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Abstract: This paper presents a feature construction approach called Statistical Feature Construction
(SFC) for time series prediction. Creation of new features is based on statistical characteristics of
analyzed data series. First, the initial data are transformed into an array of short pseudo-stationary
windows. For each window, a statistical model is created and characteristics of these models are
later used as additional features for a single window or as time-dependent features for the entire
time series. To demonstrate the effect of SFC, five plasma physics and six oceanographic time series
were analyzed. For each window, unknown distribution parameters were estimated with the method
of moving separation of finite normal mixtures. First four statistical moments of these mixtures
for initial data and increments were used as additional data features. Multi-layer recurrent neural
networks were trained to create short- and medium-term forecasts with a single window as input
data; additional features were used to initialize the hidden state of recurrent layers. A hyperparameter
grid-search was performed to compare fully-optimized neural networks for original and enriched
data. A significant decrease in RMSE metric was observed with a median of 11.4%. There was no
increase in RMSE metric in any of the analyzed time series. The experimental results have shown
that SFC can be a valuable method for forecasting accuracy improvement.

Keywords: feature selection; finite normal mixtures; moving separation of mixtures; deep LSTM;
neural network architectures; deep learning; turbulent plasma; air–sea fluxes

MSC: 65C20; 62M45; 62P12; 62P35

1. Introduction

Forecasting of real-world processes can be limited by the amount of information that
can be reasonably collected. In many problems, data accumulation takes place under
conditions of uncertainty caused by:

• the stochastic nature of the event flow intensity and interactions of a large number of
random factors that cannot be exhaustively predicted;

• the heterogeneity or non-stationarity of data;
• the incompleteness of received and stored information that could arise both from

resource limitations and from the stochastic nature of the external environment.

These stated conditions call for the need for research of probability mixture models
for distributions of the observed processes [1]. A wide class of distributions with the
form of H(x) = EP[F(x, y)] is usually chosen as the base family [2,3]. EP denotes the
mathematical expectation with respect to some probability measure P, which defines a
mixing distribution. It is usually determined through the analysis of external factors
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behavior. F(x, y) is a distribution function with a random vector of parameters y that is
called a mixing (kernel) distribution.

There are two main problems:

• the analytical selection of the kernel type based on limit theorems of probability theory
and mathematical statistics;

• methods of kernel parameter estimation which are random variables themselves.

The combination of parametric and non-parametric methods is the basis of a semi-
parametric approach to the analysis of heterogeneous data. It was successfully applied to
the complex tasks of the precipitation [4] and lunar regolith [5] analysis.

These principles are used as the basis for the method of moving separation of mixtures
(MSM) [1]. MSM is used in this article as a tool for non-trivial extension of the feature space
in neural network training problems. A significant relationship between EM algorithms
and neural networks is well-known. First, backpropagation being the traditional method
of training neural networks is also a specific case [6] of a generalized EM algorithm [7]. Sec-
ondly, finite normal mixtures and various modifications of the EM algorithm that are often
used for estimating the parameters of probability mixture models [8–12] were successfully
applied for solving clustering problems based on various deep neural networks [13,14].

Both short- and long-term data forecasts are essential to the decision-making, pre-
diction of catastrophic events, and experiment planning. Machine learning algorithms,
including neural networks, have proven to be effective forecasting tools for information
flows [15] or weather prediction [16,17]. There are multiple ways to improve prediction
accuracy, the majority of them being feature selection and construction [18–25]. Proper
selection of features plays a critical role in the performance of many machine learning
algorithms [26,27] and may result in better and/or faster trained models [28]. At the same
time, in the analysis of one-dimensional time series, the process of feature construction
becomes valuable as the collection of additional information for data enrichment and
following feature selection may require additional time, resources, or be impossible in cases
of historical data analysis.

Therefore, the idea of using probability mixture models characteristics as additional
features for machine learning solutions of forecasting problems naturally arises. This allows
us to take into account information derived from the mathematical model that is used to
approximate data in a particular subject area. Additionally, a larger set of training data can
be used without the direct increase of the initial observation volume.

In this paper, a new statistical approach to data enrichment and feature construction
that is called Statistical Feature Construction (SFC) has been developed. SFC consists of
two steps. In the first step, initial data are separated into pseudo-stationary sub-samples
(windows). Then, for each of them, the MSM algorithm is used to evaluate parameters
of a corresponding windows-based statistical model. The characteristics of such models
are used to supply additional features to various machine learning methods. In the sec-
ond step, moments of statistical models are used to enhance recurrent neural network
forecasting performance.

This paper significantly expands and generalizes results obtained by the authors in
the field of short- and medium-term neural networks based forecasting [29] including
predictions of mixture moments themselves [30]. To demonstrate the effect of SFC, five
plasma physics experimental datasets of stellarator L-2M [31] and six air–sea interactions
time series were analyzed. New results are focused on the application of statistical char-
acteristics to recurrent networks and comparison of the SFC performance with neural
networks trained on non-enriched data.

