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Abstract: The kinematics and redundant space analysis of redundant robots constitutes important
research content. Currently, methods such as geometric method and iterative optimization method
are relatively complicated and inconvenient for programming and practical control applications.
Moreover, little research has been conducted on redundant space analysis. This paper takes the
4-DOF PowerCube redundant robot as the research object. The forward and inverse kinematics
equation of the robot are established based on the D-H matrix method, projection and cosine theorem
method, and vector coordinate method. Then, the redundant space of the robot is obtained and the
redundant space range of the robot is analyzed. Finally, the simulation of kinematic and redundant
space research is conducted. It is shown that the change of each joint angle of the robot is smooth
without mutation, so it can ensure the stable motion of the robot. Additionally, the different position
and redundant variable have a big influence on robotic configuration. The calculation amount is
relatively small and convenient for programming application, and the path calculation data of the
joints are obtained, which are conducive to the motion control of modular robots. The method used
in this paper can be extended to the multi-DOF redundant robot. Finally, the motion optimization,
control, and obstacle-avoidance of redundant robots are briefly studied. The results of this paper
provide an important basis for these aspects of research.

Keywords: redundant robot; kinematics; redundant space; D-H matrix method; projection and cosine
theorem method

1. Introduction

Compared with traditional robots, redundant robots have the advantages of good
flexibility, good fault tolerance, and good coordination ability [1–3]. Singularity avoidance,
obstacle avoidance, and performance optimization can be realized in redundant space.
Therefore, redundant robot is being increasingly used in industry, coal mines, medical
treatment, aerospace, and other fields and has become a hot research topic in the field of
robots. In the kinematic analysis of redundant robots, especially in the inverse solution, due
to the redundancy, the inverse kinematics solution is also complex. A kinematics solution
and redundant space analysis are the basis for the research of redundant robots and provide
a theoretical basis for obstacle avoidance planning [4–6], performance optimization, fault
tolerance analysis, and motion control [7–12]. Therefore, it is of great significance to solve
the kinematic model and analyze the redundant space of redundant robots. However,
due to the existence of redundancy, the inverse solution and workspace analysis are more
difficult and complicated.

At present, many experts and scholars have carried out extensive research in this
field. K. Kreutez-Delgado et al. [13] gave the definition and determination of the arm
angle for the first time and proposed to use the arm angle to describe the self-motion of
the seven-degree of freedom (DOF) humanoid manipulator. However, a closed inverse
kinematics solution related to arm angle redundant parameters is not derived. Instead, the
velocity method based on the augmented Jacobian matrix is used to give the relationship
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between the joint angular velocity and the end velocity, as well as the arm angular velocity.
Shimizu M [2] modified the original definition of the arm angle and redefined its reference
plane to overcome the defect that the reference plane could not be determined when the
vector and line coincided in the original definition, and deduced a closed inverse kinematics
solution of the humanoid manipulator. At the same time, the influence of joint limit on
the range of arm angle was analyzed. However, this method is more complicated and
difficult to implement, and there may be some problems such as motion discontinuity.
In 2013, Ding Xilun proposed using motion primitives to describe the motion of the
humanoid manipulator, gave the inverse kinematics formula about motion primitives, and
obtained the unique redundant solution. However, this method does not consider the
effects of joint limit and collision [14]. Zhao Jianwen et al. used the subspace and motion
manifold method to simulate the self-motion of the mechanism, solved the self-motion
manifold at a given point, and verified it with the positive solution. This method has certain
reference significance for solving the self-motion manifold of the spatially redundant robot,
but this method is based on the geometric arm of the robot, which is more complex [15].
Xia Jing studied the kinematics solution and collision avoidance of the astronaut arm and
proposed an analytical inverse kinematics solution of a redundant manipulator based on an
arm angle [16]. Shi Jianping et al. [17] directly started from the forward kinematics equation
of the manipulator. By reasonably constructing the optimization objective function, a
method for solving the inverse kinematics of the manipulator based on the improved
PSO algorithm is proposed. Xu Peng et al. [18] studied the multi-objective optimization
problem of the inverse kinematics solution manifold of redundant robot. Combined with
the proposed optimization objective function, the corresponding optimized inverse solution
of the redundant robot was obtained. Based on the weighted minimum norm method,
Yang Fangping [19] derived an optimization to avoid calculating the pseudo-inverse of
the Jacobian matrix. Zhao Zhanfang [20] and Wang Yong et al. [21] studied the kinematics
optimization problem in the gradient algorithm, but they mainly considered the selection
of the motion amplification coefficient in their research. The calculation method is very
complicated and thus is not conducive to real-time solution. Zu Di et al. [22] proposed
a secondary calculation method to solve the inverse kinematics closed solution of the
redundant manipulator. This method can ensure the accuracy and correct the error of the
gradient projection method, but it increases the difficulty and complexity of the solution.

