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Abstract: Under heteroscedasticity, we propose one-stage multiple comparison procedures for several
treatment groups compared with several control groups in terms of exponential mean lifetimes. The
simultaneous confidence intervals including one-sided and two-sided confidence intervals for the
difference between the mean lifetime from the i-th treatment group and the mean lifetime from
the j-th control group are developed in this research. The required critical values are obtained and
tabulated for the practical use of users. The experimenters can use these simultaneous confidence
intervals to determine whether the treatment mean lifetimes are better than several controls or worse
than several controls under a specified confidence level. Finally, one example of comparing the mean
duration of remission using four drugs for treating leukemia is used for the aims of illustrations.

Keywords: one-stage procedure; multiple comparison with the control; multiple comparison with
several controls; exponential distribution

1. Introduction

Our research is related to the field of ranking and selection. For normal distributions,
Bechhofer [1] and Gupta [2] are the pioneers in this field. Instead of normal distributions,
exponential distributions are widely used to model the lifetimes of products. For expo-
nential lifetime distributions, k(>2) independent treatment groups and I control groups
are considered. Let Xji, - - - , Xjy, be the random sample of size m from the i-th treatment
group 7;, I =1, ...,k where 7r; follows a two-parameter exponential distribution denoted
by E(6;,0;),I=1, ...,k The parameters 6, - - - , 0 are the unknown location parameters
(also known as the guaranteed time in reliability and engineering) and the parameters
o1, -, 0% are the unknown and unequal scale parameters. Likewise, let X]’-‘l, cee, X;‘m be
the random sample of size m from the j-th control group nj’f, j=1,...,1, where n;‘ follows
a two-parameter exponential distribution denoted by E(#;,&;),j=1, ..., l. The parameters
11, -+ , 1 are the unknown location parameters and parameters ¢y, - - - , ¢; are the unknown
and unequal scale parameters. Furthermore, the mean lifetime for the i-th treatment group
is pj = 0; + 03,1=1,..., k and the mean lifetime for the j-th control group is u} = 7; + ¢j,
j=1,...,1 When scale parameters for exponential distributions are unknown and possibly
unequal, Lam and Ng [3] proposed the design-oriented two-stage multiple comparisons
with the control. Please see Lam and Ng [3] for the detailed introduction for the two-stage
procedures. The disadvantage for the two-stage procedure is that the required sample
size for the second stage may be large. To remedy this problem, the one-stage sampling
procedure addressed above can be considered instead. Based on the one-stage sample from
k populations, Wu et al. [4] developed the multiple comparison procedures for exponential
location parameters with the control when scale parameters are unknown and unequal.
Instead of comparing with the control, Wu [5] proposed one-stage multiple comparisons
with the average for exponential location parameters. Maurya [6] investigated the one-stage
multiple comparisons with more than one control under heteroscedasticity. Maurya [7]
proposed another one-stage multiple comparisons with a control under heteroscedasticity.
Instead of comparing the location parameters for exponential distributions, the one-stage
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multiple comparisons with the average in terms of mean lifetimes are proposed by Wu [8].
Unlike the multiple comparison procedure with the control based on mean lifetimes in
Wau [8], the aim and the novelty of this paper is to compare several treatment popula-
tions with more than one control populations based on the mean lifetimes. The research
methodologies are addressed in Section 2 by using the techniques in Lam’s research ([9,10]).
The research results in Wu [8] can be treated as a special case of our proposed method
in this paper when the number of control populations ! = 1. Therefore, this paper has
more general applications compared with the results in Wu [8]. In order to illustrate our
proposed simultaneous confidence intervals in Section 2, we use an example of comparing
two treatment drugs with two control drugs for treating leukemia in Section 3. In this
example, each drug group consists of 20 patients and the dataset for each group passed the
fitness test for exponential distribution by the use of the Gini test (Gail and Gastwirth [11]).
In Lawless [12], they conducted a likelihood ratio asymptotic chi-squared test for the ho-
mogeneity of scale parameters and the results revealed that the scale parameters for four
exponential distributions are significantly different. In Section 4, the conclusions related to
our research methods are made.