The chosen data differ significantly. For example, there is no such phenomenon as
seasonality in plasma while oceanographic data exhibit strong seasonal behavior. The
possibility of significantly improving the accuracy of forecasts for both types of data will be
demonstrated. This proves to be favorable for the generalized application of the proposed
method for accuracy increase of neural network based forecasting.
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Analyzed data are selected for the following reasons. First, for these types of ob-
servations, the possibility of qualitative approximation using finite normal mixtures has
been demonstrated before [32,33]. Secondly, the application of moment characteristics
allowed for obtaining significant results in the task of statistical analysis of experimental
results in plasma physics [33]. Forecasting accuracy increase is the natural continuation of
these studies. Additionally, neural networks were successfully applied in this area [34–38]
including tasks of instability and destructive effect analysis [39,40] and in the interests of
research on the international nuclear fusion ITER megaproject [41].

The paper is organized as follows: Section 2 outlines the MSM approach to the con-
struction of statistical models. Section 3 summarizes the SFC methodology used. Feature
construction and neural network architecture are described, and the question of computa-
tional complexity is addressed. Section 4 presents examples of the real data predictions in
problems of plasma physics and oceanology. Forecasts and accuracy improvement levels
achieved with SFC are shown. In Section 5, the results obtained and the directions for
further research in this area are discussed. Appendix A contains simplified descriptions
(pseudocodes) of the presented algorithms.

2. Finite Normal Mixtures and the MSM Method

The success of approximating distributions for heterogeneous data using arbitrary
mixtures of normal distributions is based on the results for generalized Cox processes [1]
and essentially uses the finiteness of variance of process increments. The main task in this
area is related to the statistical estimation of mixing distribution random parameters.

It is well known that arbitrary continuous normal mixtures are not identifiable, while,
for finite normal mixtures, identifiability holds [42,43]. Therefore, the original ill-posed
problem of parameter estimation can be replaced with the solution closest to the true
one in the space of finite normal mixtures. Such solution exists and is unique due to the
aforementioned identifiability property.

However, the heterogeneity of data arising from the reasons mentioned at the begin-
ning of Section 1 leads to the absence of a universal mixing distribution for a significantly
long timescale. Therefore, the initial time series is divided into possibly intersecting sub-
samples called windows. Then, we can solve the problem of mixing distribution parameter
estimation for each of these intervals while moving them along the time axis in the series.
This procedure is the essence of the method of moving separation of mixtures.

It can be seen that the mixture itself will evolve during the time-movement of subsam-
ples. This in turn allows us to observe the dynamics of the statistical patterns evolution in
the behavior of the studied process.

Created statistical models can serve as qualitative approximations for the distributions
of various processes. We propose to use the first four moments of the corresponding
distributions as additional features for machine learning algorithms.

Let us consider a subsample (nth window) X with size 1 × N and a cumulative
distribution function (a finite normal mixture) of its elements:

F(x, k(n), µn, σn, pn) =
k(n)

∑
i=1

piΦ
(

x− µi(n)
σi(n)

)
, (1)

where x ∈ R, Φ(x) =
+∞∫
−∞

e−x2/2 dx and standard constraints on parameters

µi(n) ∈ R, σi(n) ∈ R, σi(n) > 0,
k(n)

∑
i=1

pi(n) = 1, pi(n) > 0,

hold for all i = 1, . . . , k(n).
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Let a random value Xn have a cumulative distribution function (1). We will assume
that it is an arbitrary element of the sample X. We can assign a set of values to each vector
(E(n)

X ,D(n)
X , γ

(n)
x , κ

(n)
x ). Those values are defined by the following formulas [44]:

• expectation:

E(n)
X = EXn =

k(n)

∑
i=1

pi(n)µi(n); (2)

• variance:

D(n)
X = DXn =

k(n)

∑
i=1

pi(n)
(

µi(n)−
k(n)

∑
i=1

pi(n)µi(n)
)2

+
k(n)

∑
i=1

pi(n)σ2
i (n); (3)

• skewness:

γ
(n)
X =

EX3
n − 3E(n)

X ·D
(n)
X −

(
E(n)

X

)3

(
D(n)

X

)3/2 =

=

[ k(n)

∑
i=1

pi(n)
(

µ3
i (n) + 3µi(n)σ2

i (n)
)
−
( k(n)

∑
i=1

pi(n)µi(n)
)
×

×
(

3
k(n)

∑
i=1

pi(n)
(

µi(n)−
k(n)

∑
i=1

pi(n)µi(n)
)2

+

+3
k(n)

∑
i=1

pi(n)σ2
i (n)−

( k(n)

∑
i=1

pi(n)µi(n)
)2)]

×

×
[ k(n)

∑
i=1

pi(n)
(

µi(n)−
k(n)