Additionally, Kouabon A et al. [23] parameterized a group of joints of redundant
robots. Then, the inverse solution problem was transformed into the inverse kinematics
problem of non-redundant robots. Yugui Yang [24] used the neural network method to
obtain the motion data of the 7-DOF robot, and then the least square method and genetic
algorithm were used to search for the optimal solution of the inverse solution. In Dong
Hui and Swagat Kumar’s study [25,26], the neural network method was also used to
solve the inverse kinematics of redundant robots. In the paper [27,28], according to the
redundancy characteristics of the robot, the constraint function method was adopted to
solve its kinematics through optimization. In order to solve the motion planning of a
robot in an unknown environment, in Park S O et al.’s study [29], the Jacobian matrix and
artificial potential field method were used to solve the kinematics.

In addition, experts such as Burdick, J.W. and Philippe Wenger also conducted in-
depth research on redundant robots. In Burdick, J.W.’s paper [30], based on the recursive
theory of screw method, the singular position of a 3R manipulator was obtained and
the geometric explanation was given. This research provides a theoretical basis for the
study of the posture change of robots while avoiding a singular position. Philippe Wenger
studied the spatial topological mechanism of a 3R manipulator and concluded that the
manipulator has similar kinematic characteristics in different topological domains and
operation types [30–32]. Philippe Wenger also classified the manipulator and analyzed the
poor kinematic performance. The research results are of great significance in the design
of manipulators [33]. Moreover, Philippe Wenger also studied the motion planning of a
parallel redundant robot, analyzed the posture of the robot under different working modes,
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and studied how to avoid singular configuration [34,35]. These studies played an important
role in the field of redundant robots.

In summary, aiming at the kinematics and redundant space analysis of redundant
robots, currently, most studies mainly focus on the plane-arm angle analysis method,
constraint limitation method, iterative optimization method, neural network method,
weighted minimum norm method, and pseudo-inverse method. These methods have an
important reference significance for the related research of redundant robots. However,
these methods have some disadvantages such as a large amount of calculation, the long
learning time of the neural network, being very difficult to solve, and local minima and
singular points [36,37]. As for the iterative optimization method [38–41], high accuracy
can be achieved only when a very small step length is taken, but the convergence time
will be very slow. Additionally, if the step size is too large, it will oscillate near the target
coordinates. It is difficult to meet the real-time requirements in actual motion control
using the abovementioned method. The kinematics model is the basis of robot research.
In addition, a redundant robot, due to its redundancy characteristics, has a variety of
configurations that do not affect its end pose. However, little research has been conducted
on redundant space analysis.

In this paper, the SCHUNK PowerCube modular robot is taken as the research object.
By locking part of the joints, it is equivalent to a 4-DOF redundant robot. Then, the
kinematic model and redundant space analysis research are carried out. Firstly, the forward
kinematics equation of the robot is obtained based on the D-H matrix method and the
vector coordinate method. Then, the inverse kinematics model is obtained by using the
projection method and cosine theorem method. Next, the redundant space of the robot is
conducted based on the kinematics model. Finally, the redundant space range of the robot
is analyzed. The method used in this paper can be extended to the multi-DOF redundant
robot. Finally, the motion optimization, control, and obstacle avoidance of redundant
robot are briefly studied. This research provides a theoretical basis for further study on
redundant robots.

