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Abstract: In the paper, we study a design and stability of contrast-independent partially explicit
time discretizations for Quasi-Gas-Dynamics (QGD) Equations in multiscale high-contrast media. In
our previous works, we have introduced contrast-independent partially explicit time discretizations.
In this paper, we extend these ideas to multiscale QGD problems. Because of high contrast, explicit
methods require a very small time stepping. By designing appropriate spatial splitting and temporal
splitting, partially explicit methods remove this constraint. The proposed partially explicit time
discretization consists of two steps. First, we split the space into contrast dependent (fast) and
contrast independent (slow) components on a coarse grid that is much larger compared to spatial
heterogeneities. Secondly, we design a temporal splitting algorithm in a such way that it is stable and
the time step is independent of the contrast and only depends on the coarse mesh size. Using proposed
method, a few degrees of freedom are treated implicitly and the approach is mostly explicit. We prove
that the proposed splitting is unconditionally stable under some suitable conditions formulated for
the second space (slow). We present numerical results and show that the proposed methods provide
results similar to implicit methods with the time step that is independent of the contrast.

Keywords: multiscale method; quasi-gas dynamics; temporal splitting; CEM-GMsFEM; explicit-implicit

1. Introduction

Complex flows that combine different processes occur in many applications. Some
important classes of flow models include kinetic models and continuum models. There are
several intermediate-scale and intermediate-physics models that are used in the literature.
One of such models is the quasi-gas dynamic (QGD) system of equations, which has a form

∂u
∂t

+ α
∂2u
∂t2 + A(u) = f ,

which combines both parabolic and wave phenomena. The QGD model is multiphysics
as it includes both diffusive and wave phenomena, QGD model equations can be derived
from kinetic equations. This derivation assumes that the distribution function is similar to a
locally Maxwellian representation. The QGD model has a smoothing effect for the solution
at the free path distance. One can find more detailed information about QGD model in the
literature [1]. In this paper, a simplified QGD system is considered. The model involves
second derivatives with respect to the time. The resulting model regularizes parabolic
equations by adding a hyperbolicity. The latter can be used in designing efficient time
stepping algorithms [1].

In the paper, we consider the QGD model in a multiscale and high-contrast envi-
ronment (see Equation (2)). The equation parameters represent the media properties and
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spatially vary. The applications of these equations can be considered in porous media for
compressible flows. The heterogeneities of the coefficients represent the media proper-
ties, which can have large variations. Because of large variations, the resulting system is
stiff and requires very small time steps for explicit methods. In this paper, we use our
previous works on multiscale methods [2] to design efficient temporal splitting (cf. [3,4]).
The resulting scheme is a partially explicit method and has many advantages in simulations.

Explicit methods are commonly used for QGD models [1] due to the finite speed of
propagation. Explicit methods have advantages: (1) they provide a fast marching in time;
(2) they can easily preserve physical quantities; and (3) they have small communication
between degrees of freedom (DOF). However, explicit methods require a small time step
which is due to the mesh size and the contrast. Implicit methods typically give uncondi-
tionally stable schemes, but with a higher computational cost. It is therefore desirable to
develop a practical compromise that takes advantage of both explicit and implicit methods.
We propose to solve the problem on a coarse grid, where the mesh size is chosen to be much
larger compared to heterogeneities. It is important to remove the contrast dependency in
the time stepping. For this, we extend recently developed novel splitting algorithm [3,4]
and design a partial explicit approach, which gives unconditional stability under some
suitable conditions. Our partial explicit discretization (under some conditions, see (15))
splits the solution into two parts u = u1 + u2 (formally, understood as projections to
corresponding spaces) and can be formally written as

un+1
1 − un−1

1
∆t

+ α
un+1

1 − 2un
1 + un−1

1
∆t2 +

1
2

A(un+1
1 + un−1

1 + 2un
2 ) = f1

un+1
2 − un−1

2
∆t

+ α
un+1

2 − 2un
2 + un−1

2
∆t2 + A(un

1 + un
2 ) = f2.