∑
i=1

pi(n)µi(n)
)2

+
k(n)

∑
i=1

pi(n)σ2
i (n)

]−3/2

; (4)

• kurtosis:

κ
(n)
X =

EX4
n − 4E(n)

X ·EX3
n + 6

(
E(n)

X

)2
·EX2

n − 3
(
E(n)

X

)4

(
D(n)

X

)2 − 3 =

=

[ k(n)

∑
i=1

pi(n)
(

µ4
i (n) + 6µ2

i σ2
i (n) + 3σ4

i (n)
)
− 3
( k(n)

∑
i=1

pi(n)µi(n)
)4

−

−4
( k(n)

∑
i=1

pi(n)µi(n)
)( k(n)

∑
i=1

pi(n)
(

µ3
i (n) + 3µi(n)σ2

i (n)
))

+

+6
( k(n)

∑
i=1

pi(n)µi(n)
)2( k(n)

∑
i=1

pi(n)
(

µ2
i (n) + σ2

i (n)
))]
×

×
[ k(n)

∑
i=1

pi(n)
(

µi(n)−
k(n)

∑
i=1

pi(n)µi(n)
)2

+
k(n)

∑
i=1

pi(n)σ2
i (n)

]−2

− 3. (5)

The argument n for each of these values (2)–(5) shows a strict dependence on the step
number of the MSM method. That is, these moments are determined not for the entire
time series, but only for a subsample of it. They are determined by observations that are
separated from the first element X—according to its location in the analyzed series—by the
value L of the moving window of the MSM method.

It is well known that, for the initial moments of a random variable X with a normal
distribution with parameters a and σ2 (that is, X ∼ N(a, σ2)), the following equations hold:
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EXm =


a2 + σ2, m = 2;
a3 + 3aσ2, m = 3;
a4 + 6a2σ2 + 3σ4, m = 4.

(6)

For the initial moments of a random variable Xn with a cumulative distribution
function F(x, k(n), fn, σn, pn) (1), we have (m = 1, 2, . . .):

EXm
n =

k(n)

∑
i=1

pi(n)
σi(n)

√
2π

+∞∫
−∞

zm exp
{
− (z− µi(n))2

2σ2
i (n)

}
dz =

k(n)

∑
i=1

pi(n)EXm
[i],

where X[i] ∼ N(µi(n), σ2
i (n)). Thus, the analogues of the expressions (6) are as follows:

EXm
n =



k(n)
∑

i=1
pi(n)µi(n), m = 1;

k(n)
∑

i=1
pi(n)

(
µ2

i (n) + σ2
i (n)

)
, m = 2;

k(n)
∑

i=1
pi(n)

(
µ3

i (n) + 3µiσ
2
i (n)

)
, m = 3;

k(n)
∑

i=1
pi(n)

(
µ4

i (n) + 6µ2
i σ2

i (n) + 3σ4
i (n)

)
, m = 4.

(7)

Substituting these expressions into formulas for variance (3), skewness (4) and kurto-
sis (5) lead to formulae that depend only on the distribution parameters, namely the values
pi(n), µi(n) and σi(n).

Modern computing systems are optimized for performing matrix computations in-
cluding parameter estimation problems that can be implemented with EM algorithms.
Therefore, expressions (2)–(5) can be represented in an equivalent matrix form [30,45]:

• expectation:
EXn = pn µT

n ; (8)

• variance:

DXn = pn

(
Dan µT

n + Dσn σT
n

)
− (pn µT

n )
2; (9)

• skewness:

γXn =
pn D2

an µT
n + 3 pn Dan Dσn σT

n + 2 (pn µT
n )

2

(pn(Dan µT
n + Dσn σT

n )− (pn µT
n )

2)3/2 −

−3 · pn µT
n pn Dan µT

n + pn µT
n pn Dσn σT

n

(pn(Dan µT
n + Dσn σT

n )− (pn µT
n )

2)3/2 ; (10)

• kurtosis:

κXn =
pn
(

D3
an µT

n + 6 D2
σn Dan µT

n + 3 D3
σn σT

n
)

(pn(Dan µT
n + Dσn σT

n )− (pn µT
n )

2)2 −

−
4 EXn pn Dµn

(
Dan µT

n + 3 Dσn σT
n
)

(pn(Dan µT
n + Dσn σT

n )− (pn µT
n )

2)2 +

+
6 (EXn)2 pn

(
Dan µT

n + Dσn σT
n
)
− 3 (EXn)4

(pn(Dan µT
n + Dσn σT

n )− (pn µT
n )

2)2 − 3, (11)
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where

pn =
(

p1, . . . , pk(n)

)
, µn =

(
µ1, . . . , µk(n)

)
, σn =

(
σ1, . . . , σk(n)

)
,

Dan = diag
{

µ1, . . . , µk(n)

}
, Dσn = diag

{
σ1, . . . , σk(n)

}
,

and diag{. . .} denotes diagonal matrices with corresponding elements.
To obtain relations (8)–(11), it is enough to use the matrix representation of expres-

sions (7):

EXm
n =


pn µT

n , m = 1;
pn
(

Dµn
· aT

n + Dσn · σT
n
)
, m = 2;

pn · Dµn

(
Dµn
· µT

n + 3 · Dσn · σT
n
)
, m = 3;

pn

(
D3

µn
· µT

n + 6 · D2
σn · Dµn

· µT
n + 3 · D3

σn · σ
T
n

)
, m = 4.