2. Comparing with Several Controls for Exponential Mean Lifetimes

For the one-stage sample X, - - - , Xjy; of size m from the i-th treatment group, we let
Y; = min(Xjy, -, X;,) and S; = ;»":1 (Xij—Y;)/(m—1),I=1,...,k Likewise, for the
one-stage sample X;‘l, e, X]’fm of size m from the j-th control group, we let Y]* = min(X]*?l,

,X}‘m) and S]’.‘ =Y (X]*t - Y].*)/(m -1),j=1,...,1L

Before we start to construct the simultaneous confidence interval (SCI) for y; — y;‘,
I=1,...,kj=1,...,1, weneed to consider the following random variables:
G, = (—mSi/Ui +m — m(Yl - 91‘)/0'1')/(5,‘/0'1'), I=1,..., kand

1

G} = (=mS; g+ m—m(¥; =) /5)/ (S7/8), =1, - L

From Roussas [13], they indicated that Q; = 2(m — 1)S;/0; ~x3,,_,and Q;‘ =2(m—1)
S]’-‘ /G~ X%m—Z’ where X%m—Z represents a chi-squared distribution with 2m — 2 degrees of
freedom (df). Furthermore, E; = m(Y; — 6;)/0;~Exp(1) and Ej’f = m(Y]* —1;)/Gj~Exp(1),
where Exp(1) represents a standard exponential distribution. In addition, the random
variablesE;, Q;,i=1,...,kand E]’.‘, Q]’f, j=1,...,1 are stochastically independent.

Intermsof E;, Q;,i=1,...,kand E;f, Qf,j =1,...,1, therandom variables G;, I =1,
..., kand G]’-*,j =1,...,1can be rewritten as follows:

G — —mS;/oi+m—m(Y;—0;)/0; _ —2m(m—1)S;/0;+2(m —1)(m—m(Y;—6;)/0;)
i S;/o; 2(m—1)S;/0;
= —m+ Z(W_%Em_Ei)
and i § .
o TSmOy )/ 2= E)
/ 5/ Q;

Once the independent random variables E;~Exp(1) and Q;~x3,,_, are generated, the
random variable G; can be thus generated, [ = 1, ... , k. Likewise, once the independent
random variables E;~Exp(1) and Q;~ X%mfzf are generated, the random variable G]?k can be
generated, j=1,... 1

Now we can propose the one-stage multiple comparison procedures for exponential
mean lifetimes with several controls denoted by M — y;‘, I=1,...,kj=1,...,1as follows:
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Theorem 1. Fora given 0 < P < 1,let¢ = ax (
=1,k j=1,...,

),

G, = (—msi/O'i-i-m—m(Yi—91')/0',')/(51'/0'1'), I=1,..., kand

G} = (—mS}‘/Cj +m—m(Y] — 17]')/5]')/(5;“/‘:]')/ j=1L... L
We have the following results:

(a) If sy is the 100P-th percentile of the distribution of max(—G]’F, G;,G; — Gf, i=1,---k
j = 1,...,1), then we have

P(j; =} <Y+ Si—Y; —Sf+8y, i=1, ,kj=1,...1)>P.

Thus, (—oo,Y; 4+ S; — Yi =57+ C8y;) is a set of upper confidence intervals for p; — pj with
confidence coefficient P, 1=1, ...,k j=1,...,1L

(b)  If 5, is the 100P-th percentile of the distribution of max(—G;, G/, G =Gyi=1,-,kj=1,
..., 1), then we have

Pl — i} > Y;+Si—Y; —Sf —, i=1,--- ,kj=1,...,1)>P.

Thus, (Y; + S; — Y]* - S]’f — Csp,00) is a set of lower confidence intervals for p; — y]’f with
confidence coefficient P, 1=1,... ,k,j=1,...,1L

(c)  If s, is the 100P-th percentile of the distribution of max( ‘ G;
j=1,...,1), then we have

G;_Gi/izll"'/k/

7 7

G

P(Y,+Si =Y} =81 =&, <py—p! SV +8—Y; =S +&yi=1-k
j=1,...,0)>P

Thus, (Y; +S; — Y]* - S;-* + Cs,) is a set of simultaneous two-sided confidence intervals for
M — y]* with confidence coefficient P,1=1,... ,k,j=1,...,1

The technique given in Lam ([9,10]) is described in the following lemma:

Lemma 1. If X and Y are two random variables, a and b are two positive constants, then [aX >
bY —dmax(a,b)] D [X > —d, Y <dand X > Y —d].

