
����������
�������

Citation: Yang, J.; Kim, Y.-H.; Yoon, Y.

A Memetic Algorithm with a Novel

Repair Heuristic for the

Multiple-Choice Multidimensional

Knapsack Problem. Mathematics 2022,

10, 602. https://doi.org/10.3390/

math10040602

Academic Editor: Ioannis G. Tsoulos

Received: 14 January 2022

Accepted: 14 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Memetic Algorithm with a Novel Repair Heuristic for the
Multiple-Choice Multidimensional Knapsack Problem
Jaeyoung Yang 1, Yong-Hyuk Kim 2,3 and Yourim Yoon 4,*

1 Samsung Electronics, 129 Samsung-ro, Yeongtong-gu, Suwon-si 16677, Korea; gmplanet@gmail.com
2 School of Software, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Korea;

yhdfly@kw.ac.kr
3 Department of Cell and Regenerative Biology, School of Medicine and Public Health,

University of Wisconsin-Madison, 1111 Highland Ave., Madison, WI 53705, USA
4 Department of Computer Engineering, College of Information Technology, Gachon University,

1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Korea
* Correspondence: yryoon@gachon.ac.kr

Abstract: We propose a memetic algorithm for the multiple-choice multidimensional knapsack
problem (MMKP). In this study, we focus on finding good solutions for the MMKP instances, for
which feasible solutions rarely exist. To find good feasible solutions, we introduce a novel repair
heuristic based on the tendency function and a genetic search for the function approximation. Even
when the density of feasible solutions over the entire solution space is very low, the proposed repair
heuristic could successfully change infeasible solutions into feasible ones. Based on the proposed
repair heuristic and effective local search, we designed a memetic algorithm that performs well on
problem instances with a low density of feasible solutions. By performing experiments, we could
show the superiority of our method compared with previous genetic algorithms.

Keywords: multiple-choice multidimensional knapsack problem; memetic algorithm; genetic algo-
rithm; repair heuristic

1. Introduction

The 0–1 knapsack problem (KP) aims to pick up items for a knapsack to maximize the
profit sum of the selected items, as long as the weight sum of the selected items does not
exceed the weight capacity b of the knapsack. In formal notation, the KP aims to maximize
∑n

i=1 vixi subject to ∑n
i=1 wixi ≤ b, where n is the number of items, vi is the profit of the i-th

item, wi is the weight of the i-th item and xi ∈ {0, 1}. The multiple-choice multidimensional
knapsack problem (MMKP) is a variant of the knapsack problem with multiple capacity
constraints and multiple-choice conditions [1]. In MMKP, there are n classes of items.
For class i, there are ri items, and each item j has a non-negative profit value of vij, a
non-negative weight vector of wij = (w1

ij, w2
ij, . . . , wm

ij), and bk is the k-th weight capacity of
the knapsack (k = 1, 2, . . . , m), where m is the number of capacity constraints. The formal
definition of the MMKP is described as follows [1]:

maximize
n

∑
i=1

ri

∑
j=1

vijxij

subject to
n

∑
i=1

ri

∑
j=1

wk
ijxij ≤ bk for k ∈ {1, 2, . . . , m},

ri

∑
j=1

xij = 1 for i ∈ {1, 2, . . . , n}, and

xij ∈ {0, 1} for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , ri}. (1)

Mathematics 2022, 10, 602. https://doi.org/10.3390/math10040602 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10040602
https://doi.org/10.3390/math10040602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0492-0889
https://orcid.org/0000-0001-5875-0275
https://doi.org/10.3390/math10040602
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10040602?type=check_update&version=1

Mathematics 2022, 10, 602 2 of 15

In the MMKP, only one item can be selected from each class. When the j-th item
in the i-th class is added to the knapsack, xij becomes 1, and for the other j’s, xij is 0.
The objective of the MMKP is to maximize the profit sum of the selected items satisfying
the capacity constraints. The MMKP has various real-world applications such as the
redundancy allocation problem for series-parallel systems [2], quality adaptation and
admission control in multimedia services [3], quality-of-service problem for systems that
must satisfy multiple requirements [4], and joint resource allocation and routing scheme
in networks with cooperative relays [5,6]. A large number of other resource allocation
problems can also be transformed into MMKPs. The readers can refer to [7] for more details.

The MMKP is NP-hard in the strong sense [8]. Therefore, it is not easy to develop
efficient algorithms for the MMKP. Many studies have been proposed to solve the MMKP.
Moser et al. [8] first proposed a heuristic algorithm for the MMKP, which is based on
Lagrangian relaxation [9,10]. Toyoda [11] proposed a method based on the concept of
the aggregate necessary resource for the multidimensional knapsack problem (MKP), and
Khan et al. [3] proposed its improved variant for the MMKP. Chefi and Hifi proposed a col-
umn generation algorithm to solve the MMKP in [12], and they also proposed three hybrid
heuristic algorithms for relatively large-scale MMKP instances in [13]. Akbar et al. [14] pro-
posed a heuristic that constructs convex hulls to reduce the search space. Sbihi [15] proposed
an exact algorithm for the MMKP, which adopted a branch-and-bound procedure and best-
first search strategy. Parra-Hernandez and Dimopoulos [7] extended the idea of their heuris-
tic approach for the MKP to the MMKP. Over the last 10 years, studies of the MMKP have
focused on iterative heuristics [16–19], branch-and-bound methods [20,21], Lagrangian
relaxation [22–24], linear programming relaxation [25], reformulation/reduction [25–28],
Pareto-algebraic heuristics [20,29], approximate core [30], core-based exact algorithm [31],
two-phase kernel search [32], meta-heuristics such as genetic algorithm [33], swarm intelli-
gence [23,34–37], estimation of distribution algorithm [38], simulated annealing [39], tabu
search [40], etc.

When the constraints of the MMKP are strong, it is very hard to even find feasible
solutions. For these kinds of problems to which feasible solutions that satisfy the constraints
are difficult to find, applying repair methods can be effective.

Repair methods generally mean strategies that change infeasible solutions into feasible
ones under evolutionary computation frameworks. There have been many studies related
to various repair strategies [41–45]. In this study, a novel repair heuristic based on the
tendency function and an effective memetic algorithm (a memetic algorithm is an extension
of the traditional genetic algorithm using a local search technique [46]) are proposed for
the MMKP. We propose a repair heuristic that uses a genetic algorithm which differs from
a memetic algorithm for solving MMKP and the tendency function. The tendency function
is a function specifically designed to suit the characteristics of MMKP for the proposed
repair heuristic, and it is defined as one of the main parts of our repair heuristic. It is used
for transforming infeasible solutions into feasible ones, and uses tendency parameters to
analyze the solution space of the given instance. A genetic algorithm is adopted to attain
optimal tendency parameters. Our memetic algorithm combined with the repair heuristic
searches both the feasible solution space and the infeasible one. Experimental results
demonstrate that our memetic approach performs better than previous genetic algorithms.

The remainder of this paper is organized as follows. Section 2 presents related work
based on genetic algorithms. We propose the tendency function and a repair heuristic
derived from it in Section 3. Section 4 describes our memetic algorithm combined with
the repair heuristic. Experimental results are given in Section 5. Finally, conclusions are
presented in Section 6.

