
����������
�������

Citation: Karnyoto, A.S.; Sun, C.; Liu,

B.; Wang, X. TB-BCG: Topic-Based

BART Counterfeit Generator for Fake

News Detection. Mathematics 2022,

10, 585. https://doi.org/10.3390/

math10040585

Academic Editors: Andrea Prati,

Carlos A. Iglesias, Luis Javier

García Villalba and Vincent

A. Cicirello

Received: 22 December 2021

Accepted: 10 February 2022

Published: 14 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

TB-BCG: Topic-Based BART Counterfeit Generator for Fake
News Detection
Andrea Stevens Karnyoto 1,2,* , Chengjie Sun 2 , Bingquan Liu 2 and Xiaolong Wang 2

1 State Key Laboratory of Communication Content Cognition, People’s Daily Online, Beijing 100733, China
2 School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China;

cjsun@insun.hit.edu.cn (C.S.); liubq@hit.edu.cn (B.L.); wangxl@insun.hit.edu.cn (X.W.)
* Correspondence: andre@ukitoraja.ac.id

Abstract: Fake news has been spreading intentionally and misleading society to believe unconfirmed
information; this phenomenon makes it challenging to identify fake news based on shared con-
tent. Fake news circulation is not only a current issue, but it has been disseminated for centuries.
Dealing with fake news is a challenging task because it spreads massively. Therefore, automatic
fake news detection is urgently needed. We introduced TB-BCG, Topic-Based BART Counterfeit
Generator, to increase detection accuracy using deep learning. This approach plays an essential role
in selecting impacted data rows and adding more training data. Our research implemented Latent
Dirichlet Allocation (Topic-based), Bidirectional and Auto-Regressive Transformers (BART), and
Cosine Document Similarity as the main tools involved in Constraint @ AAAI2021-COVID19 Fake
News Detection dataset shared task. This paper sets forth this simple yet powerful idea by selecting
a dataset based on topic and sorting based on distinctive data, generating counterfeit training data
using BART, and comparing counterfeit-generated text toward source text using cosine similarity.
If the comparison value between counterfeit-generated text and source text is more than 95%, then
add that counterfeit-generated text into the dataset. In order to prove the resistance of precision
and the robustness in various numbers of data training, we used 30%, 50%, 80%, and 100% from
the total dataset and trained it using simple Long Short-Term Memory (LSTM) and Convolutional
Neural Network (CNN). Compared to baseline, our method improved the testing performance for
both LSTM and CNN, and yields are only slightly different.

Keywords: fake news detection; Latent Dirichlet Allocation (LDA); Bidirectional and Auto-Regressive
Transformers (BART); cosine document similarity; AAAI2021-COVID19 Fake News Detection dataset

1. Introduction

Social media brings collective intelligence by sharing knowledge between users. News
on social media that contains reviews, opinions, and other information has played an
essential role in people’s decisions [1]. It also has a significant effect on our social life.
At the same time, the development of social media technologies raises adverse effects,
such as the spread of fake news. Fake news and misleading articles are straightforward
to circulate because they have particular traction [2]. The appealing thing about fake
news is that sometimes authors write the information using clickbait titles, bombastic
narration, and viral topics discussion. One characteristic of news articles published in
social media is often their lesser quality as compared to conventional news since there is
no regulatory authority on social media [3]. There are several types of fake news, such as
fake rumors, satires, fake reviews, advertisements, misleading content, fake speech about
politics, and many more. Compared to mainstream media, social media circulates fake
news faster, contributing to increased partisan conflict and political polarization [4,5]. Fake
news has been spreading intentionally and misleading society to believe false information;
this phenomenon has made identifying fake news based on shared content very difficult.

Mathematics 2022, 10, 585. https://doi.org/10.3390/math10040585 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10040585
https://doi.org/10.3390/math10040585
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8266-2072
https://orcid.org/0000-0001-9081-1410
https://doi.org/10.3390/math10040585
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10040585?type=check_update&version=1

Mathematics 2022, 10, 585 2 of 17

Information on social media is actively disseminated from person to person, causing a
particular content detection problem. Fake news circulation is not only a current issue; it
has been disseminated for centuries. Dealing with fake news is a complicated task due to
its massive spread. Therefore, automatic fake news detection is needed.

Fake news detection research has become necessary due to the limitation of human
ability to handle massive news spread on the internet. Additionally, researchers can
develop systems that help people select information for their consumption. Many studies
have been done in this field, including (1) an automated system for distinguishing fake
news [6], (2) analysis by time-series in different domains for sentiment predictive discussion
method [7], (3) capturing steady differences in the language of fake and real news by using
deep neural networks [8], and (4) building a shared convolutional neural network using
two paths, which are shared low-level features and joint optimization [9], and many more.

In addition to being used to detect fake news [10,11], natural language processing has
been widely utilized for various more sophisticated tasks, i.e., Human Activity Recognition
(HAR) [12], sentiment analysis [13–15], and spoken notifications for intelligent environ-
ments [16]. This paper aims for involvement in the Constraint @ AAAI2021-COVID19 Fake
News Detection dataset shared task using the pre-trained model and deep learning. Our
proposed method implemented Latent Dirichlet Allocation (Topic-based), BART, and Co-
sine Document Similarity as the primary tools for the COVID-19 dataset. This method fills
a lack of training datasets by selecting a dataset based on topic and creating a counterfeit
generated training dataset to increase the model’s accuracy. A topic model is one of the
research fields in computer sciences, especially in text mining and information retrieval
tasks. It uses the machine learning method to induce a generative probabilistic model
of text corpora [17]. Latent Dirichlet allocation (LDA) is the most reputable topic model,
introduced in 2003 by Blei et al. [18]. According to Arjovsky et al. and Hou et al. [19,20],
small datasets create problems, such as (1) the discriminator is always overfitting for the
training dataset, (2) the feedback becomes insignificant when it sends into the generator,
and (3) training data start to deviate. However, an augmentation generator that generates
adversarial data can be applied to the training dataset; it will help to increase the number
of dataset rows [21]. Furthermore, it can improve performance (accuracy, precision, and F1-
score) although modifying training data sometimes will decrease the natural composition
of information [22,23]. We created a counterfeit training dataset using BART with OpenAI
GPT2 as pre-trained. BART is an autoencoder that can reduce the noise for pretraining
sequence-to-sequence models [24,25]. In fact, BART is made by training many corrupted
documents and optimizing the cross-entropy’s regeneration loss function between the
decoder’s output and the original document.

The main ideas of this paper include:

1. We initiated involvement in Constraint @ AAAI2021-COVID19 Fake News Detection
by integrating transfer learning, selecting a training dataset using the topic model,
and generating a counterfeit training dataset.

2. The main idea of this paper is to select the most impacted data using topic-based
methods and then sort it based on data distinctiveness. Moreover, we generated
counterfeit training data using BART and compared it toward source text using
cosine similarity. Counterfeit-generated text is created from 70% source text and
30% automatically generated text. If the comparison cosine similarity result between
counterfeit generated text and source text is more than 95%, add counterfeit generated
text into the dataset.

In order to prove the resistance of performances and the robustness in various numbers
of data training, we experimented with various dataset sizes (30%, 50%, 80%, and 100%) for
random rows, random + generated text, topic-based, and TB-BCG. Then, we tested those
datasets by using simple Long Short-Term Memory (LSTM) and Convolutional Neural
Network (CNN) models to obtain comprehensive results.

This article is presented as follows: Section 2 is the related work to review the LDA as a
topic model, Bidirectional and Auto-Regressive Transformers (BART) in terms of generating

Mathematics 2022, 10, 585 3 of 17

text, and Cosine Document Similarity. Section 3 states the framework and methodology
in theoretical and practical, which contains six processes: data processing, LDA, adding
training documents using the text generator, text generator, document similarity, and
models. Section 4 contains hardware and software specifications in experiment setup and
the experiment steps in description of task. Section 5 is the result. Section 6 is the discussion
and future work, and Section 7 is the conclusion section.