The proof of Lemma 1 is given in Lam [1] and it is briefly given in the section of
Appendix A. Using the technique in Lemma 1, the proof of Theorem 1 is also given in
Appendix A.

Since the critical values 5;;, 5; and s, in Theorem 1 are difficult to obtain, the Monte
Carlo simulation method is used to find the critical values and the algorithm to obtain these
critical values is given as follows:

Step 1: Generate k independent random variables E;~Exp(1) and ! independent ran-
dom variables Ef~Exp(1). Generate another k independent random variables

QiNX%(m—l) and [ independent random variables Q}k~x%(m_1). Then, the k + I
independent random variables:

G; =—m+2m—1)(m—E;)/Q; =1, ..., kand
Gj =-m+2(m—1)(m—E)/Qj, =1, ..., | can be generated.
Step 2: The values of max(—G]’f,Gl-, G; — G]’f, i=1,---,kj=1,...,1),

max(—Gi,G]*,G;f -Gj,i=1,--,kj=1,...,1)and
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max( ‘ G;

G;

G}‘—Gi

, , ,i=1,---,kj=1,...,1) can be computed.

Step 3: Repeat Step 1 and Step 2 100,000 times. Then, the critical values s;;, 5; and s, can
be obtained as the 100P-th empirical percentiles of

max(—G]’-“,Gi,Gi—G;‘, i=1,---,kj=1,...,1),
max(~G;, G}, G — Gi,i=1,--+ ,kj=1,...,l)and

, , ,i=1,---,kj=1,...,1) respectively.

max(’Gi ctl.|cr —ai

The approximate critical values 5;;, 5;, and s, under (k,]) = (2,2), (2,3), (2,4), (3,2), (3,3),
(4,2), m =2(1)10(5)30 and P = 0.90, 0.95, and 0.975 are listed in Table 1. From Table 1, it
can be seen that the approximate critical values s, 5;, and s, are increasing while k + I is
increasing for any given P and m or while P is increasing for any given k, [, and m. Let L; be
the length of the two-sided confidence intervals for p; — y;f, I=1,...,kj=1,..., Iforthe
one-stage procedure, then we have L; = 2¢5,. From this equation, we can see that the larger
the k + I, the larger the value of 5; and then the larger confidence length of L; for any given
P and m. Likewise, we can also see that when P increases, the confidence length increases

for any given k, [, and m.

Table 1. Critical values of 5,;, 5;, and 5, for P = 0.90, 0.95, and 0.975.

12.08 16.69 21.52 18.19 25.01 31.74 26.67 36.62 46.28
10.25 13.17 16.07 14.15 18.05 21.66 18.96 24.10 28.58
9.90 12.25 14.59 13.12 16.04 18.75 16.84 20.46 23.57