2. Related Work

Parra-Hernandez and Dimopoulos [7] insisted that most heuristic algorithms, La-
grangian relaxation, branch-and-bound methods, and guided local searches for the MMKP
have two defects: first, when the constraints of the MMKP are relatively strong, heuristic

Mathematics 2022, 10, 602 3 of 15

algorithms easily return local optima and may occasionally not find feasible solutions;
second, the time costs needed by these algorithms are quite large.

In this study, we focused on the first problem. A genetic algorithm (GA) [47], which
is a global search method based on natural selection, can effectively escape local optima.
There have been many GAs for the KP and MKP but only three studies for the MMKP.
Liu [48] proposed a simple GA for the MMKP, Rasmy et al. [34] applied various mutation
operators over a simple GA, and Zhou and Luo [49] proposed a GA based on multi-
ple populations (MPGA). The above GAs attempted to find good feasible solutions that
satisfied the constraints of the MMKP [7]. However, GAs can only find good feasible solu-
tions when the constraints of the MMKP are weak. The MPGA attempted to resolve this
problem through multiple populations, which consists of separate populations of feasible
solutions and infeasible ones. This could find good feasible solutions even under strong
MMKP constraints.

In this paper, the tendency function, repair heuristic, and memetic algorithm are
introduced to solve the MMKP. Our repair heuristic searches the solution space and then
finds appropriate repair rules for transforming infeasible solutions to feasible ones. Our
memetic algorithm attempts to improve the quality of feasible solutions using a repair
heuristic. In the next section, the tendency function and repair heuristic derived from the
function are described in detail.

3. Design of a Repair Heuristic Algorithm
3.1. Tendency Function and Repair Heuristic Algorithm

We present a constructive procedure (CP) to find a feasible solution for the MMKP
which considers the violating amount ∆wk. The initial solution is generated by choosing
the most valuable item from each class. The solution is selected considering no constraints,
so it can be infeasible. That is, for some ks, the constraint ∑n

i=1 ∑ri
j=1 wk

ijxij ≤ bk may not

be satisfied. ∆wk means the violating amount of the k-th constraint, ∑n
i=1 ∑ri

j=1 wk
ijxij − bk.

The procedure attempts to reduce ∆wk by changing an item in the most suitable dimension
k [1]. If ∆wk is negative or equal to zero for every k, the solution is feasible. CP is described
by the steps of Algorithm 1 [7]. This greedy procedure attempts to repair the most violated
dimension k0 which makes ∆wk the largest.

In general, CP finds a feasible solution when the density of the feasible solution is
high (Figure 1), but it tends to suffer when the solution space is randomly created and there
is no tendency, which means that the density of the feasible solutions is very low. Hence,
we designed a more sophisticated repair heuristic using a new tendency utility function
concept. Instead of focusing on the most violated dimension, this method tries to find the
most suitable class and item to change. Suppose that there is such a function that tells us
which class and item pair has the largest tendency to make an given solution feasible when
the solution is changed with them. We devised a kind of function, the tendency utility
function described in Algorithm 2. It has six parameters which in this study are referred to
as tendency parameters. Tendency parameters can be considered as the weights of changing
the status of the dimension and the tendency utility can be considered as the weighted
sum of these tendency parameters. It is assumed that the appropriate values of tendency
parameters are previously determined before calculating the value of the tendency utility
function. We cannot just obtain the appropriate values of tendency parameters without
analysis, so we also designed a genetic algorithm for finding the appropriate values of
tendency parameters. This genetic algorithm is different from a memetic algorithm for
solving the MMKP, which is subsequently described in Section 4.

Using tendency utility function and tendency parameters, we designed a repair heuris-
tic based on the tendency function (RHTF). Algorithm 3 shows the steps of the RHTF. If
appropriate values for tendency parameters are previously obtained and the correspond-
ing tendency utility function is well defined, RHTF attempts to maximize the tendency
utility by changing an item. This process is repeatedly applied to attain a feasible solu-
tion. A high tendency utility increases the probability of success in repairing infeasible

Mathematics 2022, 10, 602 4 of 15

solutions. RHTF repeatedly applies the tendency function described in Algorithm 3 to
attain a feasible solution. The tendency function is also used to define a fitness function in
our genetic approximation of the tendency function and works as a repair method in our
memetic algorithm.

Algorithm 1 The constructive procedure (CP) for finding a feasible solution.

procedure CP(an instance of the MMKP)
for i← 1, 2, . . ., n do

vi ← max{vij for j = 1, 2, . . ., ri};
Si ← ji;
φ[i]← ji; xiφ[i] ← 1;
wk ← ∑n

i=1 wk
iφ[i] for k = 1, 2, . . ., m . wk:

the accumulated resources for constraint k
end for
S← (S1, S2, . . ., Sn);
while wk > bk for k = 1, 2, . . ., m do . destructive phase

k0 ← argmax
1≤k≤m

{wk};

i0 ← argmax
1≤i≤n

{wk0
iji
};

φ[i0]← jio ; xi0φ[i0] ← 0;
wk ← wk − wk

i0φ[i0]
for k = 1, 2, . . ., m;

for j← 1, 2, . . ., ri0 do . constructive phase
if ∃j 6= ji0 and wk + wk

i0 j < bk for k = 1, 2, . . ., m then
ji0 ← j; φ[i0]← ji0 ; xi0 j ← 1;
wk ← wk + wk

i0 j for k = 1, 2, . . ., m;
S← (φ[i0]; φ[i], ∀i 6= i0, i = 1, 2, . . ., n);
if the obtained solution S is feasible then return S;
end if

end if
end for
j
′
i0
← argmin

1≤j≤ri0

{wk0
i0 j};

if the obtained solution S is infeasible then
ji0 ← j

′
i0

; φ[i0]← ji0 ; xi0φ[i0] ← 1;
end if

end while
return S;

end procedure

Mathematics 2022, 10, 602 5 of 15

Algorithm 2 Tendency parameters and tendency utility function.

structure TendencyParameter { integer mmi, mmd, ppi, ppd, mp, pm; }
procedure TENDENCYUTILITY(TendencyParameter tp, chromosome s, class c, item r)

cur← s[c]; . current item
res← 0;
for each dimension k (k = 1, 2, . . ., m) do

∆wc,cur ← bk − wk
c,cur; ∆wc,r ← bk − wk

c,r;
case (∆wc,cur < 0, ∆wc,r < 0, ∆wc,cur ≥ ∆wc,r)

res← res + tp.mmi × |∆wc,cur − ∆wc,r|;
case (∆wc,cur < 0, ∆wc,r < 0, ∆wc,cur < ∆wc,r)

res← res + tp.mmd × |∆wc,cur − ∆wc,r|;
case (∆wc,cur > 0, ∆wc,r > 0, ∆wc,cur ≥ ∆wc,r)

res← res + tp.ppi × |∆wc,cur − ∆wc,r|;
case (∆wc,cur > 0, ∆wc,r > 0, ∆wc,cur < ∆wc,r)

res← res + tp.ppd × |∆wc,cur − ∆wc,r|;
case (∆wc,cur < 0, ∆wc,r > 0) res← res + tp.mp × |∆wc,cur − ∆wc,r|;
case (∆wc,cur > 0, ∆wc,r < 0) res← res + tp.pm × |∆wc,cur − ∆wc,r|;

end for
return res;

end procedure

Algorithm 3 The procedure for repairing an infeasible solution with the tendency function:
RHTF.