2. Related Work
2.1. AAAI2021-COVID19 Fake News Detection

In this COVID-19 pandemic, direct (face-to-face) communication has decreased. Mil-
lions of us express our ideas only through social media, used for publishing any information
freely on the Internet. Furthermore, The Constraint@AAAI2021-COVID19 Fake News De-
tection was created to determine whether the information regarding COVID-19 is fake or
real. Combating Online Hostile Posts in Regional Languages during Emergency Situation
held a first workshop, where they created COVID-19 Fake News Detection in English
dataset. They collected data from many social media platforms, such as Facebook, In-
stagram, Twitter, etc. The dataset contains 10,700-row real and fake news articles from
social media posts related to COVID-19. Many techniques are applied towards this dataset:
Shushkevich et al. [26] constructed the ensemble consisting of Logistic Regression, Support
Vector Machine, Naive Bayes, Bidirectional Long Short-Term Memory, and a combination
of Naive Bayes and Logistic Regression. Glazkova et al. [27] made a COVID-Twitter-BERT
(CT-BERT) model based on the transformer-based ensemble. They worked on an ensemble
approach of different pre-trained language models, such as Ernie, Roberta, BERT, etc. Li
et al. [28] created various training strategies, including k-fold cross-validation, learning
rate schedule, and warm-up. Gautam and Masud [29] proposed combining LDA to topical
distributions with contextualized representations from XLNet. However, we applied differ-
ent approaches and techniques in this research using the LDA topic model and BART. LDA
will automatically select training datasets from various topics, which can make a significant
impact even when using a small training dataset. At the same time, BART helps generate
additional samples to add more text into the training dataset. This approach provided a
patchwork of augmentation to cover the lack of training data.

2.2. Topic-Based

Scientists and many companies met the problem of arranging millions of articles in
many cases, and this is not filled with unmanageable searches. With statistical tools, we
can automatically arrange electronic archives to facilitate users for efficient exploration
and browsing. Topic models play an essential role in computer science, especially text
mining. The topic model generates a list of words (text) and then agglomerates them
into a topic group using statistical methods. A text can be various, and it can be a book
chapter, an email, a journal article, a blog post, and any other miscellaneous text. We can
choose the number of topics depending on the additional latent variable analysis and a
persistent problem in topic modeling. For other cases, external data sources determine the
number of topics and make them part of the problem formulation. Moreover, applying
such collections requires a structured process: find articles similar to other articles and
explore the collection by covering potential topics. Topic models are “[probabilistic] latent
variable models of documents that exploit the correlations among the words and latent
semantic themes” [18]. The purpose of LDA is to develop a model that appears from
various topics, where the topic is determined as a distribution of constant vocabulary. One
of the excellent textual analysis methods grounded in computational linguistics research is
LDA. This method calculates the statistical correlations among terms/words in a massive
set of texts to distinguish and quantify the underlying topics in these documents [30].
With assumption, all topics are related to collection, and all documents contain topics in
different proportions. This perception is also a natural assumption because documents
in corpus tend to be heterogenous; combining subsets from multiple topics will increase

Mathematics 2022, 10, 585 4 of 17

the connection between topics and corpus. LDA was widely used to solve many cases;
Daniel Maier et al. [31] developed a brief, hands-on user guide for applying LDA topic
modeling n communication research. Wang, Y et al. [32] proposed a deep learning model
for automobile insurance fraud detection that uses Latent Dirichlet Allocation (LDA)-based
text analytics. Zamani et al. [33] proposed a dynamic, content-specific LDA topic modeling
technique that can help to identify different domains of COVID-specific discourse that can
be used to track societal shifts in concerns or views. Gurcan and Cagiltay [34] proposed a
semi-automatic methodology for the semantic analysis of online job advertisements using
LDA to discover the hidden semantic structures from a given textual corpus. Wiedemann
et al. [35] employed a sequentially combined BiLSTM-CNN neural network to improve
the classification performance with background knowledge with topic clusters obtained by
LDA. Jelodar et al. [30] discussed topic modeling and then reviewed it in various fields, such
as medical and linguistic science, political science, and software engineering. However, our
approach employed LDA to select documents in the dataset based on data distinctiveness.

2.3. Bidirectional and Auto-Regressive Transformers (BART)

We used BART to generate additional text for training data, and it makes sense
since we face obstacles to getting similar data to increase testing accuracy. BART has a
primary purpose: an autoencoder that can reduce the noise of corrupted maps documents
to derive the original documents. BART was implemented as a sequence-to-sequence
model and applied with a bidirectional encoder over corrupted text and a left-to-right
autoregressive decode as the main tools. BART utilizes transformer architecture with the
standard sequence-to-sequence algorithm [36]. Text generation can be developed using
machine translation. Liu et al. [37] showed significant performance from many machine
translation (MT) tasks that utilized multilingual denoising pre-training. Other research
generates text using a simple method. Roller et al. [38] employed a standard Seq2Seq
transformer architecture to generate responses rather than retrieve them from a fixed set
based on the ParlAI version and Byte-Level BPE tokenization.

2.4. Cosine Document Similarity

Weighing pairwise document similarity is essential for numerous text applications,
including nearest neighbor search, document filtering, and document clustering. Moreover,
we can define two documents as near-duplicate using a similarity measure as a quantita-
tive measure [39]. Most of the similarity measures estimate the similarity between two
documents based on the information content and their term weights that are shared in
common [40]. The cosine measure is the most widespread measure based on the Vector
Space Model (VSM) for evaluating document similarity purposes. Thousands of attributes
can represent a document, each attribute recording the term-frequency of a particular word
(such as a keyword) or phrase in the document. Thus, a term-frequency vector describes
each document as an object. The Vector Space Model generates a space in documents and
interprets those as vectors. An appropriate document description model is required to
collect text documents, such as in the common Vector Space Model (VSM) [41]. By cosine
document similarity, we find out which is the most distinctive data row towards other rows
by calculating the level of similarity each row.

3. Proposed Method

According to Figure 1, the process starts from preprocessing; this process aims to
clean text, convert emojis, expand words, and spelling correction. Select data based on
topics; this process aims to classify and distribute documents according to topic, then sort
documents based on topic scores. Results are four datasets, with sizes 30%, 50%, 80%, and
100% of the overall dataset. Next, generate a counterfeit document using BART based on
original text to make various text. After that, calculate similarity using the cosine similarity
function if the similarity is more than 95%, then add counterfeit as new data. Last, the final
step is to train a simple LSTM or CNN to obtain the final result.

Mathematics 2022, 10, 585 5 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 18

3. Proposed Method
According to Figure 1, the process starts from preprocessing; this process aims to

clean text, convert emojis, expand words, and spelling correction. Select data based on
topics; this process aims to classify and distribute documents according to topic, then sort
documents based on topic scores. Results are four datasets, with sizes 30%, 50%, 80%, and
100% of the overall dataset. Next, generate a counterfeit document using BART based on
original text to make various text. After that, calculate similarity using the cosine similar-
ity function if the similarity is more than 95%, then add counterfeit as new data. Last, the
final step is to train a simple LSTM or CNN to obtain the final result.

Figure 1. Overall Process of TB-BCG.

Data distribution of a dataset. Table 1 shows a balanced data distribution for training,
validation, and testing. The amount of validation and testing is 33% of the training dataset
for each. In addition, the number of real and fake news has the same number of data, and
the distribution of unique words is not far apart.

Table 1. Data distribution of a dataset.

Data Real Fake Total Unique Word
Training 3360 3060 6420 30,046

Validation 1120 1120 2140 13,697
Testing 1120 1120 2140 14,121

3.1. Data Processing
First, we executed our tweet preprocessing and text preprocessing for transformer-

based models by removing useless punctuation marks for text classification. We kept sym-
bols @ and # because those have specific semantics in tweets. Second, we transformed the
text into lowercase and replaced URLs, mentions, and emojis into unique tokens. Third,
we used the Python emoji library to change the particular emoji into a meaningful textual
description: redheart:, thumbsup:, etc. Furthermore, we converted hashtags into words
(“#COVID”→”COVID”). Removing stopwords was not applied for this dataset to in-
crease the ability to generate new text. We did expand contractions into full words, for
example, “you’re” to “you are.” We also performed spell correction in processing textual
data by using TextBlob. This library gives a compatible API that can change uncomplete
words to common words. It can increase natural language processing (NLP) accuracy,
such as noun phrase extraction, sentiment analysis, text classification, part-of-speech tag-
ging, and more. Last, we turned all letters to lowercase.

3.2. Latent Dirichlet Allocation (LDA)
To select documents in the dataset based on the LDA method, we used the Gensim

module. Gensim provides an LDA module that is highly scalable, strong, good perfor-
mance-optimized, and well tested by many users. We utilized LDA multicore Online
Learning, which uses whole CPU cores in a computer to parallelize and speed up model
training.

Suppose we have four documents containing specific words/terms, then split each
document into words and count it by number, as shown in Table 2.

Figure 1. Overall Process of TB-BCG.

Data distribution of a dataset. Table 1 shows a balanced data distribution for training,
validation, and testing. The amount of validation and testing is 33% of the training dataset
for each. In addition, the number of real and fake news has the same number of data, and
the distribution of unique words is not far apart.

Table 1. Data distribution of a dataset.