P=0.90 P=0.95 P =0.975
k 1 m - - - - = - = = =
Su SL St Su SL St Su SL St
2 2 2 24.32 24.36 49.17 50.12 50.52 100.37 100.68 102.56 202.85
3 11.13 11.13 16.84 17.06 17.06 25.14 25.35 25.26 36.73
4 9.51 9.52 13.23 13.34 13.38 18.07 18.10 18.19 24.08
5 9.18 9.20 12.27 12.33 12.39 16.01 16.03 16.10 20.43
6 9.22 9.22 12.02 12.11 12.11 15.31 15.35 15.36 19.02
7 9.40 9.42 12.06 12.14 12.13 15.04 15.08 15.09 18.33
8 9.65 9.64 12.22 12.30 12.28 15.07 15.12 15.10 18.16
9 9.90 9.93 12.44 12.48 12.53 15.19 15.22 15.23 18.09
10 10.21 10.23 12.72 12.78 12.79 15.39 15.42 15.43 18.24
15 11.67 11.68 14.23 14.29 14.28 16.85 16.87 16.87 19.47
20 13.02 13.03 15.70 15.75 15.75 18.35 18.36 18.39 20.98
25 14.28 14.30 17.10 17.13 17.17 19.84 19.84 19.88 22.46
30 15.48 15.42 18.41 18.49 18.44 21.27 21.33 21.26 24.01
2 3 2 26.30 35.08 61.24 53.65 71.91 124.81 107.23 145.94 252.28
3 11.65 14.09 19.30 17.70 21.30 28.67 26.07 31.42 41.94
4 9.96 11.57 14.83 13.84 16.01 20.08 18.67 21.54 26.65
5 9.61 10.90 13.55 12.82 14.44 17.52 16.54 18.52 22.18
6 9.68 10.81 13.20 12.57 13.95 16.61 15.81 17.42 20.47
7 9.90 10.89 13.15 12.63 13.78 16.27 15.62 16.92 19.65
8 10.14 11.09 13.28 12.78 13.87 16.18 15.58 16.80 19.33
9 10.43 11.34 13.48 13.01 14.03 16.29 15.75 16.85 19.31
10 10.73 11.65 13.75 13.29 14.29 16.48 15.94 17.01 19.38
15 12.31 13.10 15.28 14.91 15.75 17.91 17.49 18.36 20.55
20 13.76 14.51 16.80 16.47 17.21 19.46 19.09 19.85 22.05
25 15.13 15.86 18.29 17.95 18.71 21.01 20.64 21.40 23.68
30 16.39 17.10 19.67 19.38 20.05 22.54 22.23 22.88 25.34
2 4 2 28.14 46.00 73.85 56.73 94.80 150.80 114.03 190.63 303.81
3
4
5
6

9.98 11.99 14.08 12.86 15.27 17.60 16.08 18.97 21.59
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Table 1. Cont.
P=0.90 P =0.95 P =0.975
k 1 m - - - - = - - = ~
su SL, St Su Sr, St Su SL, St

7 10.19 11.99 13.97 12.92 15.01 17.15 15.88 18.29 20.70
8 10.46 12.16 14.07 13.08 15.04 17.09 15.90 18.13 20.32
9 10.76 12.41 14.28 13.36 15.18 17.15 16.05 18.12 20.18
10 11.10 12.65 14.52 13.67 15.36 17.31 16.35 18.17 20.24
15 12.76 14.13 16.05 15.33 16.78 18.70 17.88 19.42 21.38
20 14.32 15.59 17.63 17.01 18.28 20.29 19.63 20.90 22.92
25 15.70 16.96 19.13 18.51 19.76 21.87 21.22 22.45 24.51
30 17.04 18.25 20.57 20.01 21.19 23.41 22.81 24.00 26.16

3 2 2 35.20 26.44 61.78 72.37 54.14 126.61 147.01 108.88 255.82
3 14.11 11.73 19.34 21.36 17.76 28.75 31.50 26.19 41.94
4 11.54 9.95 14.79 15.96 13.82 20.01 21.39 18.67 26.57
5 10.90 9.62 13.56 14.44 12.82 17.54 18.57 16.52 22.21
6 10.81 9.69 13.21 13.95 12.58 16.65 17.48 15.83 20.50
7 10.88 9.87 13.15 13.79 12.61 16.25 16.93 15.60 19.68
8 11.07 10.12 13.25 13.84 12.75 16.17 16.78 15.57 19.28
9 11.36 10.43 13.50 14.09 13.02 16.32 16.93 15.71 19.29
10 11.62 10.76 13.75 14.27 13.32 16.50 17.03 15.98 19.37
15 13.09 12.30 15.25 15.71 14.87 17.89 18.35 17.46 20.53
20 14.52 13.78 16.82 17.25 16.48 19.50 19.91 19.13 22.13
25 15.85 15.14 18.28 18.67 17.98 21.02 21.37 20.70 23.69
30 17.08 16.40 19.66 20.04 19.38 22.51 22.84 22.18 25.23

