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Abstract: Under heteroscedasticity, we propose one-stage multiple comparison procedures for sev-
eral treatment groups compared with several control groups in terms of exponential mean lifetimes.
The simultaneous confidence intervals including one-sided and two-sided confidence intervals for
the difference between the mean lifetime from the i-th treatment group and the mean lifetime from
the j-th control group are developed in this research. The required critical values are obtained and
tabulated for the practical use of users. The experimenters can use these simultaneous confidence
intervals to determine whether the treatment mean lifetimes are better than several controls or
worse than several controls under a specified confidence level. Finally, one example of comparing
the mean duration of remission using four drugs for treating leukemia is used for the aims of illus-
trations.

Keywords: one-stage procedure; multiple comparison with the control; multiple comparison with
several controls; exponential distribution

1. Introduction

Our research is related to the field of ranking and selection. For normal distributions,
Bechhofer [1] and Gupta [2] are the pioneers in this field. Instead of normal distributions,
exponential distributions are widely used to model the lifetimes of products. For expo-

nential lifetime distributions, k& (=2) independent treatment groups and [ control
groups are considered. Let X, ,--- X, be the random sample of size m from the i-th treat-
ment group 7,,1=1, ...,k where 7, follows a two-parameter exponential distribution
denoted by E(6,0,), =1, ..., k. The parameters §,,---,0, are the unknown location
parameters (also known as the guaranteed time in reliability and engineering) and the

parameters o,,---,0, are the unknown and unequal scale parameters. Likewise, let

X ;1,~-',X jm be the random sample of size m from the j-th control group ;z-]*_, i=1 ...

where 7[;‘ follows a two-parameter exponential distribution denoted by E(T]j,fj), ji=1,

..., l. The parameters 7}, +7] are the unknown location parameters and parameters
&+, &, are the unknown and unequal scale parameters. Furthermore, the mean lifetime

for the i-th treatment group is x4, =6 + o, [ =1, ..., k and the mean lifetime for the j-th

control group is ,Uj =7+ fj ,j=1, ..., 1. When scale parameters for exponential distribu-

tions are unknown and possibly unequal, Lam and Ng [3] proposed the design-oriented
two-stage multiple comparisons with the control. Please see Lam and Ng [3] for the de-
tailed introduction for the two-stage procedures. The disadvantage for the two-stage pro-
cedure is that the required sample size for the second stage may be large. To remedy this
problem, the one-stage sampling procedure addressed above can be considered instead.
Based on the one-stage sample from k populations, Wu et al. [4] developed the multiple
comparison procedures for exponential location parameters with the control when scale
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parameters are unknown and unequal. Instead of comparing with the control, Wu [5] pro-
posed one-stage multiple comparisons with the average for exponential location parame-
ters. Maurya [6] investigated the one-stage multiple comparisons with more than one con-
trol under heteroscedasticity. Maurya [7] proposed another one-stage multiple compari-
sons with a control under heteroscedasticity. Instead of comparing the location parame-
ters for exponential distributions, the one-stage multiple comparisons with the average in
terms of mean lifetimes are proposed by Wu [8]. Unlike the multiple comparison proce-
dure with the control based on mean lifetimes in Wu [8], the aim and the novelty of this
paper is to compare several treatment populations with more than one control popula-
tions based on the mean lifetimes. The research methodologies are addressed in Section 2
by using the techniques in Lam’s research ([9,10]). The research results in Wu [8] can be
treated as a special case of our proposed method in this paper when the number of control
populations [ = 1. Therefore, this paper has more general applications compared with the
results in Wu [8]. In order to illustrate our proposed simultaneous confidence intervals in
Section 2, we use an example of comparing two treatment drugs with two control drugs
for treating leukemia in Section 3. In this example, each drug group consists of 20 patients
and the dataset for each group passed the fitness test for exponential distribution by the
use of the Gini test (Gail and Gastwirth [11]). In Lawless [12], they conducted a likelihood
ratio asymptotic chi-squared test for the homogeneity of scale parameters and the results
revealed that the scale parameters for four exponential distributions are significantly dif-
ferent. In Section 4, the conclusions related to our research methods are made.

