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Abstract: Under heteroscedasticity, we propose one-stage multiple comparison procedures for sev-
eral treatment groups compared with several control groups in terms of exponential mean lifetimes. 
The simultaneous confidence intervals including one-sided and two-sided confidence intervals for 
the difference between the mean lifetime from the i-th treatment group and the mean lifetime from 
the j-th control group are developed in this research. The required critical values are obtained and 
tabulated for the practical use of users. The experimenters can use these simultaneous confidence 
intervals to determine whether the treatment mean lifetimes are better than several controls or 
worse than several controls under a specified confidence level. Finally, one example of comparing 
the mean duration of remission using four drugs for treating leukemia is used for the aims of illus-
trations. 

Keywords: one-stage procedure; multiple comparison with the control; multiple comparison with 
several controls; exponential distribution 
 

1. Introduction 
Our research is related to the field of ranking and selection. For normal distributions, 

Bechhofer [1] and Gupta [2] are the pioneers in this field. Instead of normal distributions, 
exponential distributions are widely used to model the lifetimes of products. For expo-
nential lifetime distributions, )2(≥k  independent treatment groups and l control 
groups are considered. Let imi XX ,,1   be the random sample of size m from the i-th treat-
ment group iπ , I = 1, …, k, where iπ  follows a two-parameter exponential distribution 
denoted by ),( iiE σθ , I = 1, …, k. The parameters kθθ ,,1   are the unknown location 
parameters (also known as the guaranteed time in reliability and engineering) and the 
parameters kσσ ,,1   are the unknown and unequal scale parameters. Likewise, let 

**
1 ,, jmj XX   be the random sample of size m from the j-th control group *

jπ , j = 1, …, l, 

where *
jπ  follows a two-parameter exponential distribution denoted by ),( jjE ξη , j = 1, 

…, l. The parameters lηη ,,1  are the unknown location parameters and parameters 

lξξ ,,1   are the unknown and unequal scale parameters. Furthermore, the mean lifetime 
for the i-th treatment group is iii σθμ += , I = 1, …, k and the mean lifetime for the j-th 

control group is jjj ξημ +=* , j = 1, …, l. When scale parameters for exponential distribu-
tions are unknown and possibly unequal, Lam and Ng [3] proposed the design-oriented 
two-stage multiple comparisons with the control. Please see Lam and Ng [3] for the de-
tailed introduction for the two-stage procedures. The disadvantage for the two-stage pro-
cedure is that the required sample size for the second stage may be large. To remedy this 
problem, the one-stage sampling procedure addressed above can be considered instead. 
Based on the one-stage sample from k populations, Wu et al. [4] developed the multiple 
comparison procedures for exponential location parameters with the control when scale 
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parameters are unknown and unequal. Instead of comparing with the control, Wu [5] pro-
posed one-stage multiple comparisons with the average for exponential location parame-
ters. Maurya [6] investigated the one-stage multiple comparisons with more than one con-
trol under heteroscedasticity. Maurya [7] proposed another one-stage multiple compari-
sons with a control under heteroscedasticity. Instead of comparing the location parame-
ters for exponential distributions, the one-stage multiple comparisons with the average in 
terms of mean lifetimes are proposed by Wu [8]. Unlike the multiple comparison proce-
dure with the control based on mean lifetimes in Wu [8], the aim and the novelty of this 
paper is to compare several treatment populations with more than one control popula-
tions based on the mean lifetimes. The research methodologies are addressed in Section 2 
by using the techniques in Lam’s research ([9,10]). The research results in Wu [8] can be 
treated as a special case of our proposed method in this paper when the number of control 
populations l = 1. Therefore, this paper has more general applications compared with the 
results in Wu [8]. In order to illustrate our proposed simultaneous confidence intervals in 
Section 2, we use an example of comparing two treatment drugs with two control drugs 
for treating leukemia in Section 3. In this example, each drug group consists of 20 patients 
and the dataset for each group passed the fitness test for exponential distribution by the 
use of the Gini test (Gail and Gastwirth [11]). In Lawless [12], they conducted a likelihood 
ratio asymptotic chi-squared test for the homogeneity of scale parameters and the results 
revealed that the scale parameters for four exponential distributions are significantly dif-
ferent. In Section 4, the conclusions related to our research methods are made. 