To evaluate the parameters in expressions (2)–(5) and (8)–(11) for every position of
moved window various modifications of the EM algorithm can be used [7]. For example,
they may include grid modifications of the EM algorithm that were previously implemented
by the authors in the form of a computing service [46]. In this article, we use modifications
with a random selection of initial approximations [32].

3. Methodology of Statistical Feature Construction
3.1. Approach for Feature Construction

The Statistical Feature Construction method is a two step data enrichment algorithm.
The first step of SFC is the creation of statistical models that is the estimation of the
parameters of finite normal mixtures. It is worth noting that the time series of physical
processes can often be non-stationary. Instead of creating one complex statistical model
encompassing the whole time series, we implement the set of models. It consists of a
sequence of models (1) that describes the evolution of the analyzed process.

Time series are split into shorter pseudo-stationary windows on which the mod-
els are constructed. The process of window separation is as follows. Initial data vector
V = {V1, V2, . . . , VL} of L observations serves as input data for the process. Let us choose
some arbitrary window length N (L > N > 1) and divide V into shorter window vectors
X1, X2, X3, . . . where Xi = {Vi, Vi+1, . . . Vi+N−1} are sequences of N consecutive observa-
tions taken from V. We may notice that window vector Xi differs from window vector Xi+1
only by two observations, namely the first observation in Xi and the last observation in
Xi+1.

Once the collection of window vectors is obtained, new difference window vectors
Y1, Y2, Y3, . . . may be constructed, Y j

i = X j+1
i − X j

i . Applying the same transformation to all
window vectors, a collection of difference window vectors is built. Each vector has a length
of (N − 1). Difference window vectors serve as input data for the MSM algorithm.

After window vector and difference vector sets are created, they can be used to
estimate statistical parameters for data enrichment. Such process in the application to
neural network forecasting was previously described and explored in [29].

Hyperparameters on the first step of SFC are the following:

• window length (N);
• kernel selection as described in Section 2;
• number of components (K);
• number (T) and composition of statistical features.

Exact choice of window length is open to debate. Window lengths that are too big lead
to loss of stationarity across the window vector. Additionally, larger windows may contain
observations that have little to no effect on the prediction introducing additional noise to
the model. Smaller windows lead to lack of input data for both the machine learning part
of the algorithm and to the construction of statistical models. A K-component mixture
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requires the evaluation of 3K − 1 statistical parameters which can be hard to perform
accurately on smaller windows.

Choice of the component number is also open to debate. Both empirical and classi-
cal statistical approaches based on information criteria (AIC [47], BIC [48]) can be used.
For physical and oceanographic data, we analyzed cases of mixtures consisting of 3–5
components at each step.

The second step of SFC is the feature expansion; given a statistical model, its char-
acteristics can be used for feature enrichment. As outlined in the previous section, the
first four moments are used as additional features for the data enrichment process. The
implementation of this approach will be discussed in the next section. We should notice
that these moments do not contain information about how the series behaves after the last
window observation, and therefore can be correctly used when making forecasts.

Algorithmic representation of SFC is presented in Appendix A, see Algorithms A1–A3.
It can be implemented in computing services [49,50].

3.2. Neural Network Architectures with Additional Features

A deep recurrent neural network was created for forecasting. It consists of two
recurrent neuron layers followed by several dense layers, see Figure 1.

Figure 1. Architecture of SFC processing with a neural network.

While the general architecture of the network remained the same, the number of
layers and number of neurons in each layer varied depending on the hyperparameter
optimization process.
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The hyperparameter optimization may improve the performance of neural networks
and can be used to adapt commonly used architecture to specific domains [51–53]. In this
research, the following hyperparameters are varied:

• type of recurrent layers: Long Short-Term Memory (LSTM) [54], recurrent neural
network (RNN) [55,56] or Gated Recurrent Units (GRU) [57];

• exact number of dense layers;
• number of neurons in each layer;
• dropout rates [58];
• optimizers for the neural network.

Several recurrent layers were used in a neural network architecture. Deep recurrent
neural networks allow for better flexibility compared to one-layer networks and serve as a
powerful model for chaotic sequential data. Deep RNN were used for the task of forecast-
ing and achieved better performance compared to shallow recurrent architectures [59,60].
Neural networks of similar architecture were applied to the analysis of indoor naviga-
tion [61], climate data [62], human activity classification [63], and health assessment [64].
Achieved results combined with the difference in analyzed data led to the choice of deep
RNN architecture. Such combination of deep RNN and MSM algorithms were never used
to process climate and physics data prior to this paper.