2. Kinematics Model
2.1. Robot Model

The BAUSATZLWA3 6 DOF+FWK050 SCHUNK robot in the laboratory is taken as the
research object to conduct relevant research. It is a modular robot with 6-DOF. Due to the
analysis of redundant robot, the 4th and 6th joints are locked and regarded as connecting
rods. The axes of joint 2, joint 3, and joint 5 are parallel to each other. Then, the three
joints can be regarded as a planar three-link mechanism. The base of the robot is a joint
that rotates around the vertical direction. When it rotates, the robot can move in three-
dimensional space. At this time, the robot becomes a 4-DOF robot. Because the number of
joints is greater than the motion dimension, it is a redundant robot, and the redundancy
is located on the three-link plane mechanism above the base. The structure of the robot is
shown in Figure 1.

According to the structure model of the robot, its diagram is shown in Figure 2.

2.2. Forward Kinematics Model

The D-H homogeneous matrix transformation method is used to solve the kinematics
equation of the robot. According to the robot structure, the D-H parameter can be obtained,
as shown in Table 1.
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Table 1. D-H parameter.

i ai−1 αi−1 (◦) di qi

1 0 0 l1 q1
2 0 90 0 q2
3 l2 0 0 q3
4 l3 0 0 q4
5 l4 0 0 0

Note: Since the planar three-link mechanism carries out a coordinate transformation relative to the base, i.e., joint
1, so five groups of DH matrix transformation parameters are finally obtained.
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The transformation matrix of the coordinate system after moving and rotating is

Rotx(αi−1) =


1 0 0 0
0 cos αi−1 − sin αi−1 0
0 sin αi−1 cos αi−1 0
0 0 0 1

 (1)

Transx(ai−1) =


1 0 0 ai−1
0 1 0 0
0 0 1 0
0 0 0 1

 (2)

Rotz(qi) =


cos qi − sin qi 0 0
sin qi cos qi 0 0

0 0 1 0
0 0 0 1

 (3)

Transz(di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 (4)

The transformation matrix between the i− 1-th and i-th coordinate systems is

i−1
i T = Rotx(αi−1)Transx(ai−1)Rotz(qi)Transz(di)

=


cos qi − sin qi 0 ai−1

sin qi cos αi−1 cos qi cos αi−1 − sin αi−1 −di sin αi−1
sin qi sin αi−1 cos qi sin αi−1 cos αi−1 −di cos αi−1

0 0 0 1

 (5)

According to the homogeneous transformation rule, the transformation relations
between coordinates are, respectively,

0
1T =


cos q1 − sin q1 0 0
sin q1 cos q1 0 0

0 0 1 l1
0 0 0 1

 (6)

1
2T =


cos q2 − sin q2 0 0

0 0 −1 0
sin q2 cos q2 0 0

0 0 0 1

 (7)

2
3T =


cos q3 − sin q3 0 l2
sin q3 cos q3 0 0

0 0 1 0
0 0 0 1

 (8)

3
4T =


cos q4 − sin q4 0 l3
sin q4 cos q4 0 0

0 0 1 0
0 0 0 1

 (9)

4
5T =


1 0 0 l4
0 1 0 0
0 0 1 0
0 0 0 1

 (10)
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Then, the homogeneous transformation matrix between the end effector and the base is

0
5T = 0

1T1
2T2

3T3
4T4

5T

=


c1c234 −c1s234 s1 (l4c234 + l3c23 + l2c2)c1
s1c234 −s1s234 −c1 (l4c234 + l3c23 + l2c2)s1
s234 c234 0 l4s234 + l3s23 + l2s2 + l1

0 0 0 1

 (11)

where s1 = sin q1, c1 = cos q1, s12 = sin(q1 + q2), c12 = cos(q1 + q2), s123 = sin(q1 + q2 +
q3), and c123 = cos(q1 + q2 + q3).