2. Comparing with Several Controls for Exponential Mean Lifetimes
For the one-stage sample X,--+ X, = of size m from the i-th treatment group, we let
Y, =min(X,,--,X,,) and S, = Zil(Xij —Yi)/(m—l), I=1, ..., k. Likewise, for the one-

stage sample X;,---,X*

m of size m from the jth control group, we let

Y =minQ), X)) and S =% 00 1) fn =)=, L

J
Before we start to construct the simultaneous confidence interval (SCI) for (1, — ,uj.,

I=1,..,kj=1,...,1 weneed to consider the following random variables:
G =(-mS o +m-m, —6)/0)/(S,/0),1=1, ... kand
G, =(mS; JE +m=—m(y =0/ &S JE)i=1, L.
From Roussas [13], they indicated that Q =2(m—1)S/0,~ y. , and
Qj = 2(m—l)S; / f ~ ,1’22”1_2 , where }[22,”_2 represents a chi-squared distribution with
2m - 2 degrees of freedom (df). Furthermore, FE,=m(¥—6)/0; ~Exp(1) and

Ej = m(YJ* —77]-)/ f ; ~Exp(1), where Exp(1) represents a standard exponential distribu-
tion. In addition, the random variables £ ,Q ,i=1...k and E;, Qj, j=1...,1 are

stochastically independent.
In terms of El ,Q ,i=L..,k and E:, Q;,] =1,...,/, the random variables Gl i

=1,..., kand G;, j=1, ..., I can be rewritten as follows:
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G _=mS,/o+m=m(Y,~6)/0, _-2m(m=1)S,/0,+2(m-1)m—m(¥,~6)/0)

. S,/o, B 2(m-1)S, /o,
2(m-1)m—E,)

=-m+

- 0,

and

— -mS; [ +m—m(Y -n)/¢E __ Am-Dm—E)

’ S , / S Q;

Once the independent random variables £;~ Exp(l) and O~ Zzzm_z are gener-

ated, the random variable GI can be thus generated, I =1, ..., k. Likewise, once the inde-
pendent random variables Ei ~Exp(1) and Q ~ Zzzm_z , are generated, the random

&
variable G]- can be generated, j=1, ..., L.
Now we can propose the one-stage multiple comparison procedures for exponential

mean lifetimes with several controls denoted by £, — ,U: ,1=1,...,kj=1, .. 1asfollows:

*

Theorem 1. Foragiven 0< P <1,let ¢= max (—,—%),
=Lk, =1 m

G, =(-mS /o, +m=-m(¥, -6)/G)/(S,/0), 11, kand

1

G =(-mS & +m=m(¥ =) IEWSE ), i=1, L

We have the following results:

@@ If 5, is  the  100P-th  percentile  of the  distribution  of
maX(—Gj,Gl.,Gi —Gj, i=1--,k,j=1,..,0), then we have

P(u, —u; <Y, +S5-Y, =S, +csy,i=1k,j=1.,0)=P.
Thus, (==Y +S — Yj* - S; + a%) is a set of upper confidence intervals for
M — ,Uj with confidence coefficient P, I=1, ..., k, j=1, ..., L
(b) If FL is  the  100P-th  percentile of the  distribution  of
max(-G,,G,,G, —G,i=1,---k, j=1,...l), then we have
P, — ) 2Y, +8,~Y, =S, =5, ,i=1, -k, j=1,..0)>P.
Thus, (¥, +8,— YJ* - S; —EEL ,2) is a set of lower confidence intervals for
MU — ,Llj with confidence coefficient P, I=1, ..., k, j=1, ..., L