The enrichment process occurs in-between data processing and neural network con-
struction. We should note that statistical model created on the window X is a characteristic
of that entire window, not a time-dependent characteristic of any specific observation
contained in the window. This also applies to the features based on that model.

There are several methods of passing features to the neural network. The simplest
way to do so is to create a multi-input model by adding statistical features to the data flow
after recurrent layers, see Figure 2a. Unfortunately, this also means that those layers would
be trained without any information derived from SFC.
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In the second approach (see Figure 2b), additional data are added to the window
itself. The input vector for neural network consists of original N window observations
and additional K SFC features are applied to the end or to the beginning of the data vector.
Adding time-independent data to a vector of time observations may create a harder learning
task for the neural network. This approach was used but had proven to give worse accuracy
compared to the hidden state initialization [65,66].

Finally, the approach presented in Figure 2c directly affects the hidden state of recurrent
layers. Additional features for each training sample are transformed into a K-sized vector v
defining the internal state of the recurrent layer:

v = Wx + b,

where x is the vector of features, and W and b are trainable weights. Those weights
can be obtained with an additional single dense layer placed before the recurrent layers
of the neural network as a part of the enrichment process. For the first time step, the
resulting tensor is added to the hidden state of the RNN. It allows both for conditioning
of RNN on additional features and avoiding the problem of increasing the complexity of
model training.

3.3. Computational Complexity

Compared to training on non-enriched data, SFC includes an additional step for model
creation. We raise a question of computational complexity of the first SFC step compared
to the overall complexity of the network training.

The total number of parameters in a LSTM layer can be calculated as follows [67]:

W = n2
c × 4 + ni × nc × 4 + nc × no + no × 3,

where nc is the number of memory cells, ni is the number of input units, and no is the
number of output units. The computational complexity of training the LSTM model per
weight and per time step with used optimizers is O(1). This gives us the computational
complexity of O(W) per time step.

Given the window length N and relatively small prediction size, the computational
complexity is dominated by the nc × (nc + N) factor. Finally, given the total time series
length of L, the number of windows scales linearly with it. Assuming we have a constraint
on maximum number of epochs, we may postulate that the computational complexity of
training an LSTM model would be O(L× nc × (nc + N)). Calculations are similar for GRU
and RNN layers.

At the same time, the computational complexity of the MSM algorithm, see Algorithm A1,
on one window of length N is O(K× N), where K is the number of components. The main
computational complexity lies in the updating of auxiliary matrix g of the algorithm. It gives
us the complexity of O(L × K × N) for the MSM analysis of the whole time series. This
is comparable to the complexity of neural network training. The MSM algorithm can be
tailored for operations with matrices leading to a performance improvement on GPU-assisted
systems [68].

These results are confirmed by the practical application of SFC in GPU-assisted com-
puting. MSM model construction required significantly less time than model training:
the difference reached a factor of ten or even more. Additionally, SFC statistical models
on different windows are independent from each other. It means that already computed
models could be cached and would not be changed with the addition of new observations
to series. This allows for application of SFC to a real-time tasks with continuous data flows.

4. Examples of Real Data Analysis
4.1. Test Data and Neural Networks’ Configurations

Analyzed datasets consist of two distinct sets. The first set contains data obtained in
physical experiments carried on the L-2M stellarator [31]. Time series consists of plasma
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density fluctuations after the medium had been agitated with an energy discharge. A
total of five time series would be analyzed. Each series consists of 60,000 observations
that correspond to a time interval from 48 to 60 ms of each experiment. The time gap
between two consecutive observations is 0.2 microsecond (µs). Time series from this set
had proven to be non-stationary, and the p-value of the Dickey–Fuller test [69] obtains up
to 0.56. For model correctness, it is necessary to analyze not the entire series, but windows,
subsamples for which the necessary assumptions are considered to be satisfied, that is,
to use the MSM approach. The typical waveform as well as empirical distributions are
presented in Figure 3.

Figure 3. Physical time series A19692 (on the left) a corresponding histogram (on the right).

The experiment consists of three stages: the initiation stage when the impulse agitates
the plasma, the main phase, and the relaxation phase. It is worth noting that the distribution
of time series has a strongly non-Gaussian form. It can be seen that an excess of kurtosis
and asymmetry exists. It would require complicated models to describe such data.

The second dataset consists of air–sea fluxes [70], see Figure 4.

Figure 4. Tropical-1 time series (on the left) a corresponding histogram (on the right).

For each spot, two separate time series were collected for latent and hidden fluxes. Each
time series consists of approximately 14, 600 observations, and the time gap between two
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consecutive observations is six hours. Tropical-1 time series and its distribution are shown in
Figure 4. These data are highly seasonal in nature, and the distribution is non-Gaussian.