3 3 2 36.89 37.08 71.42 75.84 76.37 149.80 154.64 151.29 307.21
3 14.75 14.65 20.62 21.62 21.84 30.33 32.03 32.58 45.30
4 11.93 11.96 15.14 16.50 16.32 20.75 21.69 22.07 27.54
5 11.34 11.33 13.72 14.91 14.92 17.98 18.98 19.23 22.82
6 11.18 11.21 13.19 14.41 14.38 16.75 17.81 17.80 20.63
7 11.35 11.39 13.09 14.23 14.33 16.23 17.41 17.31 19.67
8 11.60 11.59 13.13 14.26 14.34 16.06 17.34 17.34 19.34
9 11.89 11.84 13.27 14.63 14.63 16.24 17.43 17.37 19.13
10 12.17 12.18 13.48 14.78 14.82 16.21 17.64 17.51 19.15
15 13.70 13.81 14.79 16.35 16.33 17.44 19.08 18.86 20.20
20 15.23 15.33 16.20 17.95 17.98 18.87 20.59 20.67 21.55
25 16.74 16.71 17.60 19.39 19.54 20.19 22.18 22.23 23.09
30 18.06 18.07 18.86 20.93 20.89 21.70 23.63 23.77 24.37

4 2 2 46.06 28.21 73.93 94.26 57.19 150.66 189.64 114.78 301.99
3 16.63 12.08 21.46 24.99 18.16 31.72 36.63 26.62 46.31
4 13.19 10.23 16.07 18.01 14.11 21.60 24.00 18.93 28.49
5 12.26 9.90 14.59 16.05 13.08 18.77 20.50 16.83 23.66
6 11.98 9.95 14.09 15.30 12.86 17.64 18.99 16.10 21.62
7 12.02 10.19 14.01 15.06 12.92 17.21 18.36 15.92 20.74
8 12.17 10.47 14.09 15.05 13.12 17.10 18.13 15.95 20.35
9 12.37 10.78 14.25 15.14 13.38 17.13 18.06 16.11 20.19
10 12.66 11.12 14.54 15.39 13.68 17.32 18.20 16.35 20.24
15 14.12 12.75 16.04 16.76 15.31 18.67 19.39 17.90 21.32
20 15.57 14.28 17.62 18.29 16.98 20.27 20.93 19.57 22.89
25 16.96 15.69 19.14 19.79 18.53 21.89 22.52 21.22 24.55
30 18.23 17.01 20.53 21.16 19.96 23.39 23.99 22.77 26.09

3. Example

From Wu et al. [4], data consisting of the duration of remission achieved by four drugs
for treating leukemia are used to illustrate our proposed simultaneous confidence intervals
in Theorem 1. The data are listed in Table 2. We regard drugs 1,2 as the treatment groups

7y, 1 and drugs 3,4 as the control groups 71}, 75.
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Table 2. Data for the duration of remission by four drugs.

Drug 1 () Drug 2 (u,) Drug 3 (1)) Drug 4 (1)
1.034 2214 4.158 5.115
2.344 4.976 4.025 4.498
1.266 8.154 5.170 4.617
1.563 2.686 11.909 4.651
1.169 2.271 4912 4.533
4118 3.139 4.629 4.513
1.013 2214 3.955 7.641
1.509 4.480 6.735 5.971
1.109 8.847 3.140 12.130
1.965 2.239 12.446 4.699
5.136 3.473 8.777 4914
1.533 2.761 6.321 17.169
1.716 2.833 3.256 5.497
2.778 2.381 8.250 11.332
2.546 3.548 3.759 18.922
2.626 2414 5.205 13.712
3.413 2.832 3.071 6.309
1.929 5.551 3.147 10.086
2.061 3.376 9.773 9.293
2951 2.968 10.218 11.787

The longer mean duration of remission time (u ; or y}*, i=1,2,j=1,2)is desired for
this example. Lawless [12] conducted the likelihood ratio asymptotic x? test to show that
there is a significant difference among the four scale parameters. Thus, the data analysis
one-stage multiple comparison procedures with several controls y; — y]*f, i=12,j=1,2
in Theorem 1 for exponential mean lifetimes under heteroscedasticity can be applied. The
required statistics and critical values of s;;, 5;, and s, for P = 0.90, 0.95, and 0.975 are
summarized in Table 3.