procedure RHTF(TendencyParameter tp, chromosome s)
while stop condition is met do

Tendency(tp,s);
if s is feasible then return s;
end if

end while
end procedure
procedure TENDENCY(TendencyParameter tp, chromosome s)

if s is infeasible then
(cmax, rmax)← argmax

(1≤c≤n,1≤r≤rc)

{TendencyUtility(tp, s, c, r)};

. Change an item in s that makes the tendency utility the best.
s[cmax]← rmax;

end if
return s;

end procedure

Mathematics 2022, 10, 602 6 of 15

 0

 2000

 4000

 6000

 8000

 10,000

0.750.760.770.780.790.80.810.820.830.840.850.860.87

RHTF
CP

Figure 1. Generating feasible solutions from the CP and RHTF on the problem instance mknapcb8.
The X axis denotes the f value (constraint strength), and the Y axis represents the number of success
cases among 10,000 trials.

3.2. Genetic Approximation of Tendency Function

A genetic approximation of the tendency function (GATF) was designed to provide
the optimal tendency parameters to RHTF, which searches the repair rules to find feasible
solutions. The GATF provides optimal tendency parameters to the tendency utility function
described in the above subsection and our memetic algorithm, which is described later. It
uses the RHTF to define a fitness function for optimizing the tendency parameters. We
describe the proposed GATF in Algorithm 4.

Algorithm 4 The pseudo-code of our genetic approximation of the tendency function: GATF.

procedure GATF(given solution s)
Randomly create initial population for tendency parameters;
while stop condition is met do

Choose parent1 and parent2 from population by proportional selection;
Make offspring by recombining parent1 and parent2 using uniform crossover;
Mutate offspring by swapping randomly chosen two genes;
Get the feasibility of offspring from RHTF(offspring, given solution s) in Algorithm 3;
Replace an individual in the population with offspring;

end while
end procedure

• Representation: we represent a solution using a six-integer array since the objective
of GATF is to find the appropriate values of six tendency parameters. Array cells
correspond to mmi, mmd, ppi, ppd, mp, and pm, which are the members of tendency
parameters in Algorithm 2.

• Crossover: we used a uniform crossover method [50]. Each member of the tendency
parameters is completely independent, and hence, the crossover is performed regard-
less of gene positions.

• Mutation: Two randomly chosen genes among the six genes are swapped.
• Fitness: we determine the fitness of a chromosome by examining the degree of chang-

ing infeasible solutions to feasible ones by applying the RHTF using the tendency

Mathematics 2022, 10, 602 7 of 15

parameters, which are the values of the given chromosome. For a chromosome, we set
its fitness value to the repair success rate (i.e., #success

#trials).

4. Memetic Algorithm for the MMKP

In this section, we propose a memetic algorithm for the MMKP (MAMMKP). Algorithm 5
shows the template of our memetic algorithm.

Algorithm 5 The pseudo-code of our memetic algorithm for the MMKP: MAMMKP.

procedure MAMMKP
Randomly create initial population;
while stop condition is met do

Choose parent1 and parent2 from population by proportional selection;
Make offspring by recombining parent1 and parent2 using multi-cut circular

crossover;
Mutate offspring by changing randomly chosen t genes;
Repair offspring using GATF(offspring) in Algorithm 4;
Locally optimize offspring by a variant 3-Opt;
Replace an individual in the population with offspring;

end while
end procedure

4.1. Local Optimization

MAMMKP uses a variant of 3-Opt [51] for optimizing feasible solutions. In the
MMKP, there are n classes and for each class i, there are ri possible choices of items. Let
x be a feasible solution and Is be an index of selected item of x in class s. This means
that xsIs = 1 and xsj = 0 for j 6= Is. The local optimization algorithm considers all
three-class combinations out of n classes. For a three-class combination (s, t, u), the local
optimization verifies all possible combinations of items for these three classes, leaving the
items of the other classes as they are in the original feasible solution x. After all the possible
combinations are verified, the best solution among them is recorded. The verification is
performed for all three-class combinations, the best three-class combination (s0, t0, u0) is
chosen, and the items of these three classes Is0 , It0 , and Iu0 are replaced by the best values.
After determining the optimal values of Is0 , It0 , and Iu0 , the algorithm considers three-class
combinations out of the remaining classes except (s0, t0, u0) again. This process continues
until there are no more than three classes left to consider.

Although the proposed local optimization algorithm considers three-class combina-
tions, better solutions can be obtained by considering four-class combinations or five-class
combinations. The more combinations are considered, the more areas of the solution
space are searched, and consequently, the probability of finding better solutions increases.
However, verifying all the possible four-class or five-class combinations takes an excessive
amount of time. The complexity of the proposed 3-Opt local optimization process has
an upper bound O((n

3)× r3 × n
3), where r is the maximum of the ri’s, since there are (n

3)
three-class combinations, each of which has at most r3 alternative choices, and the number
of iterations is less than n

3 . Similarly, the upper bound of the complexity of the 4-Opt
local optimization is O((n

4)× r4 × n
4), and it is too costly. Hence, we adopted 3-Opt local

optimization in this study, considering the balance between time and solution quality.

4.2. Genetic Framework

• Representation: a solution is represented by a length-n integer array. The i-th gene
means the index of the i-th class item.

• Crossover: a simple multi-cut circular crossover is adopted.

Mathematics 2022, 10, 602 8 of 15

• Mutation: t genes are randomly changed. The value of t is limited to five or less.
• Repair: we presented a repair heuristic with a tendency function approximated by

GATF in Section 3. We repair infeasible solutions using the proposed repair heuristic.
• Fitness: if a given solution is feasible, its fitness value is obtained by computing the

objective value of the MMKP. However, if a feasible solution is not obtained from
the repair heuristic, the fitness value is set to − 1

m ∑m
k=1

wk
bk

, where m is the number of
constraints, and wk indicates the weight sum of the selected items on the k-th resource
constraint. Unlike the previous method [49], in the case of a violation, we made the
fitness value negative. As this method, strategies to give penalty to infeasible solutions
have generally been used to deal with infeasible solutions in GAs [52–54]. The method
makes the fitness value of an infeasible solution always smaller than the fitness value
of a feasible one. According to the proposed fitness function, the greater the number
of violated constraints is and the greater the degree of violation is, the smaller the
fitness value is. This increases the probability of selecting a feasible solution with a
positive fitness value and reduces the probability of selecting an infeasible solution
with a negative fitness value. By doing this, we can maintain consistency that the
solution with a larger fitness value is always superior to that with a smaller fitness
value. This method is also useful for dealing with two different kinds of solutions
(feasible solutions and infeasible ones) in a population.