2. Comparing with Several Controls for Exponential Mean Lifetimes  

For the one-stage sample imi XX ,,1  of size m from the i-th treatment group, we let 

),,min( 1 imii XXY =  and )1()(
1

−−= =
mYXS m

j iiji , I = 1, …, k. Likewise, for the one-

stage sample **
1 ,, jmj XX   of size m from the j-th control group, we let 

),,min( **
1

*
jmjj XXY =  and )1()(

1
*** −−=  =

mYXS m

t jjtj , j = 1, ..., l. 

Before we start to construct the simultaneous confidence interval (SCI) for *
ji μμ − , 

I = 1, …, k, j = 1, …, l, we need to consider the following random variables: 

( ) ( )iiiiiiii SYmmSmG σσθσ //)( −−+−= , I = 1, …, k and 

( ) ( )jjjjjjjj SYmmSmG ξξηξ **** //)( −−+−= , j = 1, ..., l. 

From Roussas [13], they indicated that ~/)1(2 iii SmQ σ−= 2
22 −mχ  and 

ξ/)1(2 **
jj SmQ −= ~ 2

22 −mχ , where 2
22 −mχ  represents a chi-squared distribution with 

2m − 2 degrees of freedom (df). Furthermore, iiii YmE σθ /)( −= ~Exp(1) and 

jjjj YmE ξη /)( ** −= ~Exp(1), where Exp(1) represents a standard exponential distribu-

tion. In addition, the random variables kiQE ii ,,1, , =  and ljQE jj ,,1,  , ** =  are 
stochastically independent. 

In terms of kiQE ii ,,1, , =  and ljQE jj ,,1,  , ** = , the random variables iG , I 

= 1, …, k and *
jG , j = 1, ..., l can be rewritten as follows:  
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Once the independent random variables iE ~ )1(Exp  and iQ ~
2

22 −mχ  are gener-

ated, the random variable iG  can be thus generated, I = 1, …, k. Likewise, once the inde-

pendent random variables iE ~ )1(Exp  and iQ ~
2

22 −mχ , are generated, the random 

variable *
jG  can be generated, j = 1, ..., l. 

Now we can propose the one-stage multiple comparison procedures for exponential 

mean lifetimes with several controls denoted by *
ji μμ − , I = 1, …, k, j = 1, ..., l as follows: 

Theorem 1. For a given 10 << P , let ),(max~
*

,...,1,,,1 m
S

m
Sc ji

ljki ==
=


, 

( ) ( )iiiiiiii SYmmSmG σσθσ //)( −−+−= , I = 1, …, k and 

( ) ( )jjjjjjjj SYmmSmG ξξηξ **** //)( −−+−= , j = 1, ..., l. 

We have the following results: 

(a) If Us~  is the 100P-th percentile of the distribution of 

),...,1,,,1,,,max( ** ljkiGGGG jiij ==−−  , then we have 

PljkiscSYSY Ujjiiji ≥==+−−+≤− ),...,1,,,1,~~P( *** μμ . 

Thus, )~~,( **
Ujjii scSYSY +−−+−∞  is a set of upper confidence intervals for 

*
ji μμ −  with confidence coefficient P, I = 1, …, k, j = 1, ..., l. 

(b) If Ls~  is the 100P-th percentile of the distribution of 

),...,1,,,1,,,max( ** ljkiGGGG ijji ==−−  , then we have 

PljkiscSYSY Ljjiiji ≥==−−−+≥− ),...,1,,,1,~~P( *** μμ . 

Thus, ),~~( ** ∞−−−+ Ljjii scSYSY  is a set of lower confidence intervals for 
*
ji μμ −  with confidence coefficient P, I = 1, …, k, j = 1, ..., l. 

(c) If ts~  is the 100P-th percentile of the distribution of 

),...,1,,,1|,||,||,max(| ** ljkiGGGG ijji ==−  , then we have 
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kiscSYSYscSYSY tjjiijitjjii ,,1,~~~~P( ***** =+−−+≤−≤−−−+ μμ Plj ≥= ),...,1,  

Thus, )~~( **
tjjii scSYSY ±−−+  is a set of simultaneous two-sided confidence 

intervals for *
ji μμ −  with confidence coefficient P, I = 1, …, k, j = 1, ..., l. 

