)− Z0
1 sin(ω2t)

)
, (19)

here, T2 is the period of motion.

Proof of Lemma 1. Since System (17) is linear when ε = 0 thereby, the proof can be easily
established.
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Proof of Theorem 1. We impose that F1,F2, and F3 of (13) are periodic functions in t with
period ι1T1/ι2 where ι1 and ι2 are primes numbers. Hence, the same periodicity features
are the same for System (17) and the periodic Solutions (19) with period ι1T2. By applying
Theorem A1 in [35] and using the same notation and terminology to the System (17), then
we can write the System (17) in the following form

Ẋ(t) = H0(t, X) + ε H1(t, X) + ε2 H2(t, X, ε)
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Then, we can consider

X =



X1

X2

Y1

Y2

Z1

Z2


, H0(t, X) =



ΩX1

−ΩX2

ω1Y2

−ω1Y1

ω2Z2

−ω2Z1


, H1(t, X) =



F ∗1
F ∗2
F ∗3
F ∗4
F ∗5
F ∗6


, H2(t, X,ε) =



0

0

0

0

0

0


.

In this context, the periodic solution of the unperturbed System (17) (ε = 0) will be
studied within the Type (19) to continue as a periodic solution for the perturbed system
(when ε 6= 0 is enough small). First, we characterize the different parameters, which are
stated in Theorem A1 (see the Appendix in [35] for details) due to the certain case of the
System (17). Now, we assume that ρ1 > 0 and ρ2 > 0, where ρ1 > 0 is chosen to be small,
while ρ2 > 0 is chosen to be large. We also assume that V is bounded and open subset of
the plane X1 = X2 = Y1 = Y2 = 0 of the form

V =

{(
0, 0, 0, 0, Z0

1 , Z0
2

)
∈ R6 : ρ1 <

√(
Z0

1
)2

+
(
Z0

2
)2

< ρ2

}
.

Since V is bounded and open subset of R2, we can choose two numbers ρ1 > 0, ρ2 > 0,
such that

V =

{
(β(α), α) ∈ R2 : ρ1 <

√(
Z0

1
)2

+
(
Z0

2
)2

< ρ2

}
.

where α ∈ R2 and β(α) ∈ R4.
Now, we assume that α = Z0 = (Z0

1 , Z0
2), then we characterize V with the set

{α ∈ R2 : ρ1 < ||α|| < ρ2}, being || · || the Euclidean norm in R2, while the function β(α)
is defined as β : C1(V)→ R4 such that β(α) = (0, 0, 0, 0), here C1(V) refers to the closure
of V. Hence, for the proposed system, one obtains

Z = {zα = (β(α), α), α ∈ C1(V)}

=

{(
0, 0, 0, 0, Z0

1 , Z0
2

)
∈ R6 : ρ1 ≤

√(
Z0

1

)2
+
(
Z0

2
)2 ≤ ρ2

}
.

We take for each zα ∈ Z the periodic solution

x(t, zα) = (0, 0, 0, 0, Z1(t), Z2(t)),

controlled by System (19) of period ι1T2. Calculating the matrix Mzα(t) of the linear Sys-
tem (17), which is called the fundamental matrix where ε = 0 related to the ι1T2 periodic
solution zα = (0, 0, 0, 0, Z0

1 , Z0
2) and also Mzα(0) is the identity element in space R6; thus,

one obtains

Mzα(t) = M(t) =



eΩt 0 0 0 0 0

0 −e−Ωt 0 0 0 0

0 0 cos(ω1t) sin(ω1t) 0 0

0 0 − sin(ω1t) cos(ω1t) 0 0

0 0 0 0 cos(ω2t) sin(ω2t)

0 0 0 0 − sin(ω2t) cos(ω2t)


.