Table 3. The required statistics and critical values.

Statistics Drug1 Drug 2 Statistics Drug 3 Drug 4
Y; 1.013 2.214 Yy 3.071 4.498
S; 1.238 1.530 S;.‘ 3.233 4.075
c 0.204

Yl — Y1*+ Yz — Yl*‘i’
S1—57 Sy — 5%
—4.053 —2.560
Y| - Y5 Y, - Y5+
51 -5 S, —5;
—6.322 —4.829
p sy sy 5
0.900 13.02 13.03 15.70
0.950 15.75 15.75 18.35
0.975 18.36 18.39 20.98

Applying parts (a) and (b) of Theorem 1, we can find the upper and lower confidence
bounds for p; — y]*, i=1,2,j = 1,2 with confidence coefficients 0.90, 0.95, and 0.975 given
in Table 4. With respect to the upper confidence bounds, drug 1 is selected in a subset of
worse than several controls (drug 3 and 4) and drugs 1 and 2 are selected in a subset of
worse than the control (drug 3) with the probability of correct selection being at least 0.90,
0.95, and 0.975 in terms of mean lifetimes since their one-sided confidence intervals do not
contain zero.
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Table 4. The upper confidence bounds and lower confidence bounds under P = 0.90, 0.95, 0.975.

(—00,Y;+8;=Y; =S +csyp), (Y;+Si—Y; —S; —csp,00)

Parameter
90% 95% 97.5%

L (—o00,—1.397), (—00,—0.840), (—00,—0.320),
“H1Th (—6.711,00) (—7.266,00) (—7.805,00)
o (—00,—3.666), (—00,—3.109), (—00,—2.589),
M (—8.980,00) (—9.535,00) (—10.07,00)
T (—0,0.096), (—00,0.653), (—00,1.173),
! (—5.218,00) (—5.773,00) (—6.312,00)
o (—00,—2.173), (—c0,—1.616), (—00,—1.096),
B2 (—1.616,00) (—8.042,00) (—8.581,00)

Applying part (c) of Theorem 1, we can find the two-sided confidence bounds for
W — ;1]’-‘, i=1,2,j =1,2 with confidence coefficients 0.90, 0.95, and 0.975 listed in Table 5.
For confidence coefficients 0.90, 0.95, and 0.975, we can conclude that drug 1 is worse than
several controls (drugs 3 and 4) and drug 2 is worse than drug 4 since both bounds of the
two-sided confidence intervals for these two drugs are negative. Furthermore, drug 2 is
not significantly different from drug 3 in terms of mean remission times.

Table 5. The two-sided confidence intervals under P = 0.90, 0.95, 0.975.

(Yi+8;=Y; =S, —csy, Y;+5;—Y, —S;+csy)

Parameter

90% 95% 97.5%
1oy — yi (—7.256, —0.850) (—7.800, —0.310) (—8.333,0.227)
2.4 — yﬁ (—9.525, —3.119) (—10.07, —2.579) (—10.60, —2.042)
3. py — yf (—5.763, 0.643) (—6.303, 1.183) (—6.840, 1.720)
4. py — y§ (—8.032, —1.626) (—8.572, —1.086) (—9.109, —0.549)

4. Conclusions

From the critical values in Table 1 and the equation of L; = 2¢s;, it is found that the
length of SCI is getting wider when we compare more populations for fixed P and m.