The technique given in Lam ([9,10]) is described in the following lemma: 

Lemma 1. If X and Y are two random variables, a and b are two positive constants, then 
]and,[)],max([ dYXdYdXbadbYaX −≥≤−≥⊇−≥ . 

The proof of Lemma 1 is given in Lam [1] and it is briefly given in the section of 
Appendix A. Using the technique in Lemma 1, the proof of Theorem 1 is also given in 
Appendix A. 

Since the critical values Us~ , Ls~  and ts~  in Theorem 1 are difficult to obtain, the 
Monte Carlo simulation method is used to find the critical values and the algorithm to 
obtain these critical values is given as follows: 

Step 1: Generate k independent random variables iE ~ )1(Exp  and l independent ran-

dom variables *
jE ~ )1(Exp . Generate another k independent random variables iQ

~ 2
1)(2 −mχ  and l independent random variables *

jQ ~ 2
1)(2 −mχ . 

Then, the k + l independent random variables: 

=iG  ii QEmmm /))(12( −−+−  I = 1, …, k and 

,)/1)(2( ***
jjj QEmmmG −−+−=  j = 1, ..., l can be generated. 

Step 2: The values of ),...,1,,,1,,,max( ** ljkiGGGG jiij ==−−  , 

,,,max( **
ijji GGGG −−  ,,,1, ki = ),...,1 lj =  and 

),...,1,,,1|,||,||,max(| ** ljkiGGGG ijji ==−   can be computed. 

Step 3: Repeat Step 1 and Step 2 100,000 times. Then, the critical values Us~ , Ls~  and ts~  

can be obtained as the 100P-th empirical percentiles of  

),...,1,,,1,,,max( ** ljkiGGGG jiij ==−−  ,  

,,,max( **
ijji GGGG −−  ,,,1, ki = ),...,1 lj =  and  

),...,1,,,1|,||,||,max(| ** ljkiGGGG ijji ==−   respectively.  

The approximate critical values Us~ , Ls~ , and ts~  under (k,l) = (2,2), (2,3), (2,4), 
(3,2), (3,3), (4,2), m = 2(1)10(5)30 and P = 0.90, 0.95, and 0.975 are listed in Table 1. From 
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Table 1, it can be seen that the approximate critical values Us~ , Ls~ , and ts~  are increas-
ing while k + l is increasing for any given P and m or while P is increasing for any given k, 
l, and m. Let L1 be the length of the two-sided confidence intervals for *

ji μμ − , I = 1, …, k, 

j = 1, ..., l for the one-stage procedure, then we have L1 = 2 tsc~~ . From this equation, we can 

see that the larger the k + l, the larger the value of ts~  and then the larger confidence 
length of L1 for any given P and m. Likewise, we can also see that when P increases, the 
confidence length increases for any given k, l, and m. 

Table 1. Critical values of Us~ , Ls~ , and ts~ for P = 0.90, 0.95, and 0.975. 

k l m 
P = 0.90 P = 0.95 P = 0.975 

Us~  Ls~  ts~  Us~  Ls~  ts~  Us~  Ls~  ts~  

2 2 2 24.32 24.36 49.17 50.12 50.52 100.37 100.68 102.56 202.85 
  3 11.13 11.13 16.84 17.06 17.06 25.14 25.35 25.26 36.73 
  4 9.51 9.52 13.23 13.34 13.38 18.07 18.10 18.19 24.08 
  5 9.18 9.20 12.27 12.33 12.39 16.01 16.03 16.10 20.43 
  6 9.22 9.22 12.02 12.11 12.11 15.31 15.35 15.36 19.02 
  7 9.40 9.42 12.06 12.14 12.13 15.04 15.08 15.09 18.33 
  8 9.65 9.64 12.22 12.30 12.28 15.07 15.12 15.10 18.16 
  9 9.90 9.93 12.44 12.48 12.53 15.19 15.22 15.23 18.09 
  10 10.21 10.23 12.72 12.78 12.79 15.39 15.42 15.43 18.24 
  15 11.67 11.68 14.23 14.29 14.28 16.85 16.87 16.87 19.47 
  20 13.02 13.03 15.70 15.75 15.75 18.35 18.36 18.39 20.98 
  25 14.28 14.30 17.10 17.13 17.17 19.84 19.84 19.88 22.46 
  30 15.48 15.42 18.41 18.49 18.44 21.27 21.33 21.26 24.01 