Therefore, the position equation of the robot is
x = [l2 cos q2 + l3 cos(q2 + q3) + l4 cos(q2 + q3 + q4)] cos q1
y = [l2 cos q2 + l3 cos(q2 + q3) + l4 cos(q2 + q3 + q4)] sin q1
z = l1 + l2 sin q2 + l3 sin(q2 + q3) + l4 sin(q2 + q3 + q4)

(12)

As for other alternative methods for directly obtaining the kinematics of the robot, we
can also use the vector coordinate method. The detailed calculation process is as follows.

The coordinate diagram of the robot is shown in Figure 3.
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If the base and rotation of the base OA are not considered, AB, BC,CD forms a planar
three-link mechanism. On hOz plane, setting the coordinate of end-effector D as (m, n), the
following can be obtained:{

m = l2 cos q2 + l3 cos(q2 + q3) + l4 cos(q2 + q3 + q4)
n = l2 sin q2 + l3 sin(q2 + q3) + l4 sin(q2 + q3 + q4)

(13)

When the base rotates, the motion range of the robot is the three-dimensional space,
and the motion equation of the end can be obtained by projecting and decomposing the
coordinate (m, n), so in the O–xyz space, the motion equation of the end-effector is

x = m cos q1
y = m sin q1
z = l1 + n

(14)
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Thus, 
x = [l2 cos q2 + l3 cos(q2 + q3) + l4 cos(q2 + q3 + q4)] cos q1
y = [l2 cos q2 + l3 cos(q2 + q3) + l4 cos(q2 + q3 + q4)] sin q1
z = l1 + l2 sin q2 + l3 sin(q2 + q3) + l4 sin(q2 + q3 + q4)

(15)

Obviously, the result obtained by this method is the same as that obtained by
D-H matrix transformation method.

Then, the speed is

.
x = [l2 sin q2 + l3 sin(q2 + q3)](− sin q1)

.
q1

+ cos q1[l2 cos q2
.
q2 + l3 cos(q2 + q3)(

.
q2 +

.
q3)].

y = [l2 sin q2 + l3 sin(q2 + q3)] cos q1
.
q1

+ sin q1[l2 cos q2
.
q2 + l3 cos(q2 + q3)(

.
q2 +

.
q3)].

z = −l2 sin q2
.
q2 − l3 cos(q2 + q3)(

.
q2 +

.
q3)

(16)

Jacobian matrix plays an important role in robot research, which reflects the transfer
relationship between input and output of robot.

According to the definition of the Jacobian matrix, it can be obtained that

J(q) =
∂ f (q)

∂q
(17)

where

f (q) =

 x
y
z

 (18)

Since the robot can move in three-dimensional space and there are four joints, the
Jacobian matrix is a 3× 4 rectangular matrix. When analyzing the relationship between
the Cartesian space and the joint space, Jacobian matrix is a rectangle matrix. Because it is
a redundant robot, the number of equations is less than the number of unknowns. Then,
the corresponding homogeneous equations are composed of general solutions and special
solutions, in which all the non-zero solutions of the equations constitute the null space of
Jacobian matrix. The above equations constitute forward kinematics model of the robot.

2.3. Inverse Kinematics Model

When solving the inverse solution of the robot, the inverse kinematics of the three-link
mechanism above the base is calculated first. The position of the end of the two-link
mechanism is set to (x′, y′) by making auxiliary lines along the horizontal and verti-
cal directions at the end points. The distance between the end point and the origin is

S =
√

x′2 + y′2. Taking S as the hypotenuse, a right triangle is formed. The coordinate
diagram of the mechanism is shown in Figure 4.