• Replacement: RHTF is most likely to find feasible solutions from infeasible ones even
if the density of feasible solutions is very low. However, as shown in Figure 2, the
success rate decreases as the density of feasible solutions decreases. When the RHTF
fails to repair infeasible solutions, GATF attempts to transform infeasible solutions
into feasible ones. Zhou [49] and Htiouech et al. [17] demonstrated that searching
both feasible and infeasible solution spaces is necessary for the global optimum. In
addition, we do not remove infeasible solutions from the population. Instead of a
multi-population, we use the fitness value for a single population that we previously
introduced. Therefore, the population is only changed by the fitness values, regard-
less of the feasibility of the solutions. This is possible because the fitness values of
infeasible solutions are always negative. However, if the whole population is filled
with feasible solutions, the memetic algorithm may lose the possibility of the per-
formance improvement with the help of infeasible solutions, as we can see in the
previous method [49]. To avoid premature convergence, we used a generational GA.
The remaining 70% of individuals in the population, except for the top 30%, were
replaced with new solutions. By this replacement, the memetic algorithm can avoid
falling into local optima.

Mathematics 2022, 10, 602 9 of 15

 0

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

0.750.760.770.780.790.80.810.820.830.840.850.860.87

Figure 2. Density of feasible solutions over the entire solution space on the problem instance mknapcb8.
The X axis denotes the f value (constraint strength) and the Y axis represents the number of feasible
solutions among 106 random solutions.

5. Experiments
5.1. Experimental Settings

For performance comparison, we tested all the problem instances used in [49]. These
are three difficult test instances of mknapcb7, mknapcb8, and mknapcb9 provided by the OR
library [55]. We conducted experiments with various constraint strength values [7] from
0.72 to 0.90. First, we investigated the density of feasible solutions by counting the number
of feasible solutions among 106 randomly generated solutions. Figure 2 shows the results
for the problem instance mknapcb8. The smaller the constraint strength value is, the lower
the density of feasible solutions. If the f value (constraint strength) is smaller than 0.83, the
probability that a given solution is feasible becomes almost zero.

Second, we compared the performances of CP and RHTF by counting the number
of cases in which infeasible solutions are changed to feasible ones among 10,000 trials.
However, we note that the input of CP was originally the set of the most valuable items in
the classes; however, in this MMKP instance, the values are not concerned with weights.
Therefore, we input randomly created infeasible solutions. Figure 1 shows the results for
the problem instance mknapcb8. In this figure, we can see that the proposed repair heuristic
based on the tendency function (RHTF) performs better than the CP. In particular, when
the f value is smaller than 0.8, the CP rarely finds feasible solutions, while RHTF performs
well, showing relatively high success rates.

The population size and the number of generations in our GA for the approximation
of the tendency function (GATF) were set to 30 and 300, respectively. In the GA, the number
of feasible solutions for obtaining the fitness of a solution (tendency parameter) was set to
30. The maximum number of iterations of the tendency function in the RHTF was also set
to 30.

Our code is written in C++ and ran on Linux Ubuntu 18.04.6 using the CPU of AMD
Ryzen Threadripper 2990WX (32-Core) Processor 3.0 GHz and the memory of 64 GB.

5.2. Performance of the RHTF

The results comparing the CP and RHTF is given in Figure 1. This shows that the
RHTF is more powerful than the CP in almost all f s. When the density of feasible solutions
is below 3%, the CP fails but RHTF creates feasible solutions with a success rate of approxi-
mately 95%. Even when the density of feasible solutions is extremely low (f is 0.75), RHTF
transforms infeasible solutions into feasible ones with a success rate of nearly 40%.

Mathematics 2022, 10, 602 10 of 15

5.3. Performance of the MAMMKP

We compared MAMMKP with three state-of-the-art methods, HMMKP, LGA, and
MPGA, previously proposed in other studies. The experimental results of HMMKP, LGA,
and MPGA are obtained from [7,48,49], respectively. In MAMMKP, the population size and
number of generations were set to 200 and 500, respectively. MAMMKP terminates when
70% of the top 30% of individuals in the population are the same. For each test instance,
three or four different values of f were set—where f represents the constraint strength [7].

The experimental results are given in Tables 1–3. Among the results of HMMKP, LGA,
and MPGA marked “N/A”, this indicates that the corresponding experiment was not
tested in previous studies and has no results. Among the previous three methods, HMMKP,
LGA, and MPGA, MPGA had the best performance. The average results of MPGA were
better than the results of HMMKP. From the results of these tables, it is also observed that
MAMMKP outperformed HMMKP for all test cases. This means that MAMMKP showed
a better performance than HMMKP, regardless of the number of classes, the number of
dimensions, and f values. MAMMKP also showed better results than LGA and MPGA
in the minimum and average values for all test cases. In particular, it showed f values
of 0.75 and 0.73 on mknapcb8 and mknapcb9, respectively, which are the most difficult
test cases in our experiments; thus, MAMMKP showed better results than MPGA in terms
of the minimum, average, and maximum values. Furthermore, on mknapcb9 with an f
value of 0.72, MPGA could not find feasible solutions, while MAMMKP always obtained
feasible ones. We also conducted t-tests to compare the performances of MAMMKP and
MPGA. The average results for the problem instance mknapcb7, mknapcb8, and mknapcb9
have p-values of 4.56× 10−5, 1.28× 10−6, and 4.11× 10−8, respectively, by the t-tests. That
is, the performance of MAMMKP is significantly better than that of MPGA for the three
problem instances. It is also observed that the p-value decreases as the instance number
increases. This means that the more difficult the problem is, the better the performance of
the MAMMKP compared to the MPGA is.

Table 1. Experimental results on the problem instance mknapcb7.

f Test Set HMMKP [7]
LGA [48] MPGA [49] MAMMKP

Max Ave Min Max Ave Min Max Ave Min CPU *

0.90

0 17,510 18,627 18,535.8 18,524 18,627 18,549.1 18,524 18,627 18,627.0 18,627

8

1 17,948 18,081 18,077.0 17,981 18,081 18081.0 18,081 18,081 18,081.0 18,081
2 17,049 17,688 17,688.0 17,688 17,688 17,688.0 17,688 17,688 17,688.0 17,688
3 17,833 17,935 17,935.0 17,935 17,935 17,935.0 17,935 17,935 17,935.0 17,935
4 17,315 18,550 18,532.8 18,483 18,550 18,548.7 18,483 18,550 18,550.0 18,550
5 18,318 18,707 18,639.3 18,608 18,707 18,705.1 18,614 18,707 18,707.0 18,707
6 18,045 18,141 18,135.8 18,107 18,141 18,140.6 18,119 18,141 18,141.0 18,141
7 17,301 18,122 18,122.0 18,122 18,122 18,122.0 18,122 18,122 18,122.0 18,122
8 17,563 18,881 18,821.9 18,799 18,881 18,869.1 18,803 18,881 18,881.0 18,881
9 16,691 17,286 17,263.7 17,184 17,286 17,239.1 17,184 17,286 17,286.0 17,286