() If Ez is  the  100P-th  percentile of the  distribution  of
max(|G, || G’; l,] G; -G, |,i=1-k,j=1,..,]), then we have
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P, +8,—Y =S, —Cs, Sp, — i, <Y, +8,-Y, =S, +¢5, ,i=1-k ,j=1,..,)>P

Thus, (¥, +S, — Yj* - S; ia;[ ) is a set of simultaneous two-sided confidence
intervals for t — ,Uj with confidence coefficient P, I=1, ..., k, j=1, ..., L

The technique given in Lam ([9,10]) is described in the following lemma:

Lemma 1. If X and Y are two random variables, a and b are two positive constants, then

[aX 2bY —dmax(a,b)|2[X =2-d,Y<dand X >2Y -d].

The proof of Lemma 1 is given in Lam [1] and it is briefly given in the section of
Appendix A. Using the technique in Lemma 1, the proof of Theorem 1 is also given in
Appendix A.

Since the critical values EU , §p and Et in Theorem 1 are difficult to obtain, the

Monte Carlo simulation method is used to find the critical values and the algorithm to
obtain these critical values is given as follows:

Step 1: Generate k independent random variables E; ~ Exp(1) and I independent ran-

dom variables E r ~ Exp(1) . Generate another k independent random variables Q.

~ Zzz(m_l) and / independent random variables Qj* ~ Zzz(m—l) .

Then, the k + | independent random variables:
G = —m+2m-1)m—E)/Q 1=1,..., kand
G;k =—m+ Z(m—l)(m—E; )/Q;, j=1, ..., | can be generated.
Step 2: The values of max(—G;,Gi,Gi —G;, i=1-k,j=1..0)),
max(-G,,G,,G; —G,, ,i=1,-k, j=1..,]) and

max(|G; |,| G; |, G; -G, |,i=1,--,k,j=1,..,]) canbe computed.

Step 3: Repeat Step 1 and Step 2 100,000 times. Then, the critical values S, , EL and 5,

can be obtained as the 100P-th empirical percentiles of
max(—G;,Gl.,Gi —G;, i=1-kj=1..0),
max(-G,,G,,G; —G,, ,i=1,-k, j=1..,]) and
max(|G, |,| Gj l,| G; -G, |i=1--k,j=1..,l) respectively.

The approximate critical values EU , EL ,and S, under (k]) = (2,2), (2,3), 2,4),
(3,2), (3,3), (4,2), m =2(1)10(5)30 and P = 0.90, 0.95, and 0.975 are listed in Table 1. From
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Table 1, it can be seen that the approximate critical values EU , §p ,and E, are increas-

ing while k + [ is increasing for any given P and m or while P is increasing for any given k,
I, and m. Let L1 be the length of the two-sided confidence intervals for u — ,u’;, I=1, ...k

j=1, ..., I for the one-stage procedure, then we have L1=2 EE . From this equation, we can

see that the larger the k + [, the larger the value of §, and then the larger confidence

length of L1 for any given P and m. Likewise, we can also see that when P increases, the
confidence length increases for any given k, I, and m.

Table 1. Critical values of EU , SL , and Ez for P =0.90, 0.95, and 0.975.

P=0.90 P=0.95 P=0.975
k I m ~ ~ ~ ~ ~ ~ ~ ~ ~
Sy S S Sy Sy S, Sy S S

2 2 2 2432 2436 49.17 50.12 5052 100.37 100.68 102.56 202.85
3 11.13 11.13 16.84 17.06 17.06 25.14 2535 2526 36.73
4 9.51 952 1323 1334 1338 18.07 1810 18.19 24.08
5 9.18 920 1227 1233 1239 16.01 16.03 16.10 2043
6 9.22 922 12.02 1211 1211 1531 1535 15.36 19.02
7 9.40 942 12.06 1214 1213 15.04 15.08 15.09 18.33
8 9.65 9.64 1222 1230 1228 15.07 15.12 1510 18.16
9 9.90 993 1244 1248 1253 1519 1522 1523 18.09
10 1021 1023 1272 1278 1279 1539 1542 1543 18.24
15 11.67 1168 1423 1429 1428 16.85 1687 1687 1947
20 13.02 13.03 1570 15.75 1575 1835 1836 1839 20.98
25 1428 1430 1710 1713 1717 19.84 1984 19.88 2246
30 1548 1542 1841 1849 1844 21.27 2133 21.26 24.01