The angle passing through the origin is denoted as ϕ; then, there is

ϕ = arctan(
y′

x′
) (19)

x′ = S cos ϕ (20)

y′ = S sin ϕ (21)

Then
l3 cos(q2 + q3) = x′ − l2 cos(q2) (22)

l3 sin(q2 + q3) = y′ − l2 sin(q2) (23)
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Equations (22) and (23) are squared, respectively, on both sides; then, by adding them
together, we can get

l2
3 = x′2 + y′2 + l2

2 − 2l2(x′ cos(q2) + y′ sin(q2)) (24)

Substituting Equations (20) and (21) into Equation (24), the following can be obtained:

x′2 + y′2 + l2
2 − l2

3 = 2Sl2(cos(q2) cos(ϕ) + sin(q2) sin(ϕ)) (25)

That is,
x′2 + y′2 + l2

2 − l2
3 = 2Sl2 cos(q2 − ϕ) (26)

Additionally, x′2 + y′2 = S2; combined with the cosine theorem, we get

q2 − ϕ = ±arccos
(

x′2+y′2+l2
2−l2

3
2Sl2

)
= ±arccos

(
S2+l2

2−l2
3

2Sl2

) (27)

So

q2 = ±arccos

(
x′2 + y′2 + l2

2 − l2
3

2Sl2

)
+ ϕ (28)

And
x′2 + y′2 = l2

2 + l2
3 − 2l2l3 cos(π − q3) (29)

Hence,

π − q3 = arctan(
l2
2 + l2

3 − x′2 + y′2

2l2l3
) (30)

q3 = π − arccos(
l2
2 + l2

3 − x′2 + y′2

2l2l3
) (31)
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The end position of the three-link mechanism above the base is (x′′ , y′′ ). The angle
between the third connecting link and the horizontal plane is denoted as ε; then,

ε = arctan(
y′′

x′′
) (32)

Since
ε = q2 + q3 + q4 (33)

So, the third joint angle of three-link mechanism is

q4 = ε− q2 − q3 (34)

When the base rotates q1 angle, it forms a three-dimensional motion space. At this
moment, the end position is recorded as (x, y, z). The solution expression of rotation angle
is as follows:

q1 = arctan(
y
x
) (35)

In the three-dimensional space, the coordinate designation form used in the previous
inverse solution of the planar three-link mechanism is changed. Projecting the coordinates
of three-dimensional space to horizontal plane, there are

x′′ =
√

x2 + y2 (or x′′ =
x

cos q1
) (36)

y′′ = z− l1 (37)

x′ = x′′ − l4 cos ε (38)

y′ = y′′ − l4 sin ε (39)

The above is the inverse kinematics model of 4-DOF redundant robot. The angle ε
between the third connecting link and the horizontal plane is redundant variable. When
ε changes, the other two joint angles of the connecting link also change, which reflects
the redundancy characteristics of the mechanism. This provides a theoretical basis for the
redundant space analysis.

For multi-joint and multi-redundant DOF robot, when solving its kinematics model,
we can use the solution model and method of 4-DOF redundant robot to obtain the recursive
equation of kinematics. Firstly, the position coordinates of the rotating mechanism on the
same plane are obtained. If the base joint rotates, then the coordinates are decomposed and
projected.

Here, we classify the robot joints as the same plane rotation joint and the rotation
joint around the base. We divide the robot joint into the same plane rotation joint and
the rotation joint around the base. The rotation joint in the same plane and the length of
corresponding link are q1, q2, · · · qi, l1, l2, · · · li, respectively. The rotation joint around the
base and the length of corresponding link are α1, α2, · · · αk, r1, r2, · · · rk, respectively.

Set the angle between each link and the horizontal plane as Φi thus,

Φi = Φi−1 + qi (40)

So, the kinematic equation on the plane is{
xp

i = xp
i−1 + li cos Φi

yp
i = yp

i−1 + li sin Φi
(41)
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When the base rotates, the motion range of the robot is the three-dimensional space,
and the motion equation of the end can be obtained by projecting and decomposing the
coordinate (xp

i , yp
i ), so in the O–xyz space, kinematic equation of the end-effector is

xs
i = xp

i cos αk
ys

i = xp
i sin αk

zs
i = rk + yp

i

(42)

Similarly, when solving the inverse kinematics of the robot, the position of end-effector
is projected in three directions, and then the variation expression of each joint angle is
obtained through geometric relationship. When studying the multi-DOF redundant robot,
according to the joint configuration of the robot, the kinematics model can be piecewise
calculated from the position of end-effector to the front joint, which involves not only the
planar mechanism but also the rotation joint. Therefore, the kinematics of multi-DOF and
multi-redundant DOF robot can be solved in segments by using the research method in
this paper.