Data Real Fake Total Unique Word

Training 3360 3060 6420 30,046

Validation 1120 1120 2140 13,697

Testing 1120 1120 2140 14,121

3.1. Data Processing

First, we executed our tweet preprocessing and text preprocessing for transformer-
based models by removing useless punctuation marks for text classification. We kept
symbols @ and # because those have specific semantics in tweets. Second, we transformed
the text into lowercase and replaced URLs, mentions, and emojis into unique tokens. Third,
we used the Python emoji library to change the particular emoji into a meaningful textual
description: redheart:, thumbsup:, etc. Furthermore, we converted hashtags into words
(“#COVID”→”COVID”). Removing stopwords was not applied for this dataset to increase
the ability to generate new text. We did expand contractions into full words, for example,
“you’re” to “you are.” We also performed spell correction in processing textual data by
using TextBlob. This library gives a compatible API that can change uncomplete words to
common words. It can increase natural language processing (NLP) accuracy, such as noun
phrase extraction, sentiment analysis, text classification, part-of-speech tagging, and more.
Last, we turned all letters to lowercase.

3.2. Latent Dirichlet Allocation (LDA)

To select documents in the dataset based on the LDA method, we used the Gen-
sim module. Gensim provides an LDA module that is highly scalable, strong, good
performance-optimized, and well tested by many users. We utilized LDA multicore On-
line Learning, which uses whole CPU cores in a computer to parallelize and speed up
model training.

Suppose we have four documents containing specific words/terms, then split each
document into words and count it by number, as shown in Table 2.

Table 2 shows that each document has terms/words contained in the document.
Because LDA uses a bag-of-words mechanism, we should count every term in a document,
for example, Doc 1 has no terms “Corona”, one term “India”, two terms “Disease”, and
so on.

Mathematics 2022, 10, 585 6 of 17

Table 2. Document Vector or Term-Frequency Vector.

Term

Document Corona India Disease Lung Disaster Virus Case Test People

Doc 1 0 1 2 1 1 0 0 0 1
Doc 2 2 1 1 0 0 0 1 0 0
Doc 3 1 2 1 2 0 0 1 0 0
Doc 4 1 1 1 2 1 2 2 0 2

During this work, we use the same symbol and terminology used by David Blei [18],
Hamed Jelodar et al. [30], and Ponweiser [17]. LDA states that each document can be
represented as a probabilistic distribution over latent topics and that topic distribution in
all documents’ topic distribution shares a common Dirichlet prior. Each latent topic in the
LDA model is also represented as a probabilistic distribution over words, and the word
distributions of topics share a common Dirichlet prior.

According to David Blei [18], a word is the basic unit of discrete data, defined to be an
item from a vocabulary indexed by ({1, . . . , V}). A corpus is a collection of M documents
denoted by D. Document d having Nd words (d ε {1 , . . . , M}), LDA models D according to
the following generative process [30]:

(1) Choose a multinomial distribution ϕt for topic t (t ε {1, . . . , T}) from a Dirichlet
distribution with parameter β.

(2) Choose a multinomial distribution θd for document d (d ε {1, . . . , M}) from a Dirich-
let distribution with parameter α.

(3) For a word wn (n ε {1, . . . , Nd}) in document d,

(a) Select a topic Zn from θd.
(b) Select a word wn from ϕzn.

The word in documents is only an observed variable during the generative process
with (ϕ and θ) as latent variables, where ϕ is word distribution for topic t, and θ document
topic distribution for document d. (α and β) are hyperparameters, where α is Dirichlet
prior parameter of per-document-topic distribution, and β is Dirichlet prior parameter of
per topic–word distribution. To obtain these latent variables and hyperparameters, the
probability of the observed data D is calculated and maximized as follows [30]:

p(D|α, β) =
M

∏
d=1

∫
p(θd|α)(

Nd

∏
n=1

∑
Zdn

p(Zdn|θd)p(wdn|Zdn, β))dθd . (1)

Defined, β is drawn from the Dirichlet distribution, given α are the distribution of
words over topics and parameters of topic Dirichlet prior. Defined, M is some documents,
N is the vocabulary size, and T is the number of topics. The Dirichlet-multinomial pair for
the corpus-level topic distributions is considered as (α, θ). The Dirichlet-multinomial pair
for topic-word distribution is given as (β, ϕ). The variable θd are document-level variables
sampled per document. Zdn, wdn variables are word-level variables and are sampled for
each word in each text-document. As a result, each document is then seen as a probability
distribution over set of topics.

3.3. Selecting and Deviding Dataset

We divided the process into two steps in order to select documents for training dataset
using the LDA mechanism that we already explained in a previous subsection: (1) LDA
model generates training topics to produce ten topics. Each topic consists of 10 terms.
Then, (2) distribute documents in training dataset based on same LDA model in step 1; this
process aims to classify and distribute documents based on the topic, then sort documents
based on topic scores. The steps are shown in the Figure 2a,b.

Mathematics 2022, 10, 585 7 of 17

Mathematics 2022, 10, x FOR PEER REVIEW 7 of 18

LDA model generates training topics to produce ten topics. Each topic consists of 10 terms.
Then, (2) distribute documents in training dataset based on same LDA model in step 1;
this process aims to classify and distribute documents based on the topic, then sort docu-
ments based on topic scores. The steps are shown in the Figure 2a,b.

(a) Generate Topic Training Dataset
(b) Distribution Training Dataset Base on

Document Topic

Figure 2. (a) The generate process diagram aims to produce topics using documents from the train-
ing dataset. (b) Using the same LDA model in Figure 1, the system will distribute documents in the
dataset based on topic and sort documents based on scores in descending order.

3.4. Sort Most Distinctive Row in Dataset
In order to find out which is the most distinctive data row towards other rows, we

need to calculate the level of similarity of a row toward other rows. We do this to each
topic group. The equation can be seen below:

𝑆𝑖𝑚() = 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑡𝑒𝑥𝑡(), 𝑡𝑒𝑥𝑡() . (2)

𝑆𝑖𝑚() is the similarity value of each row in the dataset, n is the amount of docu-
ments, and x and y are iteration variables. 𝑡𝑒𝑥𝑡() and 𝑡𝑒𝑥𝑡() are the variables to be com-
pared. After counting each row, based on the results of the calculations using the equation
above, we sorted in ascending order—the more considerable the similarity value, the
more similar the text row towards others. The explanation regarding text similarity can
be found in sub-Section 3.7 of this paper.

The final result of the process is four datasets that contain 30%, 50%, 80%, and 100%
documents from each topic. For illustration, the 30% training dataset indicates that dataset
consists of the top 30% of documents classified as topic_0, the top 30% of documents clas-
sified in topic_1, and so on.

3.5. Add Training Documents Using the Text Generator
We also added generated documents into the training dataset. The Algorithm 1 can

be seen as follows:

Algorithm 1 Document generation and labeling
1: input:
2: d: document

Figure 2. (a) The generate process diagram aims to produce topics using documents from the training
dataset. (b) Using the same LDA model in Figure 1, the system will distribute documents in the
dataset based on topic and sort documents based on scores in descending order.

3.4. Sort Most Distinctive Row in Dataset

In order to find out which is the most distinctive data row towards other rows, we
need to calculate the level of similarity of a row toward other rows. We do this to each topic
group. The equation can be seen below:

Sim(x) =
n

∑
x=0

n

∑
y=0

Similarity
(

text(x), text(y)
)

. (2)

Sim(x) is the similarity value of each row in the dataset, n is the amount of documents,
and x and y are iteration variables. text(x) and text(y) are the variables to be compared.
After counting each row, based on the results of the calculations using the equation above,
we sorted in ascending order—the more considerable the similarity value, the more similar
the text row towards others. The explanation regarding text similarity can be found in
sub-Section 3.7 of this paper.

The final result of the process is four datasets that contain 30%, 50%, 80%, and 100%
documents from each topic. For illustration, the 30% training dataset indicates that dataset
consists of the top 30% of documents classified as topic_0, the top 30% of documents
classified in topic_1, and so on.

3.5. Add Training Documents Using the Text Generator

We also added generated documents into the training dataset. The Algorithm 1 can be
seen as follows:

Mathematics 2022, 10, 585 8 of 17

Algorithm 1. Document generation and labeling

1: input:

2: d: document

3: label: label of document (0 = fake, 1 = true)

4: output:

5: g: generated document

6: new_label: new label of document

7: def generate_text(d, label)

8: n = length(d) # count length of text d

9: q = d [0:int(n*0.70)] # get the 70% of text

10: p = generate(q, num_of_results = 50, lenght_of_result = n)

11: # Generating 50 counterfeit documents

12: for i = 0 to num_of_results: # iteration from 0 to 49

14: p_sim[] = similarity(d, p[i]) # get similarity by

14: # comparing each counterfeit

15: # text(p[i]) toward original

16: # document(d)

17: t = argmax(p_sim) # find the highest similarity

18: # for current text

19: if p_sim[t] > 0.95: # if the similarity more 95%

20: new_label = label # then classified same with

21: # the original document (d)

22: return g = p[t], new_label # the results is

23: # generated document

24: # and new label

This function has two inputs, namely d = document (consist n words) and label = label
of document (0 = fake, 1 = true). Output of this function is g = generated document and
new_label = label of generated document.