(1)

We see that this discretization has a special form, which is needed for the stability. Because
the problems are solved on a coarse grid that is much larger compared to heterogeneities,
we use multiscale methods.

The proposed approach extends our previous work on partial explicit methods for
parabolic and wave Equations [3,4] to deal with QGD models. These approaches use
multiscale space decomposition coupled with temporal splitting to perform partial explicit
discretization. In particular, it uses earlier developed spatial multiscale methods for the
spatial discretization to identify the degrees of freedom that require implicit treatment.
These degrees of freedom typically correspond to fast time scales and their identification
requires a careful spatial decomposition. Furthermore, we propose a splitting algorithm. We
note that proposed partial explicit approach for parabolic and wave equations differ in their
form of discretization. For this reason, a different discretization is required for splitting that
is stable. In the paper, we discuss such approach. Next, we briefly discuss some ingredients
of our method, which include multiscale methods and temporal splitting algorithms.

In the paper, we use Constraint Energy Minimizing Generalized Multiscale Finite
Element Method (CEM-GMsFEM) [5,6], though other approaches can possibly be also
used. We note that many multiscale methods have been developed and analyzed. Some
of them formulate coarse-grid problems using effective media properties and based on
homogenization[7–9]. Other approaches are based on constructing multiscale basis func-
tions and formulating coarse-grid equations. These include multiscale finite element meth-
ods [9–11], generalized multiscale finite element methods (GMsFEM) [12–15], constraint
energy minimizing GMsFEM (CEM-GMsFEM) [5,6], nonlocal multi-continua (NLMC) ap-
proaches [16], metric-based upscaling [17], heterogeneous multiscale method [18], localized
orthogonal decomposition (LOD) [19], equation-free approaches [20,21], and so on. Be-
cause proposed problems are high contrast, GMsFEM and NLMC are proposed to extract
macroscopic quantities associated with the degrees of the freedom that the operator “cannot
see”. For this reason, for GMsFEM and related approaches [5], multiple basis functions or
continua are constructed to capture the multiscale features due to high contrast [6,16]. As
we mentioned, the contrast introduces a stiffness in the forward problems. When treating
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explicitly, one needs to take very small time steps when the contrast is high. Our approach
allows taking the time step to be independent of the contrast by handling some degrees of
freedom implicitly and some explicitly.

Our approaches use some fundamental splitting algorithms [22,23]. Unlike algorithms
that split various physics, our algorithms identify spatial components of the solution
that corresponds to fast and slow time scales and treat them implicitly and explicitly,
correspondingly. Though our proposed approaches share some common concepts with
implicit-explicit approaches (e.g., [24–36]), they differ from these approaches. Previous
works on explicit-implicit methods treat nonlinearities in an explicit fashion, other methods
treat globally defined stiff terms implicitly. Our approaches identify local features that
need implicit treatment and design splitting algorithms for implicit-explicit discretization
on a coarse grid. Another important aspect is that the explicit time step scales with the
coarse-mesh size.

We summarize our contributions.

• We design a partial explicit scheme for QGD model, which differs from previously
schemes in [3,4] and use both centered difference and one-sided differences.

• We use multiscale spatial decomposition that identifies fast and slow components of
the solution.

• Proposed approach uses implicit treatment for a few degrees of freedom and the rest
is treated explicitly. The resulting time constraint is independent of the contrast and
scales as the coarse-mesh size.

In the paper, we present some representative numerical results. We consider a het-
erogeneous conductivity field and a source term that has a small spatial support, which
introduces additional scales. In our numerical results, we consider various values of α
that represents the interaction between wave and parabolic phenomena. In all cases, our
numerical results show that the proposed partial explicit approach performs very similar
to fully implicit approach when handing additional degrees of freedom. In particular, in a
strong mixed cases, our approach also performs well.

The paper is organized as follows. In next section, we present preliminaries. Section 3
is devoted to partial explicit method description and analysis. In Section 4, we present
numerical results.