3. Redundant Space Analysis

An important feature of redundant robot is its self-motion, which refers to multiple
joints that move together without affecting the end motion state. The column on the
base of this 4-DOF robot rotates around the vertical direction. The last three links, i.e.,
link 2, link 3, and link 4, are parallel to each other. These three links form a planar two-
dimensional mechanism. When the first joint of the robot starts to rotate, the planar
three-link mechanism will also rotate. Therefore, the robot can move in three-dimensional
space, that is, the motion range of robot is a three-dimensional space. Because the number of
joints is 4 and the motion dimension in Cartesian space is 3, the robot will have redundant
range. Through analysis, the redundant range of the robot is generated on planar three-
link mechanism. Link 3 is regarded as a redundant link, and its corresponding driving
angle is regarded as a redundant angle. According to the link connection relationship, the
redundant range of other links is obtained.

As shown in Figure 5, point D is regarded as the end fixed point. To ensure that the
position of point D remains unchanged, the following conditions must be met.
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As for the left point of link 3, first of all, this point is also the right point of link 2.
Therefore, this point is located on the circle with the radius of the length of link 2. At the
same time, as the left point of link 3, its motion range cannot exceed the range of the circle
with the radius of the sum of the radii of link 2 and link 3. Therefore, the left point of
the link 3 should be located on the arc corresponding to the intersection of the above two
circles. As for the right point of link 3, first of all, this point is also the left point of link 4.
Therefore, this point is located on the circle with the radius of the length of link 4. At the
same time, as the right point of link 3, its motion range cannot exceed the range of the circle
with the radius of the sum of the radii of link 3 and link 4. Therefore, the right point of
the link 3 should be located on the arc corresponding to the intersection of the above two
circles. That is, B is on the arc B1B2 and C is on the arc C1C2. Finally, the length between
the left point and the right point, i.e., BC, should be the length of link 3.

When the above conditions are met, the obtained link configuration will constitute the
redundant space of the robot, as shown in Figure 5.

4. Numerical Simulation

The SCHUNK PowerCube robot in the laboratory integrates motion control, power
system, and transmission system. The module adopts a general communication interface
without setting up a separate control cabinet. The integrated system is shown in Figure 6.
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The robot is based on PowerCube control software for data exchange and can bus
for communication. According to the robot product data and actual measurement, the
structural parameters of the robot are shown in Table 2.

Table 2. Structural parameters of the robot.

Structural Parameters Numerical Value

l1 (cm) 30
l2 (cm) 30
l3 (cm) 30
l4 (cm) 20

Note: li(i = 1, 2, 3, 4) refers to the length of link i.

After giving the motion trajectory of the end effector, the change of joint angle is
obtained according to the inverse kinematics model. Motion trajectories are as follows, and
the exercise time is 3 s. 

x = 10 sin( 2π
3 t)

y = 5 sin( 2π
3 t) + 10

z = −10 cos( 2π
3 t) + 40

(43)


x = 10 sin( 2π

3 t)
y = 5 sin( 2π

3 t) + 10
z = 30− 20t

(44)
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When the motion equation is Equation (43), the motion trajectory in space and the
change curves of four joint angles are shown in Figures 7 and 8, respectively.
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change curves of four joint angles are shown in Figure 7 and Figure 8, respectively. 

 
Figure 7. The end motion trajectory of the robot in the case of Equation (43). 

15

30

13

35

10

z 
(c

m
) 40

11 5

y (cm)

45

x (cm)

9 0

50

7 -5
5 -10

Figure 7. The end motion trajectory of the robot in the case of Equation (43).

Mathematics 2022, 10, 574 13 of 18 
 

 

 

Figure 8. The trajectory of the joint angle in the case of Equation (43). 