In practical applications, we may have several control populations instead of one
control population. Applying Lam’s [9,10] technique, we propose a multiple comparison
procedure with several controls for exponential mean lifetimes under heteroscedasticity. In
addition, the critical values for (k) = (2,2), (2,3), (2,4), (3,2), (3,3), (4,2), m = 2(1)10(5)30 and
P*=10.90, 0.95, and 0.975 are provided for the use of this investigation problem in Table 1.
Finally, we use one example to illustrate the practical use of our proposed procedures in
Theorem 1. The multiple comparison procedure with one control for exponential mean
lifetimes in Wu [8] is only a special case of our new procedure in Theorem 1 of this research
when [ = 1. Therefore, the results in this paper have more general methods in many fields
of applications.
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Appendix A

Proof of Lemma 1. Consider the following three cases:
Case1: Forb >a,[X > Y —dand Y < d] implies

aX >a(Y —d) >b(Y —d) > bY — dmax(a,b).
Case2: Forb<aand Y <0, [X > —d] implies
aX > —ad > bY — dmax(a, b).
Case3: Forb<aand Y > 0, [X > Y — d] implies
aX > a(X —d) > bY — dmax(a,b).
The proof is established. [
Proof of Theorem 1. For (a), we have
P(Vi*ﬂf SYi+S =Y =S +osy, i=1 k)= 1,...,l>
:P<9i+(7i—17j—§jSYi+Si—l/j*—S;‘+E'§u, i:l,---,k,j:l,...,z)
= P(=Si+ 040 Y S —ST 4G Y + By i=1 kj=10)

:P<Si0’im(—5i+0’i+91—Yi)§S m(_sj+77jl+€j_yj)+a,§u

2i i
m S; o] m S]’.‘ 1j

Ji=1,-kj=1,...,])

wn

LGy — &y, i:l,m,k,j:l,---,l)

g*
m ) m

SR

S* ‘ )
zEsl,...,skP< LG > %Gi—max(%, ) Su i—l,-~,k,j—1,...,l>
>

~Sw G <8, G = Gi=Fy, =1 kj=1,..1)
=P(~Gf <8y, Gi<sly, Gi—Ge <8y =1 kj=1,.,1)

- P(max(—G]’f,Gi,Gi ~Gl, =1 k=10 < §u) =P
Satisfying the above equation, the value of 5;; is determined as the 100P-th percentile
of the distribution of max(—Gf, G;, G; — G;‘, i=1,---,kj=1,...,1) and the proof is thus
established.
For (b), we have

P(9i+ai—;7j—gjzyi+s,-—yj*—s;+’c“§L, i:1,-~~,k,j:1,...,l)

:P(75i+ai+9i—)(i2fS]’-‘+11j+(',‘]-ij*+E§L,i:1,-~~,k,j:1,...,l)
_P<5if7im(—5i+f7i+9i—Yi) Sj i m(=Sj+n+8& —Y))

N m Si o; E 5] 17] + L

Ji=1,,kj=1,...,])
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5i P ,
:P EGl‘ZEG]‘_CSL,lzl,"',k,]:l,...,l

S; 5; S
> ES]/"'/SkP<";Gi > E]G]* — max(—,

SN

- m

)’§L,i:1,---,k,j:1,...,l>

Y

P(Gi > 5,6 <5,G>G —5,i=1- ,k,j:1,...,l)

v
IN

P(—Gi <5, G

5, G —Gi<§,i=1- ,k,j:1,...,l)
:P<max(—Gi,G;‘,G;‘—Gi,i:1,~~~,k,jzl,...,l) ggL) —p

Satisfying the above equation, the value of s; is determined as the 100P-th percentile
of the distribution of max(—G;, G;‘, G]’f —Gji=1,--+,kj=1,...,1) and the proof is thus
established.

For (c), combining (a) and (b), we have

P+ 5 =Y —Sf—& <~} <Y+ 8-V —S 4+, i=1 kj=1,...,1)

:P(Yi+si—yj*—s;f—55t§9i+ai—;7j—gjgyi+sl-—yj*—s;‘+5§t,

Ji=1,kj=1,...1)

)

= ESl,---,SkP(_Gi < fsvt/Gj‘F < vaif' G]* -G < gt n
Gl <5 G <5, Gim G <5, i=L k=1 1)

4 7

> P(max(‘G,-

G;j

GI -G

,i:1,-~,k,j:1,...,l)g's;) =P

Satisfying the above equation, the value of 5, is determined as the 100P-th percentile
of the distribution of max(‘Gi G]’-‘ G]’-‘ - G;
thus established. [

, , ,i=1,---,kj=1,...,1) and the proof is
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