2. Preliminaries

We consider the QGD model in heterogeneous domain. The problem consists of
finding u such that

∂

∂t
u + α

∂2

∂t2 u = ∇ · (κ∇u) in Ω, (2)

where κ ∈ L∞(Ω) is a high contrast heterogeneous field and α is constant (all our findings
apply for heterogeneous spatial field α(x)). We assume both κ(x) and α(x) are posi-
tive. Equation (2) is equipped with initial and boundary conditions, u(0, ·) = u0(x),
ut(0, ·) = u00(x), and u(t, x) = g(x) on ∂Ω.

The weak formulation of the problem is to find u(t, ·) ∈ V := H1(Ω) such that

(
∂

∂t
u, v) + α(

∂2

∂t2 u, v) = −a(u, v) ∀v ∈ V, (3)

where
a(u, v) =

∫
Ω

κ∇u · ∇v.

We take homogeneous boundary conditions.
We consider the energy

E(u) =
1
2

( ∫
Ω

κ|∇u|2 + α
∫

Ω
(

∂u
∂t

)2
)

.
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Then, if we assume f = 0, we have (after multiplying by ∂u
∂t .

∫
Ω

∂u
∂t

∂u
∂t

+ α
∫

Ω

∂2u
∂t2

∂u
∂t

+
∫

Ω
κ∇u · ∇∂u

∂t
= 0.

From here, we have
E(u)(t) = E(u)(0)−

∫
Ω

u2
t ≤ E(u)(0). (4)

Our goal is to preserve this energy inequality in the full temporal discretization.

3. Partially Explicit Temporal Splitting Scheme

In this section, we will discuss a temporal Splitting scheme for solving problem (2).
We consider a numerical solution uH is defined as

(
∂uH
∂t

, v) + α(
∂2uH

∂t2 , v) + a(uH , v) = ( f , v) ∀v ∈ VH (5)

where VH is a coarse grid finite element space. We consider VH can be decomposed into
two subspaces VH,1, VH,2 namely,

VH = VH,1 ⊕VH,2.

We will use a time discretization scheme: finding {un
H,1}N

n=1 ∈ VH,1, {un
H,2}N

n=1 ∈ VH,2

(
un+1

H − un−1
H

∆t
, v) + α(

un+1
H − 2un

H + un−1
H

∆t2 , v) +
1
2

a(un+1
H,1 + un−1

H,1 + 2un
H,2, v)

= ( f , v), v ∈ VH,1

(
un+1

H − un−1
H

∆t
, v) + α(

un+1
H − 2un

H + un−1
H

∆t2 , v) + a(un
H,1 + un

H,2, v)

= ( f , v), v ∈ VH,2

(6)

where the numerical solution un
H ∈ VH is the sum of un

H,1 and un
H,2, namely un

H = un
H,1 + un

H,2.

3.1. Stability

We define

En+1 = α‖
un+1

H − un
H

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
−

(∆t)2

2
‖

un+1
H,2 − un

H,2

∆t
‖2

a

Lemma 1. For f = 0, we have

En+1 ≤ En+1 + ∆t−1‖un+1
H − un−1

H ‖2 = En.

Proof. We consider the test function un+1
H,1 − un−1

H,1 and un+1
H,2 − un−1

H,2 . We have

(
un+1

H − un−1
H

∆t
+ α

un+1
H − 2un

H + un−1
H

∆t2 , un+1
H,1 − un−1

H,1 )+

1
2

a(un+1
H,1 + un−1

H,1 + 2un
H,2, un+1

H,1 − un−1
H,1 ) = 0, v ∈ VH,1

(
un+1

H − un−1
H

∆t
+ α

un+1
H − 2un

H + un−1
H

∆t2 , un+1
H,2 − un−1

H,2 )+

a(un
H,1 + un

H,2, un+1
H,2 − un−1

H,2 ) = 0, v ∈ VH,2

(7)

We have
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(
un+1

H − un−1
H

∆t
+ α

un+1
H − 2un

H + un−1
H

∆t2 , un+1
H − un−1

H ) +
1
2

a(un+1
H,1 + un−1

H,1 , un+1
H,1 − un−1

H,1 )+

a(un
H,2, un+1

H,1 − un−1
H,1 ) + a(un

H,1 + un
H,2, un+1

H,2 − un−1
H,2 ) = 0.