In order to measure the effect of statistical enrichment on the accuracy, two different
predictions would be made for each set. Short-term prediction outputs M = 12 (see
Figure 1) consecutive values given the 200 previous values. For oceanographic data, short-
term prediction would be a prediction of data for three days after 50 days of observations.

Medium-term prediction outputs M = 12 consecutive values given the 200 previous
values with a skip of 28 observations. Taking the oceanographic data as an example,
medium-term prediction would be a prediction of three days on the next week after 50 days
of observations.

For the purpose of this research, the size of window N = 200 (see Figure 1) was
chosen to be the same as the size of input data for short- and medium-term predictions.
This allows for a proper comparison of enriched and non-enriched accuracy values as no
additional data are supplied to the enrichment process if compared to non-enriched data.
The number of components K = 3 was selected for all time series as outlined in Section 3.
Based on constructed models, four moments were used as additional statistical features for
neural networks.

All data are normalized to the range of [0, 1]. Error decrease is measured with the root
mean squared error metrics over the normalized data forecasts:

RMSE =

√
1
n

n

∑
i=1

(di − fi)
2.

Here, n denotes the number of data points, di is the predicted value of i-th data
point, and fi is the true value of the i-th data point. Such approach allows for compari-
son of the relative error decrease among all analyzed sets of data despite their different
physical nature.

In order to demonstrate the efficiency of SFC, two neural network sets were constructed
for each time series and prediction type. The original set accepts initial observations as
input data. For the enriched network set, time series are supplemented by hidden state
initialization with statistical moments. In both cases, the output consists of either a short-
or medium-term prediction, in total four sets for each time series.

It is known that random search may provide for better results, but, in order to make a
proper comparison of accuracy increase, a grid-search method was used for hyperparameter
optimization [30]. Each set contains neural networks with all possible hyperparameter
combinations, in total about 700 networks in a set. For each time series, error value is
compared between best neural networks in original and enriched short-term sets and
between best neural networks in original and enriched medium-term sets.

Input data were divided into training, validation, and test data sets in 60%/30%/10%
proportion. The customized MSM algorithm and estimation of finite normal mixture
parameters were implemented in MATLAB programming language. Neural networks were
created, trained, and evaluated with TensorFlow/Keras Python libraries. Every network
was ran several times, and the RMSE value was averaged among all runs.

The choice of optimizer varied among observed data sets, but mostly learning speed
and accuracy were better with the Adam optimizer. No strong overfitting was observed in
all constructed neural networks. A non-zero dropout rate affected learning rate negatively.
In all observed cases, the choice of LSTM recurrent layers provided for better results than
the use of GRU/RNN layers.

4.2. Results

The calculations were performed using a hybrid high-performance computing cluster
(IBM Power 9, 1 TB RAM, 2 NVIDIA Tesla V100 (16 GB) with NVLink). Model training
finished after a fixed cut out of 500 epochs or after the error metrics had not decreased for
10 epochs. In practice, training always finished before 500 epochs passed. It took about 20 h
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to perform a complete hyperparameter search for a single training set. Speed difference
between enriched and non-enriched model training varied from 2% to 10% depending on
the exact choice of hyperparameters.

Similar best-performing architectures for most analyzed series in both enriched and
non-enriched cases were found. As in [16,29], neural networks with a smaller number
of wide hidden layers made more accurate predictions than deep neural networks with
stacked but narrower hidden layers. The difference in error metrics was significant and
reached 35% in certain cases. The choice of optimizer varied among observed data sets.
Accuracy and learning speed were mostly better with an Adam optimizer. The non-zero
dropout rate affected the learning rate negatively. In all observed cases, the choice of LSTM
recurrent layers provided for better results than the use of GRU/RNN layers. In general,
the best performance was reached with two dense layers of 300 neurons each, two LSTM
layers of 200 neurons each, the Adam optimizer, and no dropout.

Resulting predictions can be seen in Figures 5–8. Each graph denotes several windows
and a forecast based on these windows.

The graph of a single forecast consists of three parts: input, designated by a thick blue
line; optional skipped data part marked by a dotted line for medium-term forecasts (see
Figures 6 and 8) and output designated by orange and green lines. The green line displays
the true data, and the orange line is the constructed forecast for the data. Forecasting
windows were chosen randomly from the test part of the window series.

It can be seen that the constructed forecasts are good at trend predictions and the
direction of overall movement. Peaks are also predicted accurately. It should be noted that,
in some cases, the model does not give the accurate forecast of the minimum and maximum
values, but, in most observed cases, the minimum of the prediction would lie in a range
of 1–2 observations from the true minimum of the forecasted data. The same is true for
the maximum.