2 3 2 26.30 35.08 6124 5365 7191 12481 107.23 14594 252.28
3 11.65 14.09 1930 17.70 21.30 28.67 26.07 3142 4194
4 996 1157 1483 1384 16.01 20.08 18.67 2154 26.65
5 961 1090 1355 1282 1444 1752 1654 1852 2218
6 9.68 10.81 1320 1257 1395 16.61 1581 1742 2047
7 990 10.89 13.15 1263 13.78 16.27 1562 1692 19.65
8 10.14 11.09 1328 12.78 13.87 16.18 1558 16.80 19.33
9 1043 1134 1348 13.01 14.03 1629 1575 16.85 19.31
10 1073 1165 13.75 1329 1429 1648 1594 1701 19.38
15 1231 13.10 1528 1491 1575 1791 1749 1836 20.55
20 13.76 1451 16.80 1647 1721 1946 19.09 19.85 22.05
25 1513 1586 1829 1795 1871 21.01 20.64 2140 23.68
30 1639 17.10 19.67 19.38 20.05 2254 2223 2288 2534

2 4 2 2814 46.00 73.85 56.73 9480 150.80 114.03 190.63 303.81
3 12.08 16.69 21.52 18.19 25.01 31.74 2667 36.62 46.28
4 10.25 13.17 16.07 14.15 18.05 21.66 1896 2410 28.58
5 990 1225 1459 1312 16.04 1875 16.84 2046 2357
6 998 1199 14.08 1286 1527 1760 16.08 1897 21.59
7 10.19 1199 1397 1292 15.01 1715 1588 1829 20.70
8 1046 1216 14.07 13.08 15.04 17.09 1590 18.13 20.32
9 10.76 1241 1428 13.36 1518 17.15 16.05 18.12 20.18
10 11.10 1265 1452 13.67 1536 1731 16.35 1817 20.24
15 1276 14.13 16.05 1533 16.78 1870 17.88 1942 21.38
20 1432 1559 17.63 17.01 1828 20.29 1963 2090 2292
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25 1570 1696 19.13 1851 19.76 21.87 2122 2245 2451
30 17.04 1825 2057 20.01 21.19 2341 2281 24.00 26.16
3 2 2 3520 2644 6178 7237 5414 126,61 147.01 108.88 255.82
3 1411 1173 1934 2136 1776 2875 3150 2619 4194
4 1154 995 1479 1596 13.82 20.01 21.39 18.67 2657
5 1090 9.62 1356 1444 1282 1754 1857 1652 2221
6 1081 9.69 1321 1395 1258 16.65 1748 1583 20.50
7 1088 987 1315 1379 1261 1625 1693 15.60 19.68
8§ 11.07 10.12 1325 13.84 1275 1617 1678 1557 19.28
9 1136 1043 1350 14.09 13.02 1632 1693 1571 19.29
10 11.62 1076 13.75 1427 1332 1650 17.03 1598 19.37
15 13.09 1230 1525 1571 1487 17.89 1835 1746 20.53
20 1452 1378 16.82 1725 1648 1950 1991 19.13 2213
25 1585 1514 1828 18.67 1798 21.02 2137 2070 23.69
30 17.08 1640 19.66 20.04 1938 2251 2284 2218 2523
3 3 2 3689 37.08 7142 7584 7637 149.80 154.64 15129 307.21
3 1475 1465 2062 21.62 2184 3033 3203 3258 4530
4 1193 1196 1514 1650 1632 2075 21.69 2207 27.54
5 1134 1133 1372 1491 1492 1798 1898 19.23 2282
6 11.18 1121 13.19 1441 1438 1675 17.81 1780 20.63
7 11.35 11.39 13.09 1423 1433 1623 1741 1731 19.67
8§ 1160 1159 13.13 1426 1434 16.06 1734 1734 19.34
9 11.89 11.84 1327 14.63 14.63 1624 1743 1737 19.13
10 1217 1218 1348 1478 14.82 1621 17.64 1751 19.15
15 1370 13.81 1479 1635 1633 1744 19.08 18.86 20.20
20 1523 1533 1620 1795 1798 1887 2059 20.67 21.55
25 1674 1671 1760 1939 1954 20.19 2218 2223 23.09
30 18.06 18.07 1886 2093 20.89 2170 23.63 23.77 2437
4 2 2 4606 2821 7393 9426 5719 150.66 189.64 114.78 301.99
3 1663 1208 2146 2499 1816 31.72 36.63 26.62 46.31
4 1319 1023 16.07 18.01 1411 21.60 24.00 1893 28.49
5 1226 990 1459 16.05 13.08 1877 2050 16.83 23.66
6 1198 995 14.09 1530 1286 1764 1899 1610 21.62
7 1202 1019 1401 1506 1292 1721 1836 1592 20.74
8§ 1217 1047 14.09 1505 13.12 1710 1813 1595 20.35
9 1237 1078 1425 1514 1338 1713 18.06 1611 20.19
10 1266 11.12 1454 1539 13.68 1732 1820 1635 2024
15 1412 1275 16.04 16.76 1531 18.67 1939 1790 21.32
20 1557 1428 17.62 1829 1698 2027 2093 19.57 22.89
25 1696 15,69 1914 19.79 1853 21.89 2252 2122 2455
30 1823 17.01 2053 21.16 1996 2339 2399 2277 26.09
3. Example