There is no correlation between the matrix Mzα(t) and particular periodic solution x(t, zα, 0).
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Now, we impose that the matrix h̄ is defined by

h̄ = M−1(0)−M−1(ι1 T2)

then the matrix h̄ is satisfied the stated assumptions (ii) in Theorem A1 (see the Appendix
in [35] for details), where the matrix h̄ and its determinant are given by

h̄ =



1− e−2π Ω ι1 /ω2 0 0 0 0 0

0 1− e2π Ω ι1 /ω2 0 0 0 0

0 0 2 sin2(π ι1 ω1/ω2) sin(2π ι1 ω1/ω2) 0 0

0 0 − sin(2π ι1 ω1/ω2) 2 sin2(π ι1 ω1/ω2) 0 0

0 0 0 0 2 sin2(π ι1) sin(2π ι1)

0 0 0 0 − sin(2π ι1) 2 sin2(π ι1)


,

|h̄| =

∣∣∣∣∣∣∣∣∣∣∣

1− e−2π Ω ι1/ω2 0 0 0

0 1− e2π Ωι1/ω2 0 0

0 0 2 sin2(π ι1 ω1/ω2) sin(2π ι1 ω1/ω2)

0 0 − sin(2π ι1 ω1/ω2) 2 sin2(π ι1 ω1/ω2)

∣∣∣∣∣∣∣∣∣∣∣
hence,

|h̄| = −16 sinh2(π Ω ι1/ω2) sin2(π ι1ω1/ω2) 6= 0,

because the ratio of the frequencies is non-resonant with π. Ti summarize, all of the stated
assumptions in Theorem A1 are satisfied by the System (17).

In the proposed system, the map ξ : R6 −→ R2 can be written as

ξ(X1, X2, Y1, Y2, Z1, Z2) = (Z1, Z2),

by evaluating the function

H
(
Z0

1 ,Z0
2

)
= H(α) = ξ

(
1

pT2

∫ pT2

0
M−1

zα
(t)H1(t, x(t, zα, 0))dt

)
,

we get H
(
Z0) =

(
H1
(
Z0),H2

(
Z0)), where the functions Hk for k = 1, 2 are the ones

given in (14). Then, by Theorem A1, we have that, for every simple zero Z0∗ ∈ V of the
system of non-linear functionsH

(
Z0) = 0, we have a periodic solution

(X1, X2, Y1, Y2, Z1, Z2)(t, ε)

of System (17), such that

(X1, X2, Y1, Y2, Z1, Z2)(0, ε) −→
(

0, 0, 0, 0, Z0∗
1 , Z0∗

2

)
when ε −→ 0

Let us changes the variables in System (16), then, one obtains a periodic solution

(x1, x2, y1, y2, z1, z2)(t, ε)
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of System (17), where

x1(t, ε)

x2(t, ε)

y1(t, ε)

y2(t, ε)

z1(t, ε)

z2(t, ε)


→



0

0

0

0

0.5
(
Z0∗

1 cos(ω2t) + Z0∗
2 sin(ω2t)

)
0.86

(
Z0

2 cos(ω2t)− Z0
1 sin(ω2t)

)


when ε −→ 0

Thus, periodic solution of System (17) (x1(t, ε), y1(t, ε), and z1(t, ε) can be written as

(x1, y1, z1)(t, ε)→


0

0

0.5
(
Z0∗

1 cos(ω2t) + Z0∗
2 sin(ω2t)

)
 when ε −→ 0

The previous steps give the complete proof of Theorem 1.

Proof of Theorem 2. To prove this theorem, we will follow the same steps of proving
Theorem 1. Thus, the periodic solution can be written in the following form:

0.12
(

Y0
2 cos(ω1t)−Y0

1 sin(ω1t)
)

−0.26
(

Y0
1 cos(ω1t) + Y0

2 sin(ω1t)
)

−0.41
(

Y0
1 cos(ω1t) + Y0

2 sin(ω1t)
)

−0.85
(

Y0
2 cos(ω1t)−Y0

1 sin(ω1t)
)

0

0


when ε −→ 0.

Hence, we get a periodic solution (x1, y1, z1)(t, ε) of System (13), such that

(x1, y1, z1)(t, ε)→


0.12

(
Y0

2 cos(ω1t)−Y0
1 sin(ω1t)

)
−0.41

(
Y0

1 cos(ω1t) + Y0
2 sin(ω1t)

)
0

 when ε −→ 0.