RMSE results for physical data analysis can be seen in Tables 1 and 2. A19692-2 is
a clear outlier with almost no decrease of RMSE metric but overall satisfactory forecasts
in both the enriched and non-enriched data set. A minor decrease in RMSE metrics is
achieved for the short-term forecast, but, for the medium-term forecast, an RMSE decrease
of 10% justifies the use of a more complex SFC approach.

Table 1. Physical RMSE results, short-term forecast.

Time Series Non-Enriched Enriched Improvements

A19692 0.085 0.061 39%
A19692-1 0.086 0.061 41%
A19692-2 0.095 0.094 1%
A20229 0.091 0.084 9%
A20264 0.079 0.070 12%

Table 2. Physical RMSE results, medium-term forecast.

Time Series Non-Enriched Enriched Improvements

A19692 0.068 0.057 19%
A19692-1 0.095 0.077 23%
A19692-2 0.096 0.088 10%
A20229 0.088 0.081 8%
A20264 0.078 0.071 9%
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Figure 5. A19692 short-term forecasts.

Figure 6. A19692-1 medium-term forecasts.

Analysis of oceanographic data leads to similar results. RMSE metrics and their
improvement are presented in Tables 3 and 4.

The choice between enriched and non-enriched data greatly affected RMSE value for
oceanographic data. SFC allowed for 2–21% decrease in RMSE with an average of 14%
for short-term forecasts and 10% for medium-term forecasts. Effective decrease correlated
with the analyzed time series. For both types of forecasts, enrichment performed best on
Tropical-2 time series and worst on Tropical-1 time series.
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Figure 7. Gulfstream-1 short-term forecasts.

Figure 8. Gulfstream-1 medium-term forecasts.

This level of accuracy improvement according to the RMSE metric may be due to the
fact that, for a specific set of Tropical-1, the basic neural network model already provides
a complete description of the analyzed processes. Therefore, the feature space expansion
provides only to a marginal decrease of learning error. In all other situations, the SFC
based decrease is very noticeable, so such a series can be considered as an outlier for the
proposed method. At the same time, it should be noted that there is still no error increase
for Tropical-1. It means that the proposed method is effective in all situations, but the
magnitude of its effect may vary.
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Table 3. Oceanographic RMSE results, short-term forecast.

Time Series Non-Enriched Enriched Improvements

Gulfstream-1 0.075 0.067 11%
Gulfstream-2 0.064 0.058 11%
Labrador-1 0.069 0.060 15%
Labrador-2 0.069 0.059 17%
Tropical-1 0.073 0.068 7%
Tropical-2 0.074 0.061 21%

Table 4. Oceanographic RMSE results, medium-term forecast.

Time Series Non-Enriched Enriched Improvements

Gulfstream-1 0.081 0.075 8%
Gulfstream-2 0.072 0.066 9%
Labrador-1 0.068 0.061 11%
Labrador-2 0.075 0.066 14%
Tropical-1 0.073 0.072 2%
Tropical-2 0.074 0.063 17%

It should be noted that there was no increase of RMSE error observed among all
enriched sets when compared to the original. For all sets, short-term and medium-term
forecasts follow major data trends. At the same time, enriched sets produce forecasts that
are better at adapting to quick shifts in data. Additionally enriched forecasts offer better
prediction of peak values compared to non-enriched data.

5. Discussion and Conclusions

The paper presents a statistical approach to data modeling and feature construction
with applications for two different sets of data. For six oceanographic datasets and five
plasma physics datasets, multiple neural networks were constructed and trained in an
enriched and non-enriched form. For all analyzed time series, a qualitative predictions
were created for both methods with an average RMSE error of 0.068/0.078 for short-term
forecasts and 0.071/0.079 for medium-term forecasts.

From the numerical perspective, statistical feature construction had shown a significant
decrease in RMSE error metrics among all analyzed time series. The decrease ranged from
1% to 43% with the median of 11.4% and happened on all analyzed time series. It was
also shown that SFC does not add significant computational complexity to the process of
forecasting and can be used with continuous data flows and/or in real-time problems. This
method can also be adjusted for GPU computing.

The significance of the work lies in the possibility of accuracy improvement with a
relatively simple addition to preliminary data analysis. SFC does not require additional
data collection and, as shown above, can be applied to a wide range of different problems
where a stochastic external environment presents. The first step of SFC has relatively few
hyperparameters for optimization, which leads to a smaller overhead on their optimization.
Lastly, the increase of forecasting accuracy due to SFC application can serve as an indicator
of correctness of the chosen statistical model.

For future research, it would be beneficial to apply another features from MSM mod-
els to forecast improvement. For example, in Figures 9 and 10, an evolution of MSM
components [71] is demonstrated. These structural components do not correspond to the
summands in formula (1) but are derived from them with the help of clustering algorithms.
The colors signify the corresponding weight of the component in the mixture (1).