(8)

We first have

(
un+1

H − un−1
H

∆t
+ α

un+1
H − 2un

H + un−1
H

∆t2 , un+1
H − un−1

H ) = ∆t−1‖un+1
H − un−1

H ‖2+

α∆t−2
(
‖un+1

H − un
H‖2 − ‖un

H − un−1
H ‖2

) (9)

We next estimate the term
1
2

a(un+1
H,1 + un−1

H,1 , un+1
H,1 − un−1

H,1 ) and have

1
2

a(un+1
H,1 + un−1

H,1 , un+1
H,1 − un−1

H,1 ) =
1
2

(
‖un+1

H,1 ‖
2
a − ‖un−1

H,1 ‖
2
a

)
=

1
2

(
‖un+1

H,1 ‖
2
a + ‖un

H,1‖2
a

)
−

1
2

(
‖un

H,1‖2
a + ‖un−1

H,1 ‖
2
a

)
.

(10)

We next consider the term a(un
H,2, un+1

H,1 − un−1
H,1 ) + a(un

H,1, un+1
H,2 − un−1

H,2 ) + a(un
H,2, un+1

H,2 −
un−1

H,2 ) and obtain

a(un
H,2, un+1

H,1 − un−1
H,1 ) + a(un

H,1, un+1
H,2 − un−1

H,2 ) + a(un
H,2, un+1

H,2 − un−1
H,2 )

=
(

a(un+1
H,2 , un

H,1) + a(un+1
H,1 , un

H,2) + a(un+1
H,1 , un

H,2)
)
−
(

a(un
H,2, un−1

H,1 )+

a(un
H,1, un−1

H,2 ) + a(un
H,2, un−1

H,2 )
)

.

(11)

Thus, we have

∆t−1‖un+1
H − un−1

H ‖2 + α∆t−2
(
‖un+1

H − un
H‖2

)
+

1
2

(
‖un+1

H,1 ‖
2
a + ‖un

H,1‖2
a

)
+
(

a(un+1
H,2 , un

H,1) + a(un+1
H,1 , un

H,2) + a(un+1
H,1 , un

H,2)
)

=α∆t−2‖un
H − un−1

H ‖2 +
1
2

(
‖un

H,1‖2
a + ‖un−1

H,1 ‖
2
a

)
+(

a(un
H,2, un−1

H,1 ) + a(un
H,1, un−1

H,2 ) + a(un
H,2, un−1

H,2 )
)

.

(12)

We observe that

1
2

(
‖uk+1

H,1 ‖
2
a + ‖uk

H,1‖2
a

)
+
(

a(uk+1
H,2 , uk

H,1) + a(uk+1
H,1 , uk

H,2) + a(uk+1
H,2 , uk

H,2)
)

=
1
2 ∑

m=1,2

(
‖uk+1

H,m‖
2
a + ‖uk

H,m‖2
a

)
+
(

a(uk+1
H,2 , uk

H,1) + a(uk+1
H,1 , uk

H,2)
)
−

1
2
‖uk+1

H,2 − uk
H,2‖2

a

=
1
2

(
‖uk+1

H,1 + uk
H,2‖2

a + ‖uk+1
H,2 + uk

H,1‖2
a

)
−

1
2
‖uk+1

H,2 − uk
H,2‖2

a

(13)

for k = n, n− 1. Therefore, we have

En+1 ≤ En+1 + ∆t−1‖un+1
H − un−1

H ‖2

= En.
(14)
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We will discuss two cases. In the first case, we assume VH,1 and VH,2 are orthogonal
and in the second case, we will consider the case when they are not orthogonal.

3.2. Case VH,1 and VH,2 Are Orthogonal

When VH,1 and VH,2 are orthogonal, the partial explicit scheme has a form

(
un+1

H,1 − un−1
H,1

∆t
, v) + α(

un+1
H,1 − 2un

H,1 + un−1
H,1

∆t2 , v) +
1
2

a(un+1
H,1 + un−1

H,1 + 2un
H,2, v)

= ( f , v), v ∈ VH,1

(
un+1

H,2 − un−1
H,2

∆t
, v) + α(

un+1
H,2 − 2un

H,2 + un−1
H,2

∆t2 , v) + a(un
H,1 + un

H,2, v)

= ( f , v), v ∈ VH,2.