2 3 2 26.30 35.08 61.24 53.65 71.91 124.81 107.23 145.94 252.28 
  3 11.65 14.09 19.30 17.70 21.30 28.67 26.07 31.42 41.94 
  4 9.96 11.57 14.83 13.84 16.01 20.08 18.67 21.54 26.65 
  5 9.61 10.90 13.55 12.82 14.44 17.52 16.54 18.52 22.18 
  6 9.68 10.81 13.20 12.57 13.95 16.61 15.81 17.42 20.47 
  7 9.90 10.89 13.15 12.63 13.78 16.27 15.62 16.92 19.65 
  8 10.14 11.09 13.28 12.78 13.87 16.18 15.58 16.80 19.33 
  9 10.43 11.34 13.48 13.01 14.03 16.29 15.75 16.85 19.31 
  10 10.73 11.65 13.75 13.29 14.29 16.48 15.94 17.01 19.38 
  15 12.31 13.10 15.28 14.91 15.75 17.91 17.49 18.36 20.55 
  20 13.76 14.51 16.80 16.47 17.21 19.46 19.09 19.85 22.05 
  25 15.13 15.86 18.29 17.95 18.71 21.01 20.64 21.40 23.68 
  30 16.39 17.10 19.67 19.38 20.05 22.54 22.23 22.88 25.34 

2 4 2 28.14 46.00 73.85 56.73 94.80 150.80 114.03 190.63 303.81 
  3 12.08 16.69 21.52 18.19 25.01 31.74 26.67 36.62 46.28 
  4 10.25 13.17 16.07 14.15 18.05 21.66 18.96 24.10 28.58 
  5 9.90 12.25 14.59 13.12 16.04 18.75 16.84 20.46 23.57 
  6 9.98 11.99 14.08 12.86 15.27 17.60 16.08 18.97 21.59 
  7 10.19 11.99 13.97 12.92 15.01 17.15 15.88 18.29 20.70 
  8 10.46 12.16 14.07 13.08 15.04 17.09 15.90 18.13 20.32 
  9 10.76 12.41 14.28 13.36 15.18 17.15 16.05 18.12 20.18 
  10 11.10 12.65 14.52 13.67 15.36 17.31 16.35 18.17 20.24 
  15 12.76 14.13 16.05 15.33 16.78 18.70 17.88 19.42 21.38 
  20 14.32 15.59 17.63 17.01 18.28 20.29 19.63 20.90 22.92 
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  25 15.70 16.96 19.13 18.51 19.76 21.87 21.22 22.45 24.51 
  30 17.04 18.25 20.57 20.01 21.19 23.41 22.81 24.00 26.16 

3 2 2 35.20 26.44 61.78 72.37 54.14 126.61 147.01 108.88 255.82 
  3 14.11 11.73 19.34 21.36 17.76 28.75 31.50 26.19 41.94 
  4 11.54 9.95 14.79 15.96 13.82 20.01 21.39 18.67 26.57 
  5 10.90 9.62 13.56 14.44 12.82 17.54 18.57 16.52 22.21 
  6 10.81 9.69 13.21 13.95 12.58 16.65 17.48 15.83 20.50 
  7 10.88 9.87 13.15 13.79 12.61 16.25 16.93 15.60 19.68 
  8 11.07 10.12 13.25 13.84 12.75 16.17 16.78 15.57 19.28 
  9 11.36 10.43 13.50 14.09 13.02 16.32 16.93 15.71 19.29 
  10 11.62 10.76 13.75 14.27 13.32 16.50 17.03 15.98 19.37 
  15 13.09 12.30 15.25 15.71 14.87 17.89 18.35 17.46 20.53 
  20 14.52 13.78 16.82 17.25 16.48 19.50 19.91 19.13 22.13 
  25 15.85 15.14 18.28 18.67 17.98 21.02 21.37 20.70 23.69 
  30 17.08 16.40 19.66 20.04 19.38 22.51 22.84 22.18 25.23 