Where n is the length of the document, q contains 70% number of words from the
d document. Variable p is an array variable containing generated documents (produces
50 (fifty) documents); each generated document has the same length as the d document.
Furthermore, we obtain the similarity score between each generated document and d
document using cosine similarity, then put values into the p_sim array variable. Variable t
is the Argmax of the p_sim array variable. We decided that if the similarity score exceeds
0.95, then the new_label for the generated document (g) is equal to label, and we then save
the generated text as counterfeit-generated text.

We chose 70% of the original text to generate 30% for the rest because this combination
still keeps more than half the actual text, and the sentence does not lose too much meaning.
Previously, we tested several combinations of 50% original text to 50% generated text,
but it is too difficult to gain 95% similarity; moreover, we tested 85% original text to 15%
generated text, but the meaning is too close between the original text and counterfeit.
Hence, we decided to use 70% of the original text to generate 30% for the rest.

Mathematics 2022, 10, 585 9 of 17

3.6. Text Generator

Algorithm 1 shows one of the processes is to generate ten documents, then select the
one closest to the original. We utilized the GPT2 model as the transformer text-generator
tool, and we used a low-level API, namely the pipeline. This model uses the “Language
Models are Unsupervised Multitask Learners.” It applied BART as a model combination.
Pretraining has two stages: (1) arbitrary noising function for the many corrupted texts and
(2) reconstructing the original text using a sequence-to-sequence model for the learned
process. BART has an autoregressive decoder for Sequence Generation Process, and the
system can directly fine-tune it. After that, the system will copy and manipulate all
information to perform denoising to move closer to the pre-training objective. Here, the
decoder generates outputs autoregressively, and the input encoder is the input sequence in
stage (1).

To generate new sentences, it combines five methods as seen in Figure 3: for token
masking, BERT implements randomized tokens, makes them sampled, and replaces them
with (MASK) elements. For token deletion, delete random tokens in text input. This process
is different from token masking; the model itself decides which places are missing in the
inputs. For text infilling, take samples using several text spans, then replace every span with
a single (MASK) token. If spans are 0-length, then correspond to the insertion of (MASK)
tokens. For sentence permutation, a document is distributed into several sentences based
on total stop words and then rearranged in random order. For document rotation: chose a
token uniformly and randomly, then rotate the document and put that chosen token at the
beginning of the document. Those five methods will generate the following words one by
one until the specified sentence length is reached. The input is a sequence of words. Then,
the process of token masking, token deletion, sentence permutation, document rotation,
and text infilling are executed. The results of the execution of these processes are combined,
and the process decides the most appropriate word to become the generator’s result. Table 3
shows original document and a few samples of counterfeit generated document.

Mathematics 2022, 10, x FOR PEER REVIEW 9 of 18

process. BART has an autoregressive decoder for Sequence Generation Process, and the
system can directly fine-tune it. After that, the system will copy and manipulate all infor-
mation to perform denoising to move closer to the pre-training objective. Here, the de-
coder generates outputs autoregressively, and the input encoder is the input sequence in
stage (1).

To generate new sentences, it combines five methods as seen in Figure 3: for token
masking, BERT implements randomized tokens, makes them sampled, and replaces them
with (MASK) elements. For token deletion, delete random tokens in text input. This pro-
cess is different from token masking; the model itself decides which places are missing in
the inputs. For text infilling, take samples using several text spans, then replace every span
with a single (MASK) token. If spans are 0-length, then correspond to the insertion of
(MASK) tokens. For sentence permutation, a document is distributed into several sen-
tences based on total stop words and then rearranged in random order. For document
rotation: chose a token uniformly and randomly, then rotate the document and put that
chosen token at the beginning of the document. Those five methods will generate the fol-
lowing words one by one until the specified sentence length is reached. The input is a
sequence of words. Then, the process of token masking, token deletion, sentence permu-
tation, document rotation, and text infilling are executed. The results of the execution of
these processes are combined, and the process decides the most appropriate word to be-
come the generator’s result. Table 3 shows original document and a few samples of coun-
terfeit generated document.

Figure 3. BART Transformations for next-word generator.

Table 3. Examples of Counterfeit Generated Document.

Original Document
There are people isolating in the Auckland quarantine facility from the community which in-
cludes people who have tested positive for COVID and their household contacts.

Counterfeit Gener-
ated Document

There are people isolating in the Auckland quarantine facility from the community which I’m
speaking of, a small number of who have gone through the process to become isolated, but who
I’m sure have developed the qualities required for.
There are people isolating in the Auckland quarantine facility from the community which, as a
safety precaution, we do not believe can be properly monitored”, she said. A community trust
group called New Zealand Community Life.
There are people isolating in the Auckland quarantine facility from the community which will
likely leave the community for the next week because of a problem with the disease”, says Shue.
The National Council will also be working.
………
There are people isolating in the Auckland quarantine facility from the community which has a
medical staff under them. It’s a big isolation center and there is no way for them to get help from
the public. So, on Friday.

3.7. Document Similarity
We used cosine similarity to get the distance between two documents. Those docu-

ments that we compared are original documents toward each generated document in the

Figure 3. BART Transformations for next-word generator.

Table 3. Examples of Counterfeit Generated Document.

Original Document There are people isolating in the Auckland quarantine facility from the community which includes
people who have tested positive for COVID and their household contacts.

Counterfeit Generated Document

There are people isolating in the Auckland quarantine facility from the community which I’m speaking
of, a small number of who have gone through the process to become isolated, but who I’m sure have
developed the qualities required for.

There are people isolating in the Auckland quarantine facility from the community which, as a safety
precaution, we do not believe can be properly monitored”, she said. A community trust group called
New Zealand Community Life.

There are people isolating in the Auckland quarantine facility from the community which will likely
leave the community for the next week because of a problem with the disease”, says Shue. The
National Council will also be working.

.

There are people isolating in the Auckland quarantine facility from the community which has a medical
staff under them. It’s a big isolation center and there is no way for them to get help from the public. So,
on Friday.

Mathematics 2022, 10, 585 10 of 17

3.7. Document Similarity

We used cosine similarity to get the distance between two documents. Those docu-
ments that we compared are original documents toward each generated document in the
array. In many NLP tasks, a cosine similarity is an approach to measuring the similarity be-
tween two non-zero vectors, aiming to get the inner product space. A document can contain
thousands of attributes/words; the characteristic of the document depends on attributes,
and we can classify it as the frequency based on a particular word/keyword/phrase. This
method is called a term-frequency vector, for which the main task is to represent text into
objects. For example, we have two documents and then generate both into term-frequency
vectors. However, those vectors have many zero values in common, meaning that both
vectors have no corresponding documents and do not share many words. As a result, those
texts are not similar. In this process, the measurement will focus on the words that the
two documents have in common and words frequency. In other words, it is necessary to
measure for numeric data that overlooks zero matches.

The formula of similarity function is following:

Similarity(x, y) =
x·y
||x||||y|| (3)

where ||x|| is the Euclidean norm of vector x = (x1, x2, x3, . . . , xn) or defined as√
x2

1 + x2
2 + x2

3 + . . . + x2
n. In theory, it is the length of the vector. Furthermore,||y|| is

the Euclidean norm of vector y. This similarity equation calculates the distance of vectors x
and y, and the result is the cosine of the angle. If the cosine value of 0, the two vectors are
at 90 degrees to each other (orthogonal), or we can say those vectors have no match.

3.8. Models

To obtain comprehensive results, we tested our approach to two simple models, which
are based on Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN).

First, we focused on the RNN based duo to the LSTM network as an RNN since the
RNN is a more straightforward system. The model used Facebook/Bart-large pre-trained
as input; it produces matrix 300× 1024 for their result. Then, we utilized an LSTM network,
and 2 Dense (Relu) as shown in Figure 4. This simple network can efficiently use past input
features via an LSTM layer and forward the information to the following Dense Layers. For
the last layer, we used the Sigmoid function to obtain binary output (0 = fake, 1 = true).

Mathematics 2022, 10, x FOR PEER REVIEW 10 of 18

array. In many NLP tasks, a cosine similarity is an approach to measuring the similarity
between two non-zero vectors, aiming to get the inner product space. A document can
contain thousands of attributes/words; the characteristic of the document depends on at-
tributes, and we can classify it as the frequency based on a particular word/key-
word/phrase. This method is called a term-frequency vector, for which the main task is to
represent text into objects. For example, we have two documents and then generate both
into term-frequency vectors. However, those vectors have many zero values in common,
meaning that both vectors have no corresponding documents and do not share many
words. As a result, those texts are not similar. In this process, the measurement will focus
on the words that the two documents have in common and words frequency. In other
words, it is necessary to measure for numeric data that overlooks zero matches.