6. Proof of the Corollaries 1 and 2

Proof of Corollary 1. Under the aforementioned assumptions in Corollary 1, the non-
linear System (14) can be written as

H1

(
Z0

1 , Z0
2

)
= − 0.005468749997

(
Z0

1

)4
Z0

2 − 0.05177199997
(

Z0
2

)2
− 0.01093750000

(
Z0

1

)2(
Z0

2

)3

− 0.1553160000
(

Z0
1

)2
− 0.005468749997

(
Z0

2

)5
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H2

(
Z0

1 , Z0
2

)
= 3.183098861× 10−12 Z0

1 (6872233931.0
(

Z0
1

)2(
Z0

2

)2
+ 3436116965.0

(
Z0

1

)4

+ 3436116965.0
(

Z0
2

)4
− 65058613960.0 Z0

2

Then, the solution of the above system is

Z0∗ = (0,−2.11).

Since ∣∣∣∣ ∂H
∂Z0

∣∣∣∣ = 0.21 6= 0, when Z0∗ = (0 , −2.11)

this solution is simple. Finally, by Theorem 1., we only have one periodic solution for this
system and the proof is over.

Proof of Corollary 2. Again, under the aforementioned assumptions in Corollary 2, the
non-linear system H̄

(
Y0) = 0 can be written as

H3

(
Y0

1 , Y0
2

)
= − 0.02699999999 Y0

2 + 0.004649999999 Y0
1

+ 0.0009962999998
(

Y0
1

)3
+ 0.0009962999998

(
Y0

2

)2
Y0

1 ,

H4

(
Y0

1 , Y0
2

)
= − 0.9549999997 + 0.004649999999 Y0

2 + 0.0009962999998
(

Y0
1

)2
Y0

2

+ 0.0009962999998
(

Y0
2

)3
+ 0.02699999999 Y0

1 ,

The above system satisfies the following solution:

Y0∗ = (2.590 , 9.210),

Moreover, since ∣∣∣∣ ∂H̄
∂Y0

∣∣∣∣ = 0.020 6= 0, when Y0∗ = (2.590 , 9.210)

the obtained solution is simple, using Theorem 2, one can obtain only one periodic solution
for this system, which gives a complete proof.

7. Conclusions

The averaging theory is one of the most important perturbation methods that can be
used to study the existence and stability of periodic solutions for the ordinary differential
equation systems. It is a powerful tool and has proven its effectiveness many times in the
literature by examining the existence and stability of the periodicity of dynamical systems,
in both physical and engineering sciences.

In this work, the dynamical system of the perturbed spatial Hill problem by quantum
corrections, which is called the spatial quantized Hill problem, was analyzed to find the
possible periodic solutions. The importance of this problem was stated in the introduction.
The differences and similarities among some perturbation approaches, such as the classical
perturbation theory, Poincaré–Lindstedt technique, the multiple-scales method, the KB
averaging method, and the averaging theory were investigated in the second section. Then,
the equilibrium points of the linear system were evaluated. The necessary conditions were
analyzed to calculate the periodic solutions emerging from the equilibrium points of the
SQHP by using the averaging theory. The application of this theory on the quantized
Hill problem has provided interesting and important results about the periodic solution
through the proof of Theorems 1 and 2 and their associated corollaries.
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We applied a known theory on a new model to state the new results on such a model.
The difficulty of our proofs involved showing all hypotheses of the averaging theory of the
dynamical systems for the perturbed spatial quantized Hill problem, in order to apply the
theorems of this theory. Changes of variables, obtaining the normal form of this theory,
and many technical tricks were needed in this aim, which allowed us to state dynamical
information on the perturbed spatial quantized Hill model. Furthermore, this model can be
used to develop a lunar theory and the families of periodic orbits in the framework for the
spatial quantized Hill problem. Thereby, these applications serve to reinforce the results
obtained about these periodic solutions.
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