3 3 2 36.89 37.08 71.42 75.84 76.37 149.80 154.64 151.29 307.21 
  3 14.75 14.65 20.62 21.62 21.84 30.33 32.03 32.58 45.30 
  4 11.93 11.96 15.14 16.50 16.32 20.75 21.69 22.07 27.54 
  5 11.34 11.33 13.72 14.91 14.92 17.98 18.98 19.23 22.82 
  6 11.18 11.21 13.19 14.41 14.38 16.75 17.81 17.80 20.63 
  7 11.35 11.39 13.09 14.23 14.33 16.23 17.41 17.31 19.67 
  8 11.60 11.59 13.13 14.26 14.34 16.06 17.34 17.34 19.34 
  9 11.89 11.84 13.27 14.63 14.63 16.24 17.43 17.37 19.13 
  10 12.17 12.18 13.48 14.78 14.82 16.21 17.64 17.51 19.15 
  15 13.70 13.81 14.79 16.35 16.33 17.44 19.08 18.86 20.20 
  20 15.23 15.33 16.20 17.95 17.98 18.87 20.59 20.67 21.55 
  25 16.74 16.71 17.60 19.39 19.54 20.19 22.18 22.23 23.09 
  30 18.06 18.07 18.86 20.93 20.89 21.70 23.63 23.77 24.37 

4 2 2 46.06 28.21 73.93 94.26 57.19 150.66 189.64 114.78 301.99 
  3 16.63 12.08 21.46 24.99 18.16 31.72 36.63 26.62 46.31 
  4 13.19 10.23 16.07 18.01 14.11 21.60 24.00 18.93 28.49 
  5 12.26 9.90 14.59 16.05 13.08 18.77 20.50 16.83 23.66 
  6 11.98 9.95 14.09 15.30 12.86 17.64 18.99 16.10 21.62 
  7 12.02 10.19 14.01 15.06 12.92 17.21 18.36 15.92 20.74 
  8 12.17 10.47 14.09 15.05 13.12 17.10 18.13 15.95 20.35 
  9 12.37 10.78 14.25 15.14 13.38 17.13 18.06 16.11 20.19 
  10 12.66 11.12 14.54 15.39 13.68 17.32 18.20 16.35 20.24 
  15 14.12 12.75 16.04 16.76 15.31 18.67 19.39 17.90 21.32 
  20 15.57 14.28 17.62 18.29 16.98 20.27 20.93 19.57 22.89 
  25 16.96 15.69 19.14 19.79 18.53 21.89 22.52 21.22 24.55 
  30 18.23 17.01 20.53 21.16 19.96 23.39 23.99 22.77 26.09 

3. Example 
From Wu et al. [4], data consisting of the duration of remission achieved by four 

drugs for treating leukemia are used to illustrate our proposed simultaneous confidence 
intervals in Theorem 1. The data are listed in Table 2. We regard drugs 1,2 as the treatment 

groups 21 ,ππ  and drugs 3,4 as the control groups 
*
2

*
1 ,ππ . 
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Table 2. Data for the duration of remission by four drugs. 

Drug 1 ( 1μ ) Drug 2 ( 2μ ) Drug 3 (
*
1μ ) Drug 4 (

*
2μ ) 

1.034 2.214 4.158 5.115 
2.344 4.976 4.025 4.498 
1.266 8.154 5.170 4.617 
1.563 2.686 11.909 4.651 
1.169 2.271 4.912 4.533 
4.118 3.139 4.629 4.513 
1.013 2.214 3.955 7.641 
1.509 4.480 6.735 5.971 
1.109 8.847 3.140 12.130 
1.965 2.239 12.446 4.699 
5.136 3.473 8.777 4.914 
1.533 2.761 6.321 17.169 
1.716 2.833 3.256 5.497 
2.778 2.381 8.250 11.332 
2.546 3.548 3.759 18.922 
2.626 2.414 5.205 13.712 
3.413 2.832 3.071 6.309 
1.929 5.551 3.147 10.086 
2.061 3.376 9.773 9.293 
2.951 2.968 10.218 11.787 

The longer mean duration of remission time ( iμ  or *
jμ , 2,1=i , 2,1=j ) is de-

sired for this example. Lawless [12] conducted the likelihood ratio asymptotic 
2χ  test to 

show that there is a significant difference among the four scale parameters. Thus, the data 

analysis one-stage multiple comparison procedures with several controls *
ji μμ − , 

2,1=i , 2,1=j  in Theorem 1 for exponential mean lifetimes under heteroscedasticity 

can be applied. The required statistics and critical values of Us~ , Ls~ , and ts~  for P = 
0.90, 0.95, and 0.975 are summarized in Table 3. 