0.84

0 15,617 17,447 17,396.3 17,335 17,482 17,443.1 17,351 17,482 17,478.5 17,447

27

1 15,951 17,025 17,008.8 16,855 17,120 17,026.9 17,025 17,120 17,063.0 17,025
2 14,080 16,655 16,473.4 16,292 16,655 16,607.8 16,421 16,655 16,655.0 16,655
3 14,876 16,986 16913.9 16,805 17,041 16,991.5 16,846 17,041 17,041.0 17,041
4 15,595 17,531 17,531.0 17,531 17,531 17,531.0 17,531 17,531 17,531.0 17,531
5 15,791 17,742 17,664.0 17,546 17,742 17,671.6 17,602 17,742 17,723.8 17,716
6 15,484 17,408 17,323.0 17,250 17,425 17,394.9 17,385 17,425 17,425.0 17,425
7 14,963 16,837 16782.5 16,692 16,985 16,855.9 16,774 16,985 16,985.0 16,985
8 16,160 17,763 17,751.9 17,625 17,763 17,759.5 17,616 17,763 17,763.0 17,763
9 13,098 16,325 16,235.1 16,131 16,325 16,323.6 16,289 16,325 16,316.4 16,254

0.80

0

N/A

15,597 15,333.5 14,946 15,799 15,559.6 15,404 15,799 15,680.0 15,680

61
1 15,816 15,599.4 15,488 15,783 15,724.6 15,665 15,816 15,775.2 15,735
2 15,469 14,954.5 14,698 15,503 15,410.3 14,951 15,503 15,496.2 15,469
3 15,869 15,722.6 15,381 15,869 15,822.3 15,709 16,015 16,015.0 16,015
4 16,300 16,211.9 15,694 16,300 16,300.0 16,300 16,300 16,300.0 16,300

Mathematics 2022, 10, 602 11 of 15

Table 1. Cont.

f Test Set HMMKP [7]
LGA [48] MPGA [49] MAMMKP

Max Ave Min Max Ave Min Max Ave Min CPU *

5 16,742 16,535.4 16,425 16,742 16,742.0 16,742 16,742 16,742.0 16,742
6 16,045 15,889.7 15,700 16,401 16,088.8 15,966 16,401 16,151.8 16,045
7 15,029 14,883.5 14,701 15,290 15,015.0 14,836 15,290 15,169.2 15,029
8 16,564 16,511.0 16,401 16,564 16,559.9 16,541 16,564 16,564.0 16,564
9 14,863 14,732.8 14,567 15,033 14,862.1 14,772 15,033 14,994.1 14,863

* Average CPU seconds on each run.

Table 2. Experimental results for the problem instance mknapcb8.

f Test Set HMMKP [7]
LGA [48] MPGA [49] MAMMKP

Max Ave Min Max Ave Min Max Ave Min CPU *

0.90

0 45,493 45,982 45,981.0 45,931 45,982 45,982.0 45,982 45,982 45,982.0 45,982

27

1 47,130 47,291 47,278.4 47,234 47,291 47,291.0 47,291 47,291 47,291.0 47,291
2 45,390 45,673 45,643.0 45,596 45,673 45,658.6 45,616 45,673 45,673.0 45,673
3 45,810 45,806 45,804.2 45,804 45,810 45,808.0 45,804 45,810 45,810.0 45,810
4 45,270 45,361 45,334.3 45,295 45,361 45,358.8 45,317 45,390 45,390.0 45,390
5 46,611 46,611 46,611.0 46,611 46,611 46,611.0 46,611 46,611 46,611.0 46,611
6 46,064 46,375 46,375.0 46,375 46,375 46,375.0 46,375 46,375 46,375.0 46,375
7 45,450 46,491 45,472.2 45,459 45,491 45,486.1 45,459 45,491 45,491.0 45,491
8 47,156 47,159 47,159.0 47,159 47,159 47,159.0 47,159 47,159 47,159.0 47,159
9 45,859 46,149 46,148.6 46,139 46,149 46,148.8 46,139 46,149 46,149.0 46,149

0.80

0 38,523 43,230 42,980.0 42,706 43,487 43,209.9 42,872 43,530 43,460.2 43,394

356

1 41,185 44,696 44,459.9 44,261 44,843 44,629.9 44,450 44,904 44,838.6 44,779
2 41,259 43,237 42,938.4 42,666 43,365 43,108.3 42,806 43,388 43,365.1 43,290
3 40,066 42,825 42,545.9 42,343 43,011 42,778.7 42,513 43,114 43,001.6 42,926
4 38,262 43,124 42,898.3 42,688 43,308 43,040.2 42,726 43,368 43,368.0 43,368
5 39,670 43,277 42,949.0 42,600 43,486 43,258.2 42,993 43,510 43,462.5 43,298
6 38,547 43,675 43,415.6 43,088 43,799 43,574.6 43,330 43,823 43,798.9 43,750
7 39,445 42,218 41,987.7 41,603 42,520 42,225.2 41,957 42,529 42,458.5 42,321
8 40,954 44,485 44,173.5 43,955 44,713 44,446.4 44,006 44,714 44,644.0 44,603
9 39,834 43,426 43,132.1 42,693 43,582 43,380.2 43,062 43,618 43,535.7 43,489

0.75

0

N/A

38,149 37,576.9 36,895 38,933 38,391.6 37,519 39,171 39,160.8 38,967

1251

1 39,720 38,732.8 37,572 40,105 39,704.1 38,946 40,334 40,197.1 39,960
2 39,000 38,208.3 37,687 39,147 38,798.0 38,392 39,271 39,207.4 39,204
3 38,435 37,873.5 37,349 38,826 38,442.9 38,013 38,905 38,754.2 38,573
4 38,508 37,850.3 37,059 38,508 38,728.0 38,201 39,438 39,205.6 39,019
5 37,444 36,264.8 35,156 37,829 37,003.0 35,777 38,090 37,683.9 37,254
6 37,536 36,587.9 35,356 38,475 37,592.2 36,747 38,706 38,339.8 38,016
7 37,833 37,464.8 37,054 38,322 37,925.2 37,632 38,324 38,184.3 38,096
8 38,910 38,009.4 36,874 39,647 38,911.9 38,240 39,695 39,287.4 39,014
9 36,936 36,112.4 35,363 37,380 36,745.5 35,689 37,632 37,215.5 36,966

* Average CPU seconds on each run.