(15)

Lemma 2. The partially explicit scheme (6) is stable if

α‖v2‖2 ≥ (∆t)2

2
‖v2‖2

a ∀v2 ∈ VH,2. (16)

Proof. We have

En+1 = α‖
un+1

H − un
H

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
−
(∆t)2

2
‖

un+1
H,2 − un

H,2

∆t
‖2

a ≥ α‖
un+1

H,1 − un
H,1

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
.

(17)

The latter defines a norm and in this norm, we have a stability.

3.3. Case VH,1 and VH,2 Are Non-Orthogonal

In this case, we note that (see (6)) a coupling in mass matrix term remains. This can be
removed through some mass lumping (see [4]). We define γ, γa < 1 and α ∈ R as

γ := sup
v1∈VH,1,v2∈VH,2

(v1, v2)

‖v1‖‖v2‖
, γa := sup

v1∈VH,1,v2∈VH,2

a(v1, v2)

‖v1‖a‖v2‖a

and

β = sup
v2∈VH,2

‖v2‖a

‖v2‖
.

Lemma 3. If
2α(1− γ2)β−2 ≥ (∆t)2, (18)

we have

(α(1− γ2)−
β2(∆t)2

2
)‖

un+1
H,2 − un

H,2

∆t
‖2 +

(1− γa)

2 ∑
i=1,2

(
‖un+1

H,i ‖
2
a + ‖un

H,i‖2
a

)
≤ E1 (19)

Proof. Since we have
E1 ≥ En+1 for any n ≥ 0,

we have

En+1 = α‖
un+1

H − un
H

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
−

(∆t)2

2
‖

un+1
H,2 − un

H,2

∆t
‖2

a

≤ E1.
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We have

‖un+1
H − un

H‖2 = ∑
i=1,2
‖un+1

H,i − un
H,i‖2 + 2(un+1

H,1 − un
H,1, un+1

H,2 − un
H,2)

≥ ∑
i=1,2
‖un+1

H,i − un
H,i‖2 − 2γ‖un+1

H,1 − un
H,1‖‖un+1

H,2 − un
H,2‖

≥ (1− γ2)‖un+1
H,2 − un

H,2‖2

If 2α(1− γ2)β−2 ≥ (∆t)2, we have

α(1− γ2)‖un+1
H,2 − un

H,2‖2 −
(∆t)2

2
‖un+1

H,2 − un
H,2‖2

a

≥
(

α(1− γ2)−
β2(∆t)2

2

)
‖un+1

H,2 − un
H,2‖2.

Thus, we have

E1 ≥ α‖
un+1

H − un
H

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
−

(∆t)2

2
‖

un+1
H,2 − un

H,2

∆t
‖2

a

≥
(

α(1− γ2)−
β2(∆t)2

2

)
‖

un+1
H,2 − un

H,2

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
.

We also obtain that

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
=

1
2 ∑

i=1,2

(
‖un+1

H,i ‖
2
a + ‖un

H,i‖2
a

)
+ a(un

H,2, un+1
H,1 ) + a(un

H,1, un+1
H,2 )

≥
1
2 ∑

i=1,2

(
‖un+1

H,i ‖
2
a + ‖un

H,i‖2
a

)
− γa

(
‖un

H,2‖a‖un+1
H,1 ‖a + ‖un

H,1‖a‖un+1
H,2 ‖a

)
and

γa

(
‖un

H,2‖a‖un+1
H,1 ‖a + ‖un

H,1‖a‖un+1
H,2 ‖a

)
≤

γa

2 ∑
i=1,2

(
‖un+1

H,i ‖
2
a + ‖un

H,i‖2
a

)
.