From Wu et al. [4], data consisting of the duration of remission achieved by four
drugs for treating leukemia are used to illustrate our proposed simultaneous confidence
intervals in Theorem 1. The data are listed in Table 2. We regard drugs 1,2 as the treatment

groups 7,7, and drugs 3,4 as the control groups 7, ,77,.
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Table 2. Data for the duration of remission by four drugs.

k k
Drug1 (44) Drug2 () Drug 3 (14) Drug4 (L)
1.034 2.214 4.158 5.115
2.344 4.976 4.025 4.498
1.266 8.154 5.170 4.617
1.563 2.686 11.909 4.651
1.169 2.271 4912 4533
4.118 3.139 4.629 4513
1.013 2.214 3.955 7.641
1.509 4.480 6.735 5.971
1.109 8.847 3.140 12.130
1.965 2.239 12.446 4.699
5.136 3.473 8.777 4914
1.533 2.761 6.321 17.169
1.716 2.833 3.256 5.497
2.778 2.381 8.250 11.332
2.546 3.548 3.759 18.922
2.626 2414 5.205 13.712
3.413 2.832 3.071 6.309
1.929 5.551 3.147 10.086
2.061 3.376 9.773 9.293
2.951 2.968 10.218 11.787

The longer mean duration of remission time (4 or ,u;, i=12, j=12)is de-

sired for this example. Lawless [12] conducted the likelihood ratio asymptotic ,?,} test to
show that there is a significant difference among the four scale parameters. Thus, the data

.
analysis one-stage multiple comparison procedures with several controls 4 —MU;,

i=1,2, j=12 in Theorem 1 for exponential mean lifetimes under heteroscedasticity

can be applied. The required statistics and critical values of 5, EL ,and §, for P =
0.90, 0.95, and 0.975 are summarized in Table 3.

Table 3. The required statistics and critical values.