Table 3. The required statistics and critical values. 

Statistics Drug 1 Drug 2 Statistics Drug 3 Drug 4 

Yi 1.013 2.214 *
jY  3.071 4.498 

Si 1.238 1.530 *
jS  3.233 4.075 

c~  0.204     

 
+− *

11 YY  
*
11 SS −  

+− *
12 YY

*
12 SS −  

   

 −4.053 −2.560    

 
+− *

21 YY  
*
21 SS −  

+− *
22 YY

*
22 SS −  

   

 −6.322 −4.829    

P Us~  Ls~  ts~    
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0.900 13.02 13.03 15.70   
0.950 15.75 15.75 18.35   
0.975 18.36 18.39 20.98   

Applying parts (a) and (b) of Theorem 1, we can find the upper and lower confidence 

bounds for *
ji μμ − , 2,1=i , 2,1=j  with confidence coefficients 0.90, 0.95, and 0.975 

given in Table 4. With respect to the upper confidence bounds, drug 1 is selected in a 
subset of worse than several controls (drug 3 and 4) and drugs 1 and 2 are selected in a 
subset of worse than the control (drug 3) with the probability of correct selection being at 
least 0.90, 0.95, and 0.975 in terms of mean lifetimes since their one-sided confidence in-
tervals do not contain zero. 

Table 4. The upper confidence bounds and lower confidence bounds under P = 0.90, 0.95, 0.975. 

Parameter 
)~~,( **

Ujjii scSYSY +−−+−∞ , ),~~( ** ∞−−−+ Ljjii scSYSY  

90% 95% 97.5% 

1. 
*
11 μμ −  (−∞,−1.397), (−6.711,∞) (−∞,−0.840), (−7.266,∞) (−∞,−0.320), (−7.805,∞) 

2. 
*
21 μμ −  (−∞,−3.666), (−8.980,∞) (−∞,−3.109), (−9.535,∞) (−∞,−2.589), (−10.07,∞) 

3. 
*
12 μμ −  (−∞,0.096), (−5.218,∞) (−∞,0.653), (−5.773,∞) (−∞,1.173), (−6.312,∞) 

4. 
*
22 μμ −  (−∞,−2.173), (−1.616,∞) (−∞,−1.616), (−8.042,∞) (−∞,−1.096), (−8.581,∞) 

Applying part (c) of Theorem 1, we can find the two-sided confidence bounds for 
*
ji μμ − , 2,1=i , 2,1=j  with confidence coefficients 0.90, 0.95, and 0.975 listed in Ta-

ble 5. For confidence coefficients 0.90, 0.95, and 0.975, we can conclude that drug 1 is worse 
than several controls (drugs 3 and 4) and drug 2 is worse than drug 4 since both bounds 
of the two-sided confidence intervals for these two drugs are negative. Furthermore, drug 
2 is not significantly different from drug 3 in terms of mean remission times. 

Table 5. The two-sided confidence intervals under P=0.90, 0.95, 0.975. 

Parameter 
)~~,~~( ****

tjjiitjjii scSYSYscSYSY +−−+−−−+  

90% 95% 97.5% 

1. 
*
11 μμ −  (−7.256, −0.850) (−7.800, −0.310) (−8.333, 0.227) 

2. 
*
21 μμ −  (−9.525, −3.119) (−10.07, −2.579) (−10.60, −2.042) 

3. 
*
12 μμ −  (−5.763, 0.643) (−6.303, 1.183) (−6.840, 1.720) 

4. 
*
22 μμ −  (−8.032, −1.626) (−8.572, −1.086) (−9.109, −0.549) 

4. Conclusions 

From the critical values in Table 1 and the equation of L1 = 2 tsc~~ , it is found that the 
length of SCI is getting wider when we compare more populations for fixed P and m. 