The formula of similarity function is following: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑥, 𝑦) = 𝑥 𝑦 |𝑥| |𝑦| (3)

where |𝑥| is the Euclidean norm of vector 𝑥 = (𝑥 , 𝑥 , 𝑥 , … , 𝑥) or defined as 𝑥 𝑥 𝑥 ⋯ 𝑥 . In theory, it is the length of the vector. Furthermore, |𝑦| is the
Euclidean norm of vector y. This similarity equation calculates the distance of vectors x
and y, and the result is the cosine of the angle. If the cosine value of 0, the two vectors are
at 90 degrees to each other (orthogonal), or we can say those vectors have no match.

3.8. Models
To obtain comprehensive results, we tested our approach to two simple models,

which are based on Recurrent Neural Network (RNN) and Convolutional Neural Net-
work (CNN).

First, we focused on the RNN based duo to the LSTM network as an RNN since the
RNN is a more straightforward system. The model used Facebook/Bart-large pre-trained
as input; it produces matrix 300 × 1024 for their result. Then, we utilized an LSTM network,
and 2 Dense (Relu) as shown in Figure 4. This simple network can efficiently use past
input features via an LSTM layer and forward the information to the following Dense
Layers. For the last layer, we used the Sigmoid function to obtain binary output (0 = fake,
1 = true).

Figure 4. Simple LSTM-Based model for binary classification.

Second, we utilized Convolutional Neural Network 1-d. It is a classical approach to
fix a simple problem, such as the ensembles of decision trees, training machine learning
models, and time-series data on fixed-sized windows. In this research, we used the same
matrix dimension and pre-processing as input. Those two models produce binary classi-
fication by using the sigmoid function. Figure 5 shows that all components in the structure
are like Figure 4 except the Conv1D layer.

Figure 4. Simple LSTM-Based model for binary classification.

Second, we utilized Convolutional Neural Network 1-d. It is a classical approach to fix
a simple problem, such as the ensembles of decision trees, training machine learning models,
and time-series data on fixed-sized windows. In this research, we used the same matrix
dimension and pre-processing as input. Those two models produce binary classification by
using the sigmoid function. Figure 5 shows that all components in the structure are like
Figure 4 except the Conv1D layer.

Mathematics 2022, 10, 585 11 of 17Mathematics 2022, 10, x FOR PEER REVIEW 11 of 18

Figure 5. Simple CNN-Based model for binary classification.

4. Experiment and Task
4.1. Experiment Setup

The experiments were run on Intel Core (TM) i7 8700, 6 core 3.20 GHz Processor, 16
GB RAM, Nvidia GeForce RTX 3060 GPU 12 GB. Base program and training used Python
3.7.8 and TensorFlow Version: 2.4.0. Pre-training and tokenizer used BART transformer
3.4.0 with PyTorch 1.7.1 + cu101. Gensim 3.8.0 for LDAMulticore, TextBlob 0.15.3, tweet-
preprocessor 0.6.0. Several important hyper-parameters determined this architecture:
Training model learning-rate = 0.001, epoch 10, batch-size 8.

4.2. Description of Task
To gain comprehensive results and prove our proposed method was accurate in var-

ious training dataset sizes, we tested models for the different dataset sizes. First, we took
random 30, 50, 80, and 100 percent of the total dataset rows as a baseline. Those baseline
datasets are referred to as Train-30, Train-50, Train-80, and Train-100, respectively. Sec-
ond, we took datasets based on the topic-selected method in the same size as the baseline
and named those Topic-30, Topic-50, Topic-80, and Topic-100. Third, for datasets that use
text generation, we defined them as TB-BCG-30, TB-BCG-50, TB-BCG-80, and TB-BCG-
100. We preprocessed the generation text as explained in the proposed model method in
this paper. Furthermore, we tested each model (LSTM and CNN) toward the testing da-
taset, and the results can be seen in the next section.

5. Result and Analysis
In this section, we show and analyze the results we obtained according to section

experiment and task and discuss topics and their weight, topic distribution in datasets,
statistics, percentage, and counterfeit-generated text in datasets, and the result would be
to give the accuracy of each model.

First, we randomly divided the dataset into four datasets as a baseline and named
those as Train-30 (30% from the dataset), Train-50, Train-80, and Train-100. It is necessary
because it will produce results that can compare to our method more comprehensively.

Second, we generated counterfeit text for every train random data (Train-50, Train-
80, and Train-100) by using the GPT2 model as the transformer text-generator tool. We
named those as Train-gen-30, Train-gen-50, Train-gen-80, and Train-gen-100.

Third, we implemented LDA to extract topics from the original training Constraint
@ AAAI2021-COVID19 Fake News Detection dataset. The ten topics and their top 10
words are presented with relative weights. Unlike Guo et al. [42] and Hao et al. [43], we
did not name each topic based on the relevant relationship between their top words and
their identical relative weights. As shown in Table 3 for the example, we used Topic 0, 1,
2, …, 9.

Table 4 shows terms and their weight in the topic, and Gensim generates it automat-
ically. Another significant contribution LDA made in statistical distribution theory is
weighted distributions, elaborating the two-level models in the traditional hierarchical
Bayesian literature. LDA estimates that each text comes from multiples topics and returns

Figure 5. Simple CNN-Based model for binary classification.

4. Experiment and Task
4.1. Experiment Setup

The experiments were run on Intel Core (TM) i7 8700, 6 core 3.20 GHz Processor, 16 GB
RAM, Nvidia GeForce RTX 3060 GPU 12 GB. Base program and training used Python 3.7.8
and TensorFlow Version: 2.4.0. Pre-training and tokenizer used BART transformer 3.4.0 with
PyTorch 1.7.1 + cu101. Gensim 3.8.0 for LDAMulticore, TextBlob 0.15.3, tweet-preprocessor
0.6.0. Several important hyper-parameters determined this architecture: Training model
learning-rate = 0.001, epoch 10, batch-size 8.

4.2. Description of Task

To gain comprehensive results and prove our proposed method was accurate in
various training dataset sizes, we tested models for the different dataset sizes. First, we
took random 30, 50, 80, and 100 percent of the total dataset rows as a baseline. Those
baseline datasets are referred to as Train-30, Train-50, Train-80, and Train-100, respectively.
Second, we took datasets based on the topic-selected method in the same size as the baseline
and named those Topic-30, Topic-50, Topic-80, and Topic-100. Third, for datasets that use
text generation, we defined them as TB-BCG-30, TB-BCG-50, TB-BCG-80, and TB-BCG-100.
We preprocessed the generation text as explained in the proposed model method in this
paper. Furthermore, we tested each model (LSTM and CNN) toward the testing dataset,
and the results can be seen in the next section.

5. Result and Analysis

In this section, we show and analyze the results we obtained according to section
experiment and task and discuss topics and their weight, topic distribution in datasets,
statistics, percentage, and counterfeit-generated text in datasets, and the result would be to
give the accuracy of each model.

First, we randomly divided the dataset into four datasets as a baseline and named
those as Train-30 (30% from the dataset), Train-50, Train-80, and Train-100. It is necessary
because it will produce results that can compare to our method more comprehensively.

Second, we generated counterfeit text for every train random data (Train-50, Train-80,
and Train-100) by using the GPT2 model as the transformer text-generator tool. We named
those as Train-gen-30, Train-gen-50, Train-gen-80, and Train-gen-100.

Third, we implemented LDA to extract topics from the original training Constraint @
AAAI2021-COVID19 Fake News Detection dataset. The ten topics and their top 10 words
are presented with relative weights. Unlike Guo et al. [42] and Hao et al. [43], we did
not name each topic based on the relevant relationship between their top words and their
identical relative weights. As shown in Table 3 for the example, we used Topic 0, 1, 2,
. . . , 9.

Table 4 shows terms and their weight in the topic, and Gensim generates it auto-
matically. Another significant contribution LDA made in statistical distribution theory is
weighted distributions, elaborating the two-level models in the traditional hierarchical
Bayesian literature. LDA estimates that each text comes from multiples topics and returns
the weight of each topic for each document. LDA succeeds in fixing both problems by

Mathematics 2022, 10, 585 12 of 17

handling the topic mixture weights as a k-parameter hidden random variable rather than
a large set of individual parameters explicitly linked to the training set. Because The
LDA algorithm does not return the same results since it incorporates some randomness
to the initialization process, we executed topics until we obtained well-distributed topic
distribution between topics.