Therefore, we have

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
≥

1− γa

2 ∑
i=1,2

(
‖un+1

H,i ‖
2
a + ‖un

H,i‖2
a

)
and obtain

E1 ≥
(

α(1− γ2)−
β2(∆t)2

2

)
‖

un+1
H,2 − un

H,2

∆t
‖+

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
≥
(

α(1− γ2)−
β2(∆t)2

2

)
‖

un+1
H,2 − un

H,2

∆t
‖2 +

1− γa

2 ∑
i=1,2

(
‖un+1

H,i ‖
2
a + ‖un

H,i‖2
a

)
.

This completes the proof.

3.4. Remarks

We make several remarks. First, we note that the above studies and analysis apply
to the case when f (x) 6= 0. Secondly, we note that our studies and analysis also apply
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to the case—α is a spatial functions, α = α(x). In this case, one needs to assume that
α(x) ≥ α0 > 0 and defines the norm

En+1 = ‖
√

α
un+1

H − un
H

∆t
‖2 +

1
2

(
‖un+1

H,1 + un
H,2‖2

a + ‖un+1
H,2 + un

H,1‖2
a

)
−

(∆t)2

2
‖

un+1
H,2 − un

H,2

∆t
‖2

a.

Finally, we would like to remark that the value of γ is difficult to determine in practical
examples. Our numerical results show the condition for the time step is close to that in
standard discretizations (though scales as the coarse mesh size) and we choose it two
times larger.

We would like to remark that the computational advantage of our approach is due to
the fact that a small system is solved implicitly. Given that the implicit solution procedure
is more expensive, the computational gain is in solving a smaller system that corresponds
to the degrees of freedom in VH,1. The proposed method brings additional computational
gains for nonlinear problems. We also would like to point out that the proposed splitting re-
quires the inequality (16) for VH,2. In this regard, some other multiscale space constructions
(that are not designed for high contrast problems) may not suitable.

The analysis of our approach can be carried out. Here, we give a brief overview of the
analysis. We can define P : V → VH as the a-projection operator such that

a(Pv, w) = a(v, w) ∀w ∈ VH .

Considering u to be the solution of the QGD equation, we have

2(∂tu(tn), v) + α(∂ttu(tn), v) + a(u(tn), v) = ( f (tn), v) ∀v ∈ V.

We define un = u(tn) and obtain

(
un+1 − un−1

∆t
, v) + α(

un+1 − 2un + un−1

∆t2 , v) + a(un, v) = ( f n, v) + (rn, v) ∀v ∈ VH ,

where

rn =
(un+1 − un−1

∆t
− 2∂tu

)
+ α
(un+1 − 2un + un−1

∆t2 − ∂ttu
)

.

Assuming u is smooth enough in time, we have

‖rn‖ ≤ C∆t2
(
‖uttt‖+ α‖utttt‖

)
.

These arguments can be made rigorous.

3.5. VH,1 and VH,2 Constructions

In this section, we introduce a possible way to construct the spaces satisfying (18). Here,
we follow our previous work [3]. We will show that the constrained energy minimization
finite element space is a good choice of VH,1 since the CEM basis functions are constructed
such that they are almost orthogonal to a space Ṽ which can be easily defined. To obtain a
VH,2 satisfying the condition (18), one of the possible way is using an eigenvalue problem
to construct the local basis function. Before, discussing the construction of VH,2, we will
first introduce the CEM finite element space. In the following, we let V(S) = H1

0(S) for a
proper subset S ⊂ Ω.

3.5.1. CEM Method

In this section, we will discuss the CEM method for solving the problem (2). We will
construct the finite element space by solving a constrained energy minimization problem.
We let TH be a coarse grid partition of Ω. For each element Ki ∈ TH , we consider a set
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of auxiliary basis functions {ψ(i)
j }