In practical applications, we may have several control populations instead of one 
control population. Applying Lam’s [9,10] technique, we propose a multiple comparison 
procedure with several controls for exponential mean lifetimes under heteroscedasticity. 
In addition, the critical values for (k,l) = (2,2), (2,3), (2,4), (3,2), (3,3), (4,2), m = 2(1)10(5)30 
and P * = 0.90, 0.95, and 0.975 are provided for the use of this investigation problem in 
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Table 1. Finally, we use one example to illustrate the practical use of our proposed proce-
dures in Theorem 1. The multiple comparison procedure with one control for exponential 
mean lifetimes in Wu [8] is only a special case of our new procedure in Theorem 1 of this 
research when l = 1. Therefore, the results in this paper have more general methods in 
many fields of applications. 
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Appendix A 
Proof of Lemma 1. 
Consider the following three cases: 
Case 1: For ab≥ , dYX −≥[  and ]dY ≤  implies 

),max()()( badbYdYbdYaaX −≥−≥−≥ . 
Case 2: For b<a and ,0≤Y  dX −≥[ ] implies 

),max( badbYadaX −≥−≥ . 
Case 3: For b<a and ,0>Y dYX −≥[ ] implies 

),max()(Y badbYdaaX −≥−≥ . 
The proof is established. □ 

Proof of Theorem 1. 
For (a), we have 

( )ljkiscSYSY Ujjiiji ,...,1,,,1,~~P *** ==+−−+≤− μμ  

= ( )ljkiscSYSY Ujjiijjii ,...,1,,,1,~~P ** ==+−−+≤−−+ ξησθ  

= ( )ljkiscYSYS Ujjjjiiii ,...,1,,,1,~~P ** ==+−++−≤−++− ξηθσ  

= 
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SS k
,...,1,,,1,~),max(PE

*
*

*

,,1
  

( )ljkisGGsGsG UijUiUj ,...,1,,,1,~,~,~P ** ==−≥≤−≥≥   

= ( )ljkisGGsGsG UkiUiUj ,...,1,,,1,~,,~P ** ==≤−≤≤−   

= ( )Ujiij sljkiGGGG ~),...,1,,,1,,,max(P ** ≤==−−  P=  
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Satisfying the above equation, the value of Us~  is determined as the 100P-th percentile of 

the distribution of ),...,1,,,1,,,max( ** ljkiGGGG jiij ==−−   and the proof is thus 

established. 
For (b), we have 

),...,1,,,1,~~P( *** ljkiscSYSY Ljjiiji ==−−−+≥− μμ  

( )ljkiscSYSY Ljjiijjii ,...,1,,,1,~~P ** ==+−−+≥−−+ ξησθ  

= ( )ljkiscYSYS Ljjjjiiii ,...,1,,,1,~~P ** ==+−++−≥−++− ξηθσ  

= 
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( )ljkisGGsGsG LjiLjLi ,...,1,,,1,~,~,~P ** ==−≥≤−≥≥   

( )ljkisGGsGsG LijLjLi ,...,1,,,1,~,~,~P ** ==≤−≤≤−≥   

= ( )Lijji sljkiGGGG ~),...,1,,,1,,,max(P ** ≤==−−  P=  

Satisfying the above equation, the value of Ls~  is determined as the 100P-th percentile 

of the distribution of ),...,1,,,1,,,max( ** ljkiGGGG ijji ==−−   and the proof is thus 

established. 

For (c), combining (a) and (b), we have 

),...,1,,,1,~~~~P( ***** ljkiscSYSYscSYSY tjjiijitjjii ==+−−+≤−≤−−−+ μμ  

= ( ,~~~~P ****
tjjiijjiitjjii scSYSYscSYSY +−−+≤−−+≤−−−+ ξησθ  

)ljki ,...,1,,,1, ==   

(
)ljkisGGsGsG

sGGsGsG

tjititj

tijtjtiSS k

,...,1,,,1,~,~,~

~,~,~PE
**

**
,,1

==≤−≤≤−

≤−≤≤−=




 

( )tijji sljkiGGGG ~),...,1,,,1|,||,||,max(|P ** ≤==−≥  P= . 

Satisfying the above equation, the value of ts~  is determined as the 100P-th percentile of 

the distribution of ),...,1,,,1|,||,||,max(| ** ljkiGGGG ijji ==−   and the proof is 

thus established. □ 
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