Table 4. Topic Terms and Their Weight (* means “for term/word”).

Topic Words

0
0.036*“deaths” + 0.030*“amp” + 0.027*“states” + 0.018*“cases” +

0.016*“numbers” + 0.014*“pradesh” + 0.011*“days” + 0.011*“spread” +
0.010*“coronavirus” + 0.009*“day”

1
0.075*“cases” + 0.030*“total” + 0.029*“health” + 0.028*“number” +
0.019*“active” + 0.019*“new” + 0.017*“world” + 0.016*“report” +

0.014*“recovered” + 0.014*“deaths”

2
0.048*“coronavirus” + 0.044*“cases” + 0.034*“reported” + 0.032*“new” +

0.020*“states” + 0.017*“risk” + 0.016*“death” + 0.015*“patients” +
0.013*“today” + 0.013*“deaths”

3
0.059*“people” + 0.050*“coronavirus” + 0.017*“cases” + 0.014*“hospital” +

0.013*“says” + 0.011*“case” + 0.010*“new” + 0.010*“contact” +
0.009*“north” + 0.009*“government”

4
0.038*“tests” + 0.034*“testing” + 0.023*“people” + 0.022*“day” +
0.016*“positive” + 0.015*“amp” + 0.015*“today” + 0.014*“state” +

0.013*“test” + 0.012*“data”

5
0.037*“new” + 0.036*“cases” + 0.030*“virus” + 0.018*“vaccine” +

0.015*“coronavirus” + 0.014*“says” + 0.013*“trump” + 0.012*“pandemic” +
0.012*“people” + 0.011*“restrictions”

6
0.060*“cases” + 0.052*“new” + 0.028*“deaths” + 0.027*“confirmed” +

0.027*“states” + 0.022*“reported” + 0.020*“lagos” + 0.020*“fct” +
0.017*“discharged” + 0.017*“tests”

7
0.023*“coronavirus” + 0.022*“data” + 0.019*“positive” + 0.019*“new” +

0.019*“test” + 0.018*“tested” + 0.017*“trump” + 0.016*“president” +
0.016*“people” + 0.015*“pandemic”

8
0.035*“tests” + 0.028*“number” + 0.020*“completed” + 0.018*“total” +

0.015*“new” + 0.015*“coronavirus” + 0.015*“yesterday” + 0.014*“learn” +
0.014*“amp” + 0.012*“vaccine”

9
0.055*“coronavirus” + 0.038*“india” + 0.018*“video” + 0.015*“testing” +

0.015*“hospital” + 0.013*“people” + 0.012*“died” + 0.011*“cases” +
0.011*“claim” + 0.011*“novel”

The most interpretable topics extracted from the fake news and real news are shown
in Table 4. We divided it into ten topics, and each topic has ten words. As the result for
topic 0, the words and their weight are 0.036*“deaths” + 0.030*“amp” + 0.027*“states” +
0.018*“cases” + 0.016*“numbers” + 0.014*“pradesh” + 0.011*“days” + 0.011*“spread” +
0.010*“coronavirus” + 0.009*“day”. This means the top 10 keywords that contribute to
this topic are: “deaths”, “amp”, “states”, and so on, and the weight of “deaths” on topic 0
is 0.036. The number of hidden topics is a fundamental arrangement in topic modeling,
and the weights reflect how important a keyword is to that topic. This LDA method
represents the marginal distribution of a document as a continuous mixture combination.
The observed data are the words of each text, and the hidden variables represent the latent
topical structure, i.e., the topics themselves and how specific composition presents them.

Table 4 reveals that in this research dataset, coronavirus and words related to it are the
most frequently appearing words. All sequence in topics have slightly diverse words, and
the difference is only in order of words and the weight. It proved that both fake news and
real news could have the same topics. Although we will not decide whether it is true using

Mathematics 2022, 10, 585 13 of 17

the topic model, dividing it into a few topics will help us know the correlation between one
text and another.

Fourth, we obtained the topics assigned to each document with the method topic dis-
tributions of the LDAModel. We created four datasets with different amounts of documents
based on topics shown in Table 4, namely 30%, 50%, 80%, and 100% of the total training
dataset. Table 5 shows the total number of documents and how many documents there are
for each topic.

Table 5. Topics Distribution in Datasets (Bold text is highest number of topic group for each dataset).

Dataset
Topic

Total
0 1 2 3 4 5 6 7 8 9

Topic-30 151 171 156 216 208 211 111 209 161 256 1850

Topic-50 253 286 261 360 347 352 185 349 268 427 3088

Topic-80 404 458 417 576 555 563 296 559 429 683 4940

Topic-100 506 573 522 720 694 704 371 699 537 854 6180

As shown in the results presented in Table 5, Topic 9 has the most significant number
of documents, and Topic 6 is the smallest. Because we distributed topics into datasets
according to the percentage of documents number in total, it creates a balanced distribution
in each dataset. The Topic-100 dataset means we retrieve the entire dataset, but it is sorted
differently from the actual dataset.

Fifth, we generated counterfeit text by using the GPT2 model as the transformer
text-generator tool. Our model used the “Language Models are Unsupervised Multitask
Learners”. We also applied pre-training BART. Table 6 shows the difference for each dataset,
statistics, percentage, and counterfeit-generated text.

Table 6. Statistics, Percentage, and Counterfeit-Generated Text in Datasets.

Dataset
Statistics Percentage Generated Text

Total Row True False True (%) False (%) Difference True False Total

Train-30 1925 1003 922 0.5210 0.4790 0.0421 - - -
Train-50 3209 1667 1542 0.5195 0.4805 0.0390 - - -
Train-80 5134 2676 2458 0.5212 0.4788 0.0425 - - -
Train-100 6418 3360 3058 0.5235 0.4765 0.0471 - - -

Train-gen-30 3218 1255 1063 0.5414 0.4585 0.0828 252 141 393
Train-gen-50 3887 2103 1784 0.5410 0.4589 0.0820 436 242 678
Train-gen-80 6166 3341 2825 0.5418 0.4581 0.0836 665 308 973

Train-gen-100 7801 4081 3720 0.5231 0.4768 0.0462 721 662 1383

Topic-30 1844 921 923 0.4994 0.5005 0.0010 - - -
Topic-50 3082 1569 1513 0.5090 0.4909 0.0181 - - -
Topic-80 4935 2537 2398 0.5140 0.4859 0.0281 - - -
Topic-100 6418 3360 3058 0.5235 0.4765 0.0471 - - -

TB-BCG-30 2488 1368 1120 0.5498 0.4501 0.0996 447 197 644
TB-BCG-50 3986 2214 1772 0.5554 0.4445 0.1108 645 259 904
TB-BCG-80 6295 3495 2800 0.5552 0.4447 0.1104 958 402 1360
TB-BCG-100 7828 4082 3746 0.5214 0.4785 0.0429 892 760 1652

The results presented in Table 6 show that Train-30, Train-Gen-30, Topic-30, and TB-
BCG-30 have different total rows. The difference between Train-30 and Topic-30 is caused
due to the way we divided rows. For Train-30, it has more rows because we divided it
directly from total data, which is 30% from the entire rows. Meanwhile, for topic-30, we
obtained 30% of each topic, as seen in step four in this section. The generated texts caused
Topic-Gen-30 to obtain more rows. However, this process made the dataset between true

Mathematics 2022, 10, 585 14 of 17

and fake unbalanced. Take as an example TB-BCG-30; these additions of generated text
enlarged the difference between true and fake, which is 9.9% and is contrary to Train-30
and Topic-30, which have a difference of 4.21% and 0.1%, respectively. Not all rows in the
dataset produced the generated text as a result. If the similarity level between real text and
generated text is less than 95%, the system will not add it as counterfeit-generated text. TB-
BCG-30 only generated 644 counterfeit-generated texts from a total of 1844 Topic-30 rows.

Sixth, we trained all the datasets using the simple LSTM and CNN models to eval-
uate our model, just as we described in Section 3. All our experiments used the same
hyperparameters. We utilized four different metrics, including precision, accuracy, recall,
and F1-score, to compare the results of each dataset. Because F1-score represents recall
and precision, we take F1-score as a performance comparison. The results can be seen in
Tables 7–10 for 30%, 50%, 80%, and 100% of the dataset, respectively. Bold texts are the
highest performance (F1-Score) in each table.

Table 7. Experimental result of 30% dataset.

Dataset
LSTM CNN

Pre. Acc. F1-Score Recall Pre. Acc. F1-Score Recall

Train-30 0.8701 0.8977 0.8830 0.8963 0.8317 0.7664 0.8310 0.8304

Train-gen-30 0.8981 0.969 0.8992 0.9003 0.909 0.9752 0.9100 0.911

Topic-30 0.8417 0.7764 0.8410 0.8404 0.8868 0.8597 0.8860 0.8853

TB-BCG-30 0.9100 0.9411 0.9104 0.9109 0.917 0.9106 0.9167 0.9165

Table 8. Experimental result of 50% dataset.