The MSM components based method allows us to determine significant changes in
the stochastic structure of the forming processes. In particular, the detection of the time
moment of an essential change in plasma parameters, which affects its confinement (the
so-called transport transition), has been demonstrated, see Figure 9. Component number
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5 with the maximum weight (red curve in the lower graphs in Figure 9) has the greatest
contribution to the process. However, it breaks off at about 55 ms of the experiment and,
after that, component number 3 dominates.

Figure 9. Example of MSM components for plasma time series.

Figure 10. Example of MSM components for oceanographic time series.
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A similar situation takes place for oceanographic time series, see Figure 10. Here, a
smaller number of structural components are distinguished, and no abrupt disappearances
or creation of new components are observed.

Other finite mixture models that have more features than a normal distribution could
be employed. Those may include finite mixtures based on skew-normal or skew-t densi-
ties [12]. MSM components can be effectively used to process non-trivial trends in data,
which would make it possible to better predict complex time series using neural networks.
Surely, this will require sophisticated architectures such as ensembles of deep LSTM net-
works. However, such solutions are a natural development of the SFC approach proposed
in this article.
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Appendix A. Algorithms

The section presents pseudocode of the MSM and SFC algorithms.

Algorithm A1. EM-based algorithm for estimating mixture parameters

1: function CREATE_FINITE_MIXTURE(Data, K, EL, PreviousEstimation)
2: // Data: N-length window data vector
3: // K: Component number
4: // EL: Stop criteria level for MSM
5: err← EL; // Mixture parameter change during the step
6: // Vectors of expectation, variance and weights
7: if PreviousEstimation then
8: [E[K], D[K], W[K]]← UPDATEPREVEST(Data, PreviousEstimation, K);
9: else

10: [E[K], D[K], W[K]]← RANDOMINITIALESTIMATION(Data, K);
11: g[K][N]← INITIALIZERANDOMPARAMMATRIX( ); // Matrix of cross-weights
12: while err > EL do
13: W2[K]← UPDATEWEIGHTS(g, Data);
14: E2[K]← UPDATEE(g, Data);
15: D2[K]← UPDATED(g, E2, Data);
16: // Calculating parameter change during the step
17: err← CALCULATEDISTANCE([E2, D2, W2], [E, D, W]);
18: [E, D, W]← [E2, D2, W2];
19: g← UPDATECROSSWEIGHTS(E, D, W, Data);
20: return [E, D, W];
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Procedure A1 is an implementation of the customized EM algorithm for estimating
finite normal mixture parameters. Taking into consideration that consecutive windows
differ only by two (first and last) observations, usage of previous estimations can be
beneficial for increasing algorithm speed.

Algorithm A2. MSM moments

1: function MSM_MOMENTS(Mixture, T )
2: // Mixture: Parameters of finite normal mixture
3: // T: Number of statistical features
4: Moments← []; // Resulting array of moments
5: for i in (1, T) do
6: // Calculations of moments, see formulas (2)–(5) or (8)–(11)
7: Moment← CALCULATEMOMENT(Mixture, i, Moments);
8: MOMENTS.APPEND(Moment);
9: return Moments;

An implementation of moment calculations, see line 7 of Algorithm A2, is described
in Section 2. Analyzed realization of SFC uses all of first T moments, so the first two mo-
ments (expectation and variance) are used to greatly simplify calculations of the following
statistical moments.

Algorithm A3. SFC algorithm

1: function SFC(Data, isManual) // see Figure 1
2: // Data: Initial Time Series
3: // isManual: Flag for manual input mode
4: if isManual then
5: K← INPUTDIALOG( ); // Number of components
6: EL← INPUTDIALOG( ); // Stop criteria level
7: T← INPUTDIALOG( ); // Number of statistical features
8: N← INPUTDIALOG( ); // Window Length
9: else

10: [K, EL, T, N]← ANALYZEDATA(Data);
11: // Splitting data into windows and adding labels for learning
12: [Windows, Labels]← SPLITANDNORMALIZEDATA(Data, N);
13: Inputs[K-N+1]← []; // Input array for machine learning
14: PreviousMixture← []; // Previous statistical parameter estimation
15: for wnd in Windows do
16: // Calling function from Algorithm A1
17: CurrentMixture← CREATE_FINITE_MIXTURE(Data, K, EL, PreviousMixture);
18: StatisticalParams← MSM_MOMENTS(CurrentMixture, T);
19: AdditionalFeatures← ENRICH(wnd, StatisticalParams); // see Figure 2
20: INPUTS.APPEND(AdditionalFeatures);
21: PreviousMixture← CurrentMixture;
22: // Neural Network based analysis
23: Model← CREATEMODEL(Inputs);
24: [Model, Evaluation]← TRAINANDEVALUATEMODEL(Model, Inputs, Labels);
25: return [Model, Evaluation];

Algorithm A3 is an outline of the SFC procedure. Initial data are divided into windows,
and statistical models are constructed for each window and used to enrich input data vector
with additional features. The output of SFC procedure is a trained neural network model
and evaluation of its performance.
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