When the motion equation is Equation (44), the motion trajectory in space and the 
change curves of four joint angles are shown in Figures 9 and 10, respectively. 

 
Figure 9. The end motion trajectory of the robot in the case of Equation (44). 

 

0 0.5 1 1.5 2 2.5 3
T (s)

-250

-200

-150

-100

-50

0

50

100

150

200

Joint 1
Joint 2
Joint 3
Joint 4

y (cm)

-30
15

-20

-10

13 10

0

10

11 5

20

x (cm)

9 0

30

7 -5
5 -10

0 0.5 1 1.5 2 2.5 3
T (s)

-250

-200

-150

-100

-50

0

50

100

150

200

Joint 1
Joint 2
Joint 3
Joint 4

Figure 8. The trajectory of the joint angle in the case of Equation (43).

When the motion equation is Equation (44), the motion trajectory in space and the
change curves of four joint angles are shown in Figures 9 and 10, respectively.
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Based on the established model, the angle changes of each joint of the robot are
obtained, which lays an important foundation for trajectory planning and motion control
of the robot. Among them, the angle ε is randomly obtained as a redundant variable. In
future research, it could be used to realize the obstacle avoidance while completing the
tracking task. The simulation shows that the change of each joint angle of the robot is
smooth without mutation. So, it can ensure the stable motion of the robot. The relationship
between the solution equation of joint angle and the end trajectory equation is obvious.
The calculation amount is relatively small and easy to program. The path calculation data
of joints is obtained, which is conducive to motion control of the modular robot.

When the robot base, i.e., the first joint q1, does not rotate, the entire robot becomes
a planar mechanism, and its motion range is in the x-y plane. Taking the base as the
coordinate origin and the end points of the robot as D1(45, 35) and D2(50, 50) and setting
the free motion range ε1 ∈ [−75

◦
,−45

◦
], ε2 ∈ [−75

◦
,−60

◦
], then the simulation is carried

out respectively, as is shown in Figures 11–13.

Mathematics 2022, 10, 574 14 of 18 
 

 

Figure 10. The trajectory of the joint angle in the case of Equation (44). 

Based on the established model, the angle changes of each joint of the robot are ob-
tained, which lays an important foundation for trajectory planning and motion control of 
the robot. Among them, the angle ε  is randomly obtained as a redundant variable. In 
future research, it could be used to realize the obstacle avoidance while completing the 
tracking task. The simulation shows that the change of each joint angle of the robot is 
smooth without mutation. So, it can ensure the stable motion of the robot. The relationship 
between the solution equation of joint angle and the end trajectory equation is obvious. 
The calculation amount is relatively small and easy to program. The path calculation data 
of joints is obtained, which is conducive to motion control of the modular robot. 

When the robot base, i.e., the first joint 1q , does not rotate, the entire robot becomes 
a planar mechanism, and its motion range is in the yx -  plane. Taking the base as the 
coordinate origin and the end points of the robot as )35,45(1D  and )05,50(2D  and set-
ting the free motion range ]45,75[ oo

1 −−∈ε , ]60,75[ oo
2 −−∈ε , then the simulation is car-

ried out respectively, as is shown in Figures 11–13. 

 
Figure 11. Redundant space of different end points. 

 

0 5 10 15 20 25 30 35 40 45 5050
x (cm)

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 4545
x (cm)

30

35

40

45

50

55

60

Figure 11. Redundant space of different end points.



Mathematics 2022, 10, 574 14 of 17

Mathematics 2022, 10, 574 14 of 18 
 

 

Figure 10. The trajectory of the joint angle in the case of Equation (44). 

Based on the established model, the angle changes of each joint of the robot are ob-
tained, which lays an important foundation for trajectory planning and motion control of 
the robot. Among them, the angle ε  is randomly obtained as a redundant variable. In 
future research, it could be used to realize the obstacle avoidance while completing the 
tracking task. The simulation shows that the change of each joint angle of the robot is 
smooth without mutation. So, it can ensure the stable motion of the robot. The relationship 
between the solution equation of joint angle and the end trajectory equation is obvious. 
The calculation amount is relatively small and easy to program. The path calculation data 
of joints is obtained, which is conducive to motion control of the modular robot. 

When the robot base, i.e., the first joint 1q , does not rotate, the entire robot becomes 
a planar mechanism, and its motion range is in the yx -  plane. Taking the base as the 
coordinate origin and the end points of the robot as )35,45(1D  and )05,50(2D  and set-
ting the free motion range ]45,75[ oo

1 −−∈ε , ]60,75[ oo
2 −−∈ε , then the simulation is car-

ried out respectively, as is shown in Figures 11–13. 

 
Figure 11. Redundant space of different end points. 

 

0 5 10 15 20 25 30 35 40 45 5050
x (cm)

30

35

40

45

50

55

60

65

0 5 10 15 20 25 30 35 40 4545
x (cm)

30

35

40

45

50

55

60

Figure 12. Redundant space with different free motion ranges at point D1(45, 35).

Mathematics 2022, 10, 574 15 of 18 
 

 

Figure 12. Redundant space with different free motion ranges at point )35,45(1D . 

 

Figure 13. Redundant space with different free motion ranges at point )05,50(2D . 

From the Figures 11–13, the changes of redundant range under different points and 
different free motion ranges are obtained, respectively. The simulation results of redun-
dant space show that when the end of the robot is at different positions, even if the interval 
length of the redundant range and the initial value and the final value of the redundant 
range are same, there is still a big difference in the configuration of the robot. Namely, the 
end position will have a greater impact on the range of variation of other joints. Moreover, 
when the end position is fixed, the interval length of the redundant range is the same, but 
for different initial values and the final values, the motion range of other joints is very 
different. Accordingly, the end position of the robot, the size of the redundancy range, 
and the initial and final value of the redundancy range have a great influence on the con-
figuration of other joints.  

This research provides an important theoretical reference for trajectory planning, ob-
stacle avoidance in redundant space, task hierarchical control, and motion optimization 
control of redundant robot. The contents in this aspect are briefly introduced as follows. 

The trajectory planning requires the robot to have good motion flexibility. When re-
dundant robots perform a task, there are many configurations. Therefore, regarding tra-
jectory planning, the performance optimization of redundant robots, such as manipula-
bility, should be studied.  

The manipulability is the evaluation index of robot flexibility, which is defined as  

)det( TJJM =  (45) 

According to the knowledge of matrix theory, it can be obtained 

n21 ξξξ =M  (46) 

where n21 ,, ξξξ   refers to the eigenvalue of Jacobian matrix J . 
When the robot approaches the singular configuration, the minimum eigenvalue of 

the Jacobian matrix is close to zero. At this moment, the manipulability 0→M . In other 
words, the greater the manipulability of the robot, the more flexible it is. 

The Jacobian matrix is related to the joint configuration of the robot. We hope that 
the robot can perform tasks in a better configuration, so the robot control is transformed 

0 5 10 15 20 25 30 35 40 45 5050
x (cm)

30

35

40

45

50

55

60

65

Figure 13. Redundant space with different free motion ranges at point D2(50, 50).

From the Figures 11–13, the changes of redundant range under different points and
different free motion ranges are obtained, respectively. The simulation results of redundant
space show that when the end of the robot is at different positions, even if the interval
length of the redundant range and the initial value and the final value of the redundant
range are same, there is still a big difference in the configuration of the robot. Namely, the
end position will have a greater impact on the range of variation of other joints. Moreover,
when the end position is fixed, the interval length of the redundant range is the same, but
for different initial values and the final values, the motion range of other joints is very
different. Accordingly, the end position of the robot, the size of the redundancy range,
and the initial and final value of the redundancy range have a great influence on the
configuration of other joints.

This research provides an important theoretical reference for trajectory planning,
obstacle avoidance in redundant space, task hierarchical control, and motion optimization
control of redundant robot. The contents in this aspect are briefly introduced as follows.

The trajectory planning requires the robot to have good motion flexibility. When
redundant robots perform a task, there are many configurations