Dataset
LSTM CNN

Pre. Acc. F1-Score Recall Pre. Acc. F1-Score Recall

Train-50 0.9230 0.9064 0.9148 0.9068 0.8697 0.8095 0.8680 0.8664

Train-gen-50 0.9168 0.9804 0.9177 0.9187 0.9368 0.9516 0.9370 0.9372

Topic-50 0.8797 0.8195 0.8780 0.8764 0.8748 0.9384 0.8758 0.8769

TB-BCG-50 0.9359 0.9578 0.9362 0.9365 0.9415 0.929 0.9411 0.9408

Table 9. Experimental result of 80% dataset.

Dataset
LSTM CNN

Pre. Acc. F1-Score Recall Pre. Acc. F1-Score Recall

Train-80 0.9175 0.9217 0.9194 0.9214 0.9319 0.9489 0.9321 0.9324

Train-gen-80 0.9450 0.9322 0.9446 0.9443 0.943 0.9475 0.9431 0.9433

Topic-80 0.9289 0.9036 0.9283 0.9278 0.9271 0.9347 0.9271 0.9272

TB-BCG-80 0.9360 0.9364 0.9359 0.9359 0.9372 0.9225 0.9368 0.9364

Table 10. Experimental result of 100% dataset.

Dataset
LSTM CNN

Pre. Acc. F1-Score Recall Pre. Acc. F1-Score Recall

Train-100 0.9257 0.9193 0.9225 0.9194 0.9209 0.8956 0.9203 0.9198

Train-gen-100 0.9441 0.9463 0.9441 0.9441 0.9373 0.973 0.9378 0.9384

Topic-100 0.9399 0.9569 0.9401 0.9404 0.9305 0.9136 0.9300 0.9296

TB-BCG-100 0.9608 0.9732 0.9609 0.9611 0.9568 0.9684 0.9569 0.9571

Mathematics 2022, 10, 585 15 of 17

We compared all results based on a group of amounts row. Tables 7, 8 and 10 show that
our approach obtained the highest F1-score results for groups 30%, 50%, and 100% of the
dataset. That means our proposed method worked well here. By rearranging and selecting
the dataset based on their distinctiveness, we can provide a more diverse order. However,
for Table 9, Train-gen-80 gained the best result. We assume this happens because data
distribution is balanced between fake and true labels. The training dataset obtained from
the selected topic (Topic-30, Topic-50, Topic-80, Topic-100) obtained worse performance
than the Train-gen (Train-gen-30, Train-gen-50, Train-gen-80, Train-gen-100) because the
topic data are fewer than the Train-gen. TB-BCG affected accuracy due to the number of
rows that were successfully generated. However, TB-BCG yields the highest performance
in our experiment. LSTM and CNN obtain performance results that were quite close
between them.

6. Discussion and Future Work

Although our approach was successful in many experiments in this paper, many things
can still be improved. For example, in LDA, we manually determined the number of topics
and the number of terms in each topic. We tried to add a topic or terms, but performances
are worse than the baseline. Thus, topics and terms number can be determined by the
dataset and the amount of data. The experimental result of 80% dataset shows that Train-
gen-80 demonstrated the best performance; this indicates that our approach cannot surpass
the baseline under certain circumstances. Generating using Algorithm 1 and the BART text
generator still has many shortcomings. The lack of generated text categorized in the criteria
(similarity ≥ 95%) makes the unequal dataset distribution between true and false labels;
according to Table 6, the generated text only makes up less than 50 percent of the total data.

To overcome the difficulties and drawbacks found in this work, we suggest two
research directions:

First, develop a new method using LDA but with a system that automatically deter-
mines the number of topics and the number of terms for each topic. It will be helpful to
make the system better in reading the dataset and performing the necessary configurations
to obtain a more promising performance.

Second, create a new robust algorithm so that even the new words change up to 30%
by random throughout the text but still have similarities to the original text.

7. Conclusions

This paper uses the pre-trained model and deep learning to involve the Constraint
@ AAAI2021-COVID19 Fake News Detection dataset shared task. Our proposed method
implemented Latent Dirichlet Allocation (Topic-based), Bidirectional and Auto-Regressive
Transformers, and Cosine Document Similarity as the main tools (TB-BCG). We generated
counterfeit training data using BART and compared it toward source text using cosine
similarity. Counterfeit-generated text is created from 70% source text and 30% automatically
generated text. These additions of generated text enlarged the difference between true and
fake, which for TB-BCG-30 is 9.9%. Contrary to Train-30 and Topic-30, the difference is
only 4.25% and 0.1%, respectively. In our cases, not all rows can produce the counterfeit-
generated text. Therefore, as a result, the difference between true and fake is 4%. The
training dataset obtained from the selected topic unsignificant increase accuracy because of
the lack of diversity between true and fake. Moreover, the training dataset obtained from
the selected topic decreased accuracy if compared to the Train-gen group. However, it still
increases compared to the training group, and it is because we rearranged and selected the
dataset based on its distinctiveness. TB-BCG affected accuracy due to the number of rows
that were successfully generated. However, TB-BCG yields the highest accuracy in our
experiment. LSTM and CNN obtained accuracy results that were quite close between them.

Author Contributions: Conceptualization, A.S.K. and C.S.; methodology, A.S.K.; software, A.S.K.;
validation, C.S., B.L. and X.W.; formal analysis, A.S.K.; investigation, A.S.K.; resources, C.S.; data
curation, B.L.; writing—original draft preparation, A.S.K.; writing—review and editing, C.S., B.L.

Mathematics 2022, 10, 585 16 of 17

and X.W.; visualization, A.S.K.; supervision, C.S., B.L. and X.W.; project administration, B.L.; fund-
ing acquisition, C.S. and B.L. All authors have read and agreed to the published version of the
manuscript.”

Funding: Supported by State Key Laboratory of Communication Content Cognition, People’s Daily
Online (No. A12003).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers for their insightful
comments and suggestions.

Conflicts of Interest: The authors (Andrea Stevens Karnyoto, Chengjie Sun, Bingquan Liu, Xiaolong
Wang) of the paper (Title: TB-BCG: Topic-Based BART Counterfeit Generator for Fake News Detection)
declare that there is no conflict of interests.

References
1. Ozbay, F.A.; Alatas, B. Fake news detection within online social media using supervised artificial intelligence algorithms. Phys. A

Stat. Mech. Its Appl. 2020, 540, 123174. [CrossRef]
2. Ahmed, H.; Traore, I.; Saad, S. Detection of online fake news using n-gram analysis and machine learning techniques. In

International Conference on Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments; Springer: Cham,
Switzerland, 2017; pp. 127–138.

3. Shu, K.; Mahudeswaran, D.; Wang, S.; Lee, D.; Liu, H. Fakenewsnet: A data repository with news content, social context, and
spatiotemporal information for studying fake news on social media. Big Data 2020, 8, 171–188. [CrossRef] [PubMed]

4. Tandoc, E.C., Jr.; Lim, Z.W.; Ling, R. Defining “fake news” A typology of scholarly definitions. Digit. Journal. 2018, 6, 137–153.
5. Kaliyar, R.K.; Goswami, A.; Narang, P.; Sinha, S. FNDNet–a deep convolutional neural network for fake news detection. Cogn.

Syst. Res. 2020, 61, 32–44. [CrossRef]
6. Buntain, C.; Golbeck, J. Automatically identifying fake news in popular twitter threads. In Proceedings of the 2017 IEEE

International Conference on Smart Cloud (SmartCloud), New York, NY, USA, 3–5 November 2017; pp. 208–215.
7. Kursuncu, U.; Gaur, M.; Lokala, U.; Thirunarayan, K.; Sheth, A.; Arpinar, I.B. Predictive analysis on Twitter: Techniques and

applications. In Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining; Springer:
Cham, Switzerland, 2019; pp. 67–104.

8. O’Brien, N.; Latessa, S.; Evangelopoulos, G.; Boix, X. The Language of Fake News: Opening the Black-Box of Deep Learning
Based Detectors. In Proceedings of the 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, QC,
Canada, 3–8 December 2018.

9. Dong, X.; Victor, U.; Chowdhury, S.; Qian, L. Deep two-path semi-supervised learning for fake news detection. arXiv 2019,
arXiv:1906.05659.