Table 3. Experimental results for the problem instance mknapcb9.

f Test Set HMMKP [7]
LGA [48] MPGA [49] MAMMKP

Max Ave Min Max Ave Min Max Ave Min CPU *

0.90

0 92,021 92,025 92,025.0 92,025 92,025 92,025.0 92,025 92,031 92,031.0 92,031

409

1 92,371 92,371 92,371.0 92,371 92,371 92,371.0 92,371 92,371 92,371.0 92,371
2 93,396 93,396 93,391.9 93,384 93,396 93,395.8 93,387 93,396 93,396.0 93,396
3 91,815 91,815 91807.4 91,798 91,816 91,813.3 91,800 91,816 91,816.0 91,816
4 93,317 93,317 93,317.0 93,317 93,317 93,317.0 93,317 93,317 93,317.0 93,317
5 91,547 91,551 91,550.4 91,547 91,551 91,550.4 91,549 91,553 91,553.0 91,553
6 91,480 91,480 91,480.0 91,480 91,480 91,480.0 91,480 91,480 91,480.0 91,480
7 91,672 91,681 91,657.0 91,645 91,681 91,662.8 91,646 91,681 91,681.0 91,681
8 93,149 93,149 93,149.0 93,149 93,149 93,149.0 93,149 93,149 93,149.0 93,149
9 93,528 93,531 93,530.0 93,507 93,531 93,531.0 93,531 93,531 93,531.0 93,531

Mathematics 2022, 10, 602 12 of 15

Table 3. Cont.

f Test Set HMMKP [7]
LGA [48] MPGA [49] MAMMKP

Max Ave Min Max Ave Min Max Ave Min CPU *

0.75

0 74,927 82,742 81,578.7 80,681 83,268 82,676.5 81,838 83,540 83,404.4 83,261

1004

1 73,570 80,125 78,947.1 77,715 81,222 80,528.5 79,791 81,646 81,263.0 81,022
2 74,739 81,493 80,523.3 79,458 82,815 81,928.0 80,756 83,149 82,961.0 82,796
3 69,813 80,288 79,201.7 77,916 81,672 80,910.2 80,141 81,927 81,751.4 81,571
4 74,323 82,549 81,187.4 80,028 83,572 82,779.4 81,719 84,121 83,703.6 83,423
5 74,303 81,634 80,940.3 79,892 82,815 82,049.2 81,237 83,045 82,761.2 82,539
6 72,018 78,658 77,265.0 75,917 79,760 78,902.2 77,990 80,037 79,658.3 79,372
7 73,777 79,235 78,178.4 77,115 80,493 79,865.2 79,055 81,052 80,700.4 80,480
8 74,376 80,717 79,827.0 78,840 81,970 81,262.5 80,557 82,326 82,111.3 81,899
9 73,496 81,877 80,893.4 79,514 83,236 82,535.4 81,536 83,676 83,458.8 83,154

0.73

0

N/A

77,443 75,357.0 73,681 78,584 77,801.9 76,725 79,008 78,453.0 76,241

1078

1 73,197 71,614.3 70,363 74,877 73,897.2 72,803 74,968 74,156.5 73,926
2 75,731 36,528.3 0 76,904 75,552.8 73,675 77,082 76,109.5 72,681
3 73,322 71,832.4 70,024 75,335 74,259.5 72,440 75,590 75,184.6 74,469
4 76,382 75,142.7 74,055 78,389 77,104.6 75,914 78,567 78,235.8 77,888
5 76,117 74,812.3 72,618 78,314 77,110.2 75,709 78,516 77,980.7 77,536
6 71,820 67,155.3 0 73,175 71,956.2 69,992 73,523 72,753.3 69,997
7 72,643 71,172.7 68,969 74,434 73,268.5 71,354 74,463 73,857.8 72,284
8 75,431 73,764.9 72,038 76,600 75,811.7 73,799 76,913 76,607.3 76,337
9 74,605 59,521.0 0 77,046 75,486.8 73,698 76,793 76,188.0 75,583

0.72

0

N/A N/A N/A

73,280 72,989.0 72,680

1094

1 70,017 69,841.0 69,617
2 71,774 71,238.0 70,434
3 69,823 69,484.0 68,937
4 74,896 74,682.6 74,511
5 74,536 74,216.2 74,040
6 68,900 68,509.4 68,143
7 68,738 68,467.5 68,212
8 73,458 73,208.2 73,016
9 72,020 70,799.9 70,110

* Average CPU seconds on each run.

6. Concluding Remarks

When there is no concern between THE value and weight in the MMKP, it becomes a
very difficult NP-hard problem. However, even on a random solution space, we could show
that some repair rules for finding feasible solutions do exist. We could also demonstrate
that the proposed method performed well not only in terms of finding the global optimum
but also in adapting to the (feasible) solution space. We showed that our single-population
GA (MAMMKP) successfully simulated the multi-population GA (MPGA) of [49] and
MAMMKP performed better than MPGA.

In this study, a repair heuristic based on a tendency function was designed with human
experience through experiments based on genetic algorithms. To improve the tendency
function, it would be valuable to gather more information for finding repair rules from not
only human experience but also analyzing the MMKP raw dataset. We left the study for
designing a more sophisticated tendency function to future work. We also expect that some
advanced techniques related to genetic algorithms, such as normalization based on gene
similarity [56] and the basis change of binary encoding [57,58], can be adopted to solve
this problem.

Author Contributions: Conceptualization, Y.Y.; methodology, J.Y.; software, J.Y.; validation, J.Y.,
Y.-H.K. and Y.Y.; formal analysis, Y.Y.; investigation, J.Y.; resources, Y.Y.; data curation, J.Y.; writing—
original draft preparation, J.Y.; writing—review and editing, Y.-H.K. and Y.Y.; supervision, Y.Y.;
project administration, Y.-H.K.; funding acquisition, Y.-H.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korean government (Ministry of Science and ICT) (No. 2017R1C1B1010768 and
No. 2021R1F1A1048466).

Mathematics 2022, 10, 602 13 of 15

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are openly available in the OR
library [55].

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hifi, M.; Michrafy, M.; Sbihi, A. Heuristic algorithms for the multiple-choice multidimensional knapsack problem. J. Oper. Res.

Soc. 2004, 55, 1323–1332. [CrossRef]
2. Caserta, M.; Voß, S. An exact algorithm for the reliability redundancy allocation problem. Eur. J. Oper. Res. 2015, 244, 110–116.

[CrossRef]
3. Khan, S.; Li, K.F.; Manning, E.; Akbar, M. Solving the knapsack problem for adaptive multimedia systems. Stud. Inform. Univ.

2002, 2, 157–178.
4. Lee, D.; Siewiorek, D. An Approach for Quality of Service Management. Technical Report. Available online: http://reports-

archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-165R.pdf (accessed on 15 March 2020).
5. Shabany, M.; Sousa, E. Joint rate allocation and routing scheme in multihop cellular CDMA networks. In Proceedings of the 9th

International Symposium on Computers and Communications, Alexandria, Egypt, 28 June–1 July 2004; Volume 1, pp. 442–447.
6. Hwang, H.Y.; Lee, H.; Roh, B.; Kim, S. Joint resource allocation, routing and CAC for uplink OFDMA networks with cooperative

relaying. Wirel. Netw. 2016, 22, 1493–1503. [CrossRef]
7. Parra-Hernandez, R.; Dimopoulos, N. A new heuristic for solving the multichoice multidimensional knapsack problem. IEEE

Trans. Syst. Man Cybern. Part A Syst. Hum. 2005, 35, 708–717. [CrossRef]
8. Moser, M.; Jokanovic, D.; Shiratori, N. An algorithm for the multidimensional multiple-choice knapsack problem. IEICE Trans.