Statistics Drug1 Drug 2 Statistics Drug 3 Drug 4
Y; 1.013 2214 Y 3.071 4498
Si 1.238 1.530 S 3.233 4.075
c 0.204
Y-+ Y-Y+
Sl _Sf Sz _Slk
-4.053 ~2.560
Y-, + YL-Y+
Sl _Szk Sz _‘5{2k
-6.322 -4.829

~

P Sy s,

Ll
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0.900 13.02 13.03 15.70
0.950 15.75 15.75 18.35
0.975 18.36 18.39 20.98

Applying parts (a) and (b) of Theorem 1, we can find the upper and lower confidence
bounds for 4, — ,U;, i=12, j=1,2 with confidence coefficients 0.90, 0.95, and 0.975

given in Table 4. With respect to the upper confidence bounds, drug 1 is selected in a
subset of worse than several controls (drug 3 and 4) and drugs 1 and 2 are selected in a
subset of worse than the control (drug 3) with the probability of correct selection being at
least 0.90, 0.95, and 0.975 in terms of mean lifetimes since their one-sided confidence in-
tervals do not contain zero.

Table 4. The upper confidence bounds and lower confidence bounds under P = 0.90, 0.95, 0.975.

(—o Y, +8,—Y, =S, +C5,), (Y, +8,-Y, —S,—C5, ,0)

Parameter

90% 95% 97.5%
1. M — ,Ul* (-00,-1.397), (=6.711, ) (~0,-0.840), (~7.266, °0) (—00,-0.320), (~7.805, =)
2. M —,U; (=00,73.666), (-8.980, =) (—0,-3.109), (-9.535, o0) (—0,-2.589), (-10.07, o0)
3., — M* (—00,0.096), (-5.218, ©0) (—00,0.653), (-5.773, ) (-00,1.173), (=6.312, 0)
4. W, —,U; (-00,72.173), (-1.616,°) (—°0,-1.616), (-8.042, °) (—00,-1.096), (-8.581, =)

Applying part (c) of Theorem 1, we can find the two-sided confidence bounds for
M — ,U;, i=12, j=1,2 with confidence coefficients 0.90, 0.95, and 0.975 listed in Ta-

ble 5. For confidence coefficients 0.90, 0.95, and 0.975, we can conclude that drug 1 is worse
than several controls (drugs 3 and 4) and drug 2 is worse than drug 4 since both bounds
of the two-sided confidence intervals for these two drugs are negative. Furthermore, drug
2 is not significantly different from drug 3 in terms of mean remission times.

Table 5. The two-sided confidence intervals under P=0.90, 0.95, 0.975.

04 +Si_Y_v/ _S_/ _Elsvz Y, +Si_Y_v/ _S/+E§; )

Parameter

90% 95% 97.5%
1. 4 —,ul* (-7.256, -0.850) (~7.800, -0.310) (-8.333, 0.227)
2. H4 —,u; (-9.525, -3.119) (-10.07, -2.579) (-10.60, —2.042)
3. [ —[lf  (-5763,0643)  (-6303,1.183) (-6.840, 1.720)
4. K, —,U; (-8.032, -1.626) (-8.572, -1.086) (-9.109, -0.549)

4. Conclusions

From the critical values in Table 1 and the equation of Li=2CS5, , itis found that the

length of SCl is getting wider when we compare more populations for fixed P and m.

In practical applications, we may have several control populations instead of one
control population. Applying Lam’s [9,10] technique, we propose a multiple comparison
procedure with several controls for exponential mean lifetimes under heteroscedasticity.
In addition, the critical values for (k1) = (2,2), (2,3), (2,4), (3,2), (3,3), (4,2), m = 2(1)10(5)30
and P * =0.90, 0.95, and 0.975 are provided for the use of this investigation problem in
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Table 1. Finally, we use one example to illustrate the practical use of our proposed proce-
dures in Theorem 1. The multiple comparison procedure with one control for exponential
mean lifetimes in Wu [8] is only a special case of our new procedure in Theorem 1 of this
research when [ = 1. Therefore, the results in this paper have more general methods in
many fields of applications.
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Appendix A

Proof of Lemma 1.