10. Karnyoto, A.S.; Sun, C.; Liu, B.; Wang, X. Transfer learning and GRU-CRF augmentation for COVID-19 fake news detection.
Comput. Sci. Inf. Syst. 2021, 53. [CrossRef]

11. Karnyoto, A.S.; Sun, C.; Liu, B.; Wang, X. Augmentation and heterogeneous graph neural network for AAAI2021-COVID-19 fake
news detection. Int. J. Mach. Learn. Cybern. 2022, 1–11. [CrossRef]

12. Nayak, S.; Panigrahi, C.R.; Pati, B.; Nanda, S.; Hsieh, M.Y. Comparative analysis of HAR datasets using classification algorithms.
Comput. Sci. Inf. Syst. 2022, 19, 47–63. [CrossRef]

13. Chen, J.; Becken, S.; Stantic, B. Lexicon based Chinese language sentiment analysis method. Comput. Sci. Inf. Syst. 2019, 16,
639–655. [CrossRef]

14. Ljajic, A.; Marovac, U. Improving sentiment analysis for twitter data by handling negation rules in the Serbian language. Comput.
Sci. Inf. Syst. 2019, 16, 289–311. [CrossRef]

15. Trisna, K.W.; Jie, H.J. Deep Learning Approach for Aspect-Based Sentiment Classification: A Comparative Review. Appl. Artif.
Intell. 2022, 1–37. [CrossRef]

16. Šoić, R.; Vuković, M.; Ježić, G. Spoken notifications in smart environments using Croatian language. Comput. Sci. Inf. Syst. 2021,
18, 36. [CrossRef]

17. Ponweiser, M. Latent Dirichlet Allocation in R; Vienna University of Economics and Business: Vienna, Austria, 2012.
18. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022.
19. Arjovsky, M.; Bottou, L. Towards principled methods for training generative counterfeit networks. arXiv 2017, arXiv:1701.04862.
20. Hou, L.; Kong, W.; Gao, Y.; Chen, Y.; Li, X. PA-GAN: Graph Attention Network for Preference-Aware Social Recommendation. In

Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2021; Volume 1848, p. 012141.
21. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

http://doi.org/10.1016/j.physa.2019.123174
http://doi.org/10.1089/big.2020.0062
http://www.ncbi.nlm.nih.gov/pubmed/32491943
http://doi.org/10.1016/j.cogsys.2019.12.005
http://doi.org/10.2298/CSIS210501053K
http://doi.org/10.1007/s13042-021-01503-5
http://doi.org/10.2298/CSIS201221043N
http://doi.org/10.2298/CSIS181015013C
http://doi.org/10.2298/CSIS180122013L
http://doi.org/10.1080/08839514.2021.2014186
http://doi.org/10.2298/CSIS200424036S
http://doi.org/10.1145/3422622

Mathematics 2022, 10, 585 17 of 17

22. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to counterfeit attacks. arXiv
2017, arXiv:1706.06083.

23. Zhang, H.; Yu, Y.; Jiao, J.; Xing, E.; El Ghaoui, L.; Jordan, M. Theoretically principled trade-off between robustness and accuracy.
In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7472–7482.

24. Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mohamed, A.; Levy, O.; Stoyanov, V.; Zettlemoyer, L. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation, and comprehension. arXiv 2019, arXiv:1910.13461.

25. Reimers, N.; Gurevych, I. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv 2019, arXiv:1908.10084.
26. Shushkevich, E.; Cardiff, J. TUDublin team at Constraint@ AAAI2021-COVID19 Fake News Detection. arXiv 2021,

arXiv:2101.05701.
27. Glazkova, A.; Glazkov, M.; Trifonov, T. g2tmn at Constraint@ AAAI2021: Exploiting CT-BERT and ensembling learning for

COVID-19 fake news detection. arXiv 2020, arXiv:2012.11967.
28. Li, X.; Xia, Y.; Long, X.; Li, Z.; Li, S. Exploring text-transformers in aaai 2021 shared task: COVID-19 fake news detection in

english. arXiv 2021, arXiv:2101.02359.
29. Gautam, A.; Masud, S. Fake news detection system using XLNet model with topic distributions: CONSTRAINT@ AAAI2021

shared task. arXiv 2021, arXiv:2101.11425.
30. Jelodar, H.; Wang, Y.; Yuan, C.; Feng, X.; Jiang, X.; Li, Y.; Zhao, L. Latent Dirichlet allocation (LDA) and topic modeling: Models,

applications, a survey. Multimed. Tools Appl. 2019, 78, 15169–15211. [CrossRef]
31. Maier, D.; Waldherr, A.; Miltner, P.; Wiedemann, G.; Niekler, A.; Keinert, A.; Pfetsch, B.; Heyer, G.; Reber, U.; Häussler, T.; et al.

Applying LDA Topic Modeling in Communication Research: Toward a Valid and Reliable Methodology. Commun. Methods Meas.
2018, 12, 93–118. [CrossRef]

32. Wang, Y.; Xu, W. Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decis. Support
Syst. 2018, 105, 87–95. [CrossRef]

33. Zamani, M.; Schwartz, H.A.; Eichstaedt, J.; Guntuku, S.C.; Ganesan, A.V.; Clouston, S.; Giorgi, S. Understanding weekly COVID-
19 concerns through dynamic content-specific LDA topic modeling. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing. Conference on Empirical Methods in Natural Language Processing, Online, 16–20 November 2020;
Volume 2020, pp. 193–198.

34. Gurcan, F.; Cagiltay, N.E. Big Data Software Engineering: Analysis of Knowledge Domains and Skill Sets Using LDA-Based Topic
Modeling. IEEE Access 2019, 7, 82541–82552. [CrossRef]

35. Wiedemann, G.; Ruppert, E.; Jindal, R.; Biemann, C. Transfer learning from lda to bilstm-cnn for offensive language detection in
twitter. arXiv 2018, arXiv:1811.02906.

36. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaizer, Ł.; Polosukhin, I. Attention is all you need. Adv.
Neural Inf. Process. Syst. 2017, 30, 5998–6008.

37. Liu, Y.; Gu, J.; Goyal, N.; Li, X.; Edunov, S.; Ghazvininejad, M.; Lewis, M.; Zettlemoyer, L. Multilingual Denoising Pre-training for
Neural Machine Translation. Trans. Assoc. Comput. Linguist. 2020, 8, 726–742. [CrossRef]

38. Roller, S.; Dinan, E.; Goyal, N.; Ju, D.; Williamson, M.; Liu, Y.; Xu, J.; Ott, M.; Smith, E.M.; Boureau, Y.-L.; et al. Recipes for
building an open-domain chatbot. arXiv 2020, arXiv:2004.13637.

39. Gunawan, D.; Sembiring, C.A.; Budiman, M.A. The Implementation of Cosine Similarity to Calculate Text Relevance between
Two Documents. J. Physics: Conf. Ser. 2018, 978, 012120. [CrossRef]

40. Thongtan, T.; Phienthrakul, T. Sentiment classification using document embeddings trained with cosine similarity. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, Florence, Italy, 28
July–2 August 2019; pp. 407–414.

41. Ristanti, P.Y.; Wibawa, A.P.; Pujianto, U. Cosine similarity for title and abstract of economic journal classification. In Proceedings
of the 2019 5th International Conference on Science in Information Technology (ICSITech), Yogyakarta, Indonesia, 23–24 October
2019; pp. 123–127.

42. Guo, Y.; Barnes, S.; Jia, Q. Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet
allocation. Tour. Manag. 2017, 59, 467–483. [CrossRef]

43. Hao, H.; Zhang, K.; Wang, W.; Gao, G. A tale of two countries: International comparison of online doctor reviews between China
and the United States. Int. J. Med. Inform. 2017, 99, 37–44. [CrossRef] [PubMed]

http://doi.org/10.1007/s11042-018-6894-4
http://doi.org/10.1080/19312458.2018.1430754
http://doi.org/10.1016/j.dss.2017.11.001
http://doi.org/10.1109/ACCESS.2019.2924075
http://doi.org/10.1162/tacl_a_00343
http://doi.org/10.1088/1742-6596/978/1/012120
http://doi.org/10.1016/j.tourman.2016.09.009
http://doi.org/10.1016/j.ijmedinf.2016.12.007
http://www.ncbi.nlm.nih.gov/pubmed/28118920

	Introduction
	Related Work
	AAAI2021-COVID19 Fake News Detection
	Topic-Based
	Bidirectional and Auto-Regressive Transformers (BART)
	Cosine Document Similarity

	Proposed Method
	Data Processing
	Latent Dirichlet Allocation (LDA)
	Selecting and Deviding Dataset
	Sort Most Distinctive Row in Dataset
	Add Training Documents Using the Text Generator
	Text Generator
	Document Similarity
	Models

	Experiment and Task
	Experiment Setup
	Description of Task

	Result and Analysis
	Discussion and Future Work
	Conclusions
	References