Fundam. Electron. Commun. Comput. Sci. 1997, 80, 582–589.
9. Yoon, Y.; Kim, Y.H.; Moon, B.R. A theoretical and empirical investigation on the Lagrangian capacities of the 0-1 multidimensional

knapsack problem. Eur. J. Oper. Res. 2012, 218, 366–376. [CrossRef]
10. Yoon, Y.; Kim, Y.H. A memetic Lagrangian heuristic for the 0-1 multidimensional knapsack problem. Discret. Dyn. Nat. Soc. 2013,

2013, 474852. [CrossRef]
11. Toyoda, Y. A simplified algorithm for obtaining approximate solutions to zero-one programming problems. Manag. Sci. 1975, 21,

1417–1427. [CrossRef]
12. Cherfi, N.; Hifi, M. A column generation method for the multiple-choice multi-dimensional knapsack problem. Comput. Optim.

Appl. 2010, 46, 51–73. [CrossRef]
13. Cherfi, N.; Hifi, M. Hybrid algorithms for the multiple-choice multi-dimensional knapsack problem. Int. J. Oper. Res. 2009,

5, 89–109. [CrossRef]
14. Akbar, M.M.; Sohel Rahman, M.; Kaykobad, M.; Manning, E.; Shoja, G. Solving the multidimensional multiple-choice knapsack

problem by constructing convex hulls. Comput. Oper. Res. 2006, 33, 1259–1273. [CrossRef]
15. Sbihi, A. A best first search exact algorithm for the multiple-choice multidimensional knapsack problem. J. Comb. Optim. 2007,

13, 337–351. [CrossRef]
16. Crévits, I.; Hanafi, S.; Mansi, R.; Wilbaut, C. Iterative semi-continuous relaxation heuristics for the multiple-choice multidimen-

sional knapsack problem. Comput. Oper. Res. 2012, 39, 32–41. [CrossRef]
17. Htiouech, S.; Bouamama, S.; Attia, R. Using surrogate information to solve the multidimensional multi-choice knapsack problem.

In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 2102–2107.
18. Xia, Y.; Gao, C.; Li, J. A stochastic local search heuristic for the multidimensional multiple-choice knapsack problem. In

Proceedings of the 10th International Conference on Bio-Inspired Computing—Theories and Applications (BIC-TA), Hefei, China,
25–28 September 2015; Communications in Computer and Information Science Book Series (CCIS); Volume 562, pp. 513–522.

19. Gao, C.; Lu, G.; Yao, X.; Li, J. An iterative pseudo-gap enumeration approach for the multidimensional multiple-choice knapsack
problem. Eur. J. Oper. Res. 2017, 260, 1–11. [CrossRef]

20. Zennaki, M. A new hybrid algorithm for the multiple-choice multi-dimensional knapsack problem. WSEAS Trans. Inf. Sci. Appl.
2013, 10, 219–229.

21. Ghassemi-Tari, F.; Hendizadeh, H.; Hogg, G.L. Exact solution algorithms for multi-dimensional multiple-choice knapsack
problems. Curr. J. Appl. Sci. Technol. 2018, 26, 1–21. [CrossRef]

22. Hifi, M.; Wu, L. An equivalent model for exactly solving the multiple-choice multidimensional knapsack problem. Int. J. Comb.
Optim. Probl. Inform. 2012, 3, 43–58.

23. Ren, Z.; Feng, Z.; Zhang, A. Fusing ant colony optimization with Lagrangian relaxation for the multiple-choice multidimensional
knapsack problem. Inf. Sci. 2012, 182, 15–29. [CrossRef]

24. Hifi, M.; Wu, L. Lagrangian heuristic-based neighbourhood search for the multiple-choice multi-dimensional knapsack problem.
Eng. Optim. 2015, 47, 1619–1636. [CrossRef]

http://doi.org/10.1057/palgrave.jors.2601796
http://dx.doi.org/10.1016/j.ejor.2015.01.008
http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-165R.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-165R.pdf
http://dx.doi.org/10.1007/s11276-015-0992-2
http://dx.doi.org/10.1109/TSMCA.2005.851140
http://dx.doi.org/10.1016/j.ejor.2011.11.011
http://dx.doi.org/10.1155/2013/474852
http://dx.doi.org/10.1287/mnsc.21.12.1417
http://dx.doi.org/10.1007/s10589-008-9184-7
http://dx.doi.org/10.1504/IJOR.2009.024531
http://dx.doi.org/10.1016/j.cor.2004.09.016
http://dx.doi.org/10.1007/s10878-006-9035-3
http://dx.doi.org/10.1016/j.cor.2010.12.016
http://dx.doi.org/10.1016/j.ejor.2016.11.042
http://dx.doi.org/10.9734/CJAST/2018/40420
http://dx.doi.org/10.1016/j.ins.2011.07.033
http://dx.doi.org/10.1080/0305215X.2014.982631

Mathematics 2022, 10, 602 14 of 15

25. Mansi, R.; Alves, C.; de Carvalho, J.M.V.; Hanafi, S. A hybrid heuristic for the multiple choice multidimensional knapsack
problem. Eng. Optim. 2013, 45, 983–1004. [CrossRef]

26. Chen, Y.; Hao, J.K. A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem. Eur. J. Oper. Res.
2014, 239, 313–322. [CrossRef]

27. Voß, S.; Lalla-Ruiz, E. A set partitioning reformulation for the multiple-choice multidimensional knapsack problem. Eng. Optim.
2016, 48, 831–850. [CrossRef]

28. Caserta, M.; Voß, S. The robust multiple-choice multidimensional knapsack problem. Omega 2019, 86, 16–27. [CrossRef]
29. Shojaei, H.; Basten, T.; Geilen, M.; Davoodi, A. A fast and scalable multidimensional multiple-choice knapsack heuristic. ACM

Trans. Des. Autom. Electron. Syst. 2013, 18, 51. [CrossRef]
30. Ghasemi, T.; Razzazi, M. Development of core to solve the multidimensional multiple-choice knapsack problem. Comput. Ind.

Eng. 2011, 60, 349–360. [CrossRef]
31. Mansini, R.; Zanotti, R. A core-based exact algorithm for the multidimensional multiple choice knapsack problem. INFORMS J.

Comput. 2020, 32, 1061–1079. [CrossRef]
32. Lamanna, L.; Mansini, R.; Zanotti, R. A two-phase kernel search variant for the multidimensional multiple-choice knapsack

problem. Eur. J. Oper. Res. 2022, 297, 53–65. [CrossRef]
33. Syarif, A.; Anggraini, D.; Muludi, K.; Wamiliana, W.; Gen, M. Comparing various genetic algorithm approaches for multiple-

choice multi-dimensional knapsack problem (mm-KP). Int. J. Intell. Eng. Syst. 2020, 13, 455–462. [CrossRef]
34. Rasmy, M.H.; El-Beltagy, M.A.; Tharwat, A.A.; Heikal, A.F. A comparative study on the performance of genetic algorithm,

artificial immune system and hybrid intelligent approach to multiple-choice multidimensional knapsack problem. In Proceedings
of the 8th International Conference on Informatics and Systems (INFOS), Giza, Egypt, 14–16 May 2012; pp. 20–26.