Consider the following three cases:

Case 1: For b=2a, [X 2Y —d and Y <d] implies
aX za(Y—-d)zb(Y-d)=bY —dmax(a,b).
Case2: Forb<aand Y <0, [X =-d]implies

aX 2—-ad 2bY —dmax(a,b).

Case3:Forb<aand Y >0, [X =Y —d ] implies

aX 2a(Y —d)=2bY —dmax(a,b).

The proof is established. o

Proof of Theorem 1.
For (a), we have

Plu, — 4 <Y, +8,-Y =S +85,,i =1,k j=1,..])
PO 0, -1, —& <Y, +8,-Y =S +T5,,i= 1k, j=1,...,])
=P(—Si +0,+6,-Y, <=8 +1,+¢, —Yj*+E’§U,i:1,---,k,j:1,...,l)

ﬁﬁm(—sﬁo'ﬁ@i—y,-)<S_;ﬂm(—5;+77,+§j—Y,*)+w

Sy

=P

m S, (o m S; n;

S; oS .
=P| -G, 2—"G,~c5,,i=1k,j=1..,1
m m
S .S S
2E; P —G, ZiGi —max(i,—’) Sy,i=Lk, j=1,..,1
m m m m

>P(G) >-5,,G <5,,G, 2G,~5,,i =k, j=1,...,]
_P-G<5,,G <s5,,G,~G, <5 i=1,k j=1,..])
-P(max(-G,,G,G -G, i=1,--k j=1,.0)<5,)=P
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Satisfying the above equation, the value of S, is determined as the 100P-th percentile of
the distribution of max(—G_j,GI.,GI. —G;, i=1--k,j=1,.,]) and the proof is thus
established.

For (b), we have

P(u, — g1, 2Y, +8, =Y, =8, -¢5,,i=1,-k,j=1..])

PO +0, -1, —& 2T, +8,-Y =S, +35,,i=1-k, j=1,..)
_Pl-S +0+0-Y 2—Sj+77j+§j—Yj*+E§L,i=l,---,k,j=l,...,l)

-Pp iﬂm(_si+o-i+9i_Yi) ZS_;ﬂm(_S;—i—ni*_é/’_Yj*)_i_EE
m S, o, m S; n; -

m m

S
:P(iGIZ JG4—EELaizlo”'akajzl""’l]

. S, S
2 ES]a---,SkPLiGi >, G, —max(i,—]) S .=k, )= 1,...,1]
m m m m

>P(G, 2-5,,G, <5,,G, 2G| -5,,i=1k j=1,..1)

>P(-G <5,,G/ <5,,G,~G <5, ,i=1,-k j=1..,1)

-P(max(-G,,G,,G, ~G,i =1k, j=1,..1)<5,) =P

Satisfying the above equation, the value of EL is determined as the 100P-th percentile
of the distribution of max(-G,, G;, Gj -G,i=L--k,j=1,..,]) and the proofis thus
established.

For (c), combining (a) and (b), we have

P(Y, +8, Y =S, =C5, Sp, —u; <Y, +8, =Y, =8, +5, ,i=1,-k, j=1,...])
Py, +S,-Y =S, -C5, <6,+0, -1, ~& <Y, +5,-Y —S, +C5, ,

=E,. PG <5 ,G <5
=2 i j
> P(max(|G, |,| G, | G, =G, li=1,---,k, j=1,..)) <5 )=P.

Satisfying the above equation, the value of §, is determined as the 100P-th percentile of
the distribution of max(|G, |,| G; l,| G; -G, |,i=L-k,j=1,...,0) and the proof is
thus established. o
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