Li
j=1 ∈ V(Kj). We then can define a projection operator

ΠKi : L2(Ki) 7→ V(i)
aux ⊂ L2(Ki) such that

si(Πiu, v) = si(u, v) ∀v ∈ V(i)
aux := span{ψ(i)

j : 1 ≤ j ≤ Li},

where
si(u, v) =

∫
Ki

κ̃uv. (20)

and κ̃ = κH−2 or κ̃ = κ ∑i |∇χi|2 with some partition of unity χi.
We next define a projection operator by Π : L2(Ω) 7→ Vaux ⊂ L2(Ω)

s(Πu, v) = s(u, v) ∀v ∈ Vaux :=
Ne

∑
i=1

V(i),

where s(u, v) := ∑Ne
i=1 si(u|Ki , v|Ki ). For each auxiliary basis functions ψ

(i)
j , we can define a

local basis function φ
(i)
j ∈ V(K+

i ) such that

a(φ(i)
j , v) + s(µ(i)

j , v) = 0 ∀v ∈ V(K+
i )

s(φ(i)
j , ν) = s(ψ(i)

j , ν) ∀ν ∈ Vaux(K+
i )

where K+
i is an oversampling domain of Ki, which is a few coarse blocks larger than Ki [5].

We then define the space Vcem as

Vcem := span{φ(i)
j : 1 ≤ i ≤ Ne, 1 ≤ j ≤ Li},

where Ne is the number of coarse elements. The CEM solution ucem is given by

(
∂

∂t
(ucem), v) + α(

∂2

∂t2 (ucem), v) = −a(ucem, v) ∀v ∈ Vcem.

We remark that the Vglo is a−orthogonal to a space Ṽ := {v ∈ V : Π(v) = 0}. We
also know that Vcem is closed to Vglo and therefore it is almost orthogonal to Ṽ. Thus, we
can choice Vcem to be VH,1 and construct a space VH,2 in Ṽ.

3.5.2. Construction of VH,2

We discuss a choice for the space VH,2 ⊂ Ṽ. We will investigate the stability properties
numerically in Section 4.

The choice of VH,2 is based on the CEM type finite element space. For each coarse
element Ki, an eigenvalue problem is solved to obtain the auxiliary basis. We find eigenpairs
(η

(i)
j , γ

(i)
j ) ∈ (V(Ki) ∩ Ṽ)×R via

∫
Ki

κ∇η
(i)
j · ∇vs. = γ

(i)
j

∫
Ki

η
(i)
j v, ∀v ∈ V(Ki) ∩ Ṽ. (21)

For each Ki, we choose the first few Ji eigenfunctions corresponding to the smallest Ji
eigenvalues. The span of these functions form a space which is called Vaux,2 and Vaux,1 is
defined as the auxiliary space of the CEM space, namely,

Vaux,1 := span{ψ(i)
j | ∀Ki, ∀1 ≤ j ≤ Li},

Vaux,2 := span{η(i)
j | ∀Ki, ∀1 ≤ j ≤ Ji}.
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For each auxiliary basis function η
(i)
j ∈ Vaux,2, we define a basis function ζ

(i)
j ∈ V(K+

i ) such

that µ
(i)
j ∈ Vaux,1, µ

(i),2
j ∈ Vaux,2 and

a(ζ(i)j , v) + s(µ(i),1
j , v) + (µ

(i),2
j , v) = 0, ∀v ∈ V(K+

i ), (22)

s(ζ(i)j , ν) = 0, ∀ν ∈ Vaux,1, (23)

(ζ
(i)
j , ν) = (ξ

(i)
j , ν), ∀ν ∈ Vaux,2. (24)

where we use the notation Vaux,1 to denote the space Vaux defined in Section 3.5.1, and K+
i

is an oversampling domain a few coarse blocks larger than Ki (see [5]). We define

VH,2 = span{ζ(i)j | ∀Ki, ∀1 ≤ j ≤ Ji}.

4. Numerical Result

We present representative numerical results. We consider the following mesh and
time step parameters in all examples.

H = 1/10, h = 1/100.

We consider the medium parameter κ(x) depicted in Figure other (see Figure 1). Medium
properties are high contrast and multiscale. We choose the source term as a source dis-
trubuted in a small region as shown in Figure 1). It, f , is given by

f (t, x) =
2− 2/ f0

4h2 exp(−π2 f 2
0 (t− 2/ f0)

2) fx(x), (25)

where f0 is a frequency, which will be taken to be f0 = 0.5. We take the values for α to be
α = 5, α = 0.5, α = 0.05, and α = 0.005, which balances wave terms and parabolic terms.
For larger α’s, we will observe slightly larger errors since the wave phenomena dominates.
In all examples, we plot errors in time for three methods.