35. Zyma, K.; Lu, Y.; Vasko, F.J. Teacher training enhances the teaching-learning-based optimisation metaheuristic when used to
solve multiple-choice multidimensional knapsack problems. Int. J. Metaheuristics 2015, 4, 268–293. [CrossRef]

36. Vasko, F.J.; Lu, Y.; Zyma, K. An empirical study of population-based metaheuristics for the multiple-choice multidimensional
knapsack problem. Int. J. Metaheuristics 2016, 5, 193–225. [CrossRef]

37. Mkaouar, A.; Htiouech, S.; Chabchoub, H. Solving the multiple choice multidimensional knapsack problem with ABC algorithm.
In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–6.

38. Yang, T.; Zhang, L.; Hong, Z. Distributed estimation algorithm for multi-dimensional multi-choice knapsack problem. J. Syst.
Simul. 2017, 29, 3123. [CrossRef]

39. Shah, S. Simulated Annealing Algorithm for the Multiple Choice Multidimensional Knapsack Problem. OSF Prepr. 2021.
[CrossRef]

40. Hiremath, C.S.; Hill, R.R. First-level tabu search approach for solving the multiple-choice multidimensional knapsack problem.
Int. J. Metaheuristics 2013, 2, 174–199. [CrossRef]

41. Zhang, X.; Luo, W. Evolutionary repair for evolutionary design of combinational logic circuits In Proceedings of the IEEE
Congress on Evolutionary Computation (CEC), Brisbane, Australia, 10–15 June 2012; pp. 1–8.

42. Xu, P.; Luo, W.; Lin, X.; Qiao, Y. Evolutionary continuous constrained optimization using random direction repair. Inf. Sci. 2021,
566, 80–102. [CrossRef]

43. Samanipour, F.; Jelovica, J. Adaptive repair method for constraint handling in multi-objective genetic algorithm based on
relationship between constraints and variables. Appl. Soft Comput. 2020, 90, 106143. [CrossRef]

44. Guo, M.; Xin, B.; Chen, J.; Wang, Y. Multi-agent coalition formation by an efficient genetic algorithm with heuristic initialization
and repair strategy. Swarm Evol. Comput. 2020, 55, 100686. [CrossRef]

45. Bidabadi, N. Using a repair genetic algorithm for solving constrained nonlinear optimization problems. J. Inf. Optim. Sci. 2018,
39, 1647–1663. [CrossRef]

46. Yoon, Y.; Kim, Y.H. Maximizing the coverage of sensor deployments using a memetic algorithm and fast coverage estimation.
IEEE Trans. Cybern. 2021. [CrossRef]

47. Kim, Y.H.; Yoon, Y.; Geem, Z.W. A comparison study of harmony search and genetic algorithm for the max-cut problem. Swarm
Evol. Comput. 2019, 44, 130–135. [CrossRef]

48. Liu, B. Evolutionary Algorithms for the Multiple-Choice Multidimensional 0-1 Knapsack Problem. Undergraduate Thesis, School
of Computer Science and Technology, University of Science and Technology of China, Hefei, China, 2008. (In Chinese)

49. Zhou, Q.; Luo, W. A novel multi-population genetic algorithm for multiple-choice multidimensional knapsack problems. In
Proceedings of the International Symposium on Intelligence Computation and Applications, Wuhan, China, 22–24 October 2010;
pp. 148–157.

50. Syswerda, G. Uniform Crossover in Genetic Algorithms. In Proceedings of the 3rd International Conference on Genetic
Algorithms, Washington, DC, USA, 4–7 June 1989; pp. 2–9.

51. Mahi, M.; Baykan, Ö.K.; Kodaz, H. A new hybrid method based on particle swarm optimization, ant colony optimization and
3-Opt algorithms for traveling salesman problem. Appl. Soft Comput. 2015, 30, 484–490. [CrossRef]

52. Deb, K.; Agrawal, S. A Niched-Penalty Approach for Constraint Handling in Genetic Algorithms. In Proceedings of the International
Conference in Artificial Neural Nets and Genetic Algorithms, Portorož, Slovenia, 1999; Springer: Berlin/Heidelberg, Germany, 1999;
pp. 235–243.

http://dx.doi.org/10.1080/0305215X.2012.717072
http://dx.doi.org/10.1016/j.ejor.2014.05.025
http://dx.doi.org/10.1080/0305215X.2015.1062094
http://dx.doi.org/10.1016/j.omega.2018.06.014
http://dx.doi.org/10.1145/2541012.2541014
http://dx.doi.org/10.1016/j.cie.2010.12.001
http://dx.doi.org/10.1287/ijoc.2019.0909
http://dx.doi.org/10.1016/j.ejor.2021.05.007
http://dx.doi.org/10.22266/ijies2020.1031.40
http://dx.doi.org/10.1504/IJMHEUR.2015.074431
http://dx.doi.org/10.1504/IJMHEUR.2016.081151
http://dx.doi.org/10.16182/j.issn1004731x.joss.201712025
http://dx.doi.org/10.31219/osf.io/6u3qw
http://dx.doi.org/10.1504/IJMHEUR.2013.054150
http://dx.doi.org/10.1016/j.ins.2021.02.055
http://dx.doi.org/10.1016/j.asoc.2020.106143
http://dx.doi.org/10.1016/j.swevo.2020.100686
http://dx.doi.org/10.1080/02522667.2017.1395146
http://dx.doi.org/10.1109/TCYB.2021.3075986
http://dx.doi.org/10.1016/j.swevo.2018.01.004
http://dx.doi.org/10.1016/j.asoc.2015.01.068

Mathematics 2022, 10, 602 15 of 15

53. Yeniay, O. Penalty function methods for constrained optimization with genetic algorithms. Math. Comput. Appl. 2005, 10, 45–56.
[CrossRef]

54. Lin, C.H. A rough penalty genetic algorithm for constrained optimization. Inf. Sci. 2013, 241, 119–137. [CrossRef]
55. Beasley, J.E. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [CrossRef]
56. Yoon, Y.; Kim, Y.H. Gene-similarity normalization in a genetic algorithm for the maximum k-coverage problem. Mathematics

2020, 8, 513. [CrossRef]
57. Lee, J.; Kim, Y.H. Epistasis-based basis estimation method for simplifying the problem space of an evolutionary search in binary

representation. Complexity 2019, 2019, 2095167. [CrossRef]
58. Kim, Y.H.; Yoon, Y.; Kim, Y.H. Towards a better basis search through a surrogate model-based epistasis minimization for

pseudo-Boolean optimization. Mathematics 2020, 8, 1287. [CrossRef]

http://dx.doi.org/10.3390/mca10010045
http://dx.doi.org/10.1016/j.ins.2013.04.001
http://dx.doi.org/10.1057/jors.1990.166
http://dx.doi.org/10.3390/math8040513
http://dx.doi.org/10.1155/2019/2095167
http://dx.doi.org/10.3390/math8081287

	Introduction
	Related Work
	Design of a Repair Heuristic Algorithm
	Tendency Function and Repair Heuristic Algorithm
	Genetic Approximation of Tendency Function

	Memetic Algorithm for the MMKP
	Local Optimization
	Genetic Framework

	Experiments
	Experimental Settings
	Performance of the RHTF
	Performance of the MAMMKP

	Concluding Remarks
	References