• Implicit CEM. In this, we use only implicit method with fewer degrees of freedom
(without additional degrees of freedom) and compute the error associated with the
multiscale approach.

• Implicit CEM with additional basis functions. In this approach, we take into account
additional degrees of freedom and handle them in implicit manner. The method is
more expensive and corresponds to full implicit approach.

• Partial Explicit Splitting CEM. In our approach, we take into account additional degrees
of freedom and handle them in explicit manner. One approach for additional degrees
is presented in Section 3.5.2. Partial Explicit Splitting CEM and Implicit CEM have
the same degrees of freedom, while partial Explicit Splitting CEM handles additional
degrees of freedom explicitly.
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Figure 1. Left: Medium κ; Right: Source function f .

In Figure 2, we depict the results for the case α = 5 and time step dt = 0.006. As we
see from the results that additional degrees of freedom improves the results. We note that
in all examples, we choose the source term such that the error without additional degrees
of freedom is large and we can improve it. In general, this error can be improved and
made smaller with additional degrees of freedom. This is partially because of the source
term which brings additional multiscale nature. Moreover, we observe that the errors of
proposed partial explicit approach and fully implicit approach are similar. This suggest
that our proposed approach is stable and can be used for explicit time stepping. In Figure 3,
we use smaller α, α = 0.5. In this case, we again observe similar phenomena, where our
proposed approach provides very similar results when additional degrees of freedom
treated implicitly. In other cases, we consider other values of α, α = 0.05 (see Figure 4) and
α = 0.005 (see Figure 5). In all cases, the proposed partial explicit approach provides very
similar results compared to fully implicit approach when treating additional degrees of
freedom. We note that because of nonzero right hand side, the energy can increase.
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Figure 2. α = 5, dt = 0.006. Left: L2 error. Right: Energy error.
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Figure 3. α = 0.5, dt = 0.006. Left: L2 error. Right: Energy error.
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Figure 4. α = 0.05, dt = 0.003. Left: L2 error. Right: Energy error.
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Figure 5. α = 0.005, dt = 0.003. Left: L2 error. Right: Energy error.

We will next present a numerical example with the same medium as the previous
examples. We consider the source term is smoother spacially and with the same frequency
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as the previous example. In this case, we will have a much smaller error in both L2 and
Energy norm since the VH space can approximte the source better. In Figure 6, we show the
medium with marker indicating three locations for comparison and the source term.
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Figure 6. Left: medium κ with marker indicating three locations for comparison, Right: source
function f .

In Figure 7, we compare the partially explicit solution with different grids in L2 norm
and energy norm. We see that as we decrease the mesh size, the error decreases. In Figure 8,
we compare the partially explicit solution with at three different locations.
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Figure 7. α = 0.5, dt = 5× 10−5. Left: L2 error. Right: Energy error.
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Figure 8. Top-Left: Reference solution at different location. Top-Right: Error of the Partially Explicit
scheme at location (0.375, 0.375). Bottom-Left: Error of the Partially Explicit scheme at location
(0.5, 0.375). Bottom-Right: Error of the Partially Explicit scheme at location (0.625, 0.375).

5. Conclusions

In this paper, we design and analyze contrast-independent partially explicit time
discretization methods for quasi gas dynamics model. The proposed methods differ from
our previous works [3,4] as parabolic and wave equations require different treatment for
temporal and spatial discretization. Temporal splitting is based on spatial multiscale space
splitting that we introduce in the paper. Using these multiscale spaces, time splitting
identifies and treats fast components implicitly while slow component explicitly. Our
proposed method is still implicit via mass matrix, which can be treated via mass lumping
as in [4]. A stability of the proposed splitting is demonstrated under some conditions.
The proposed method allows identifying the degrees of freedom that need explicit treatment
and those that require implicit treatment. Numerical results show that the proposed
methods provide very similar results as fully implicit methods using explicit methods with
the time stepping that is independent of the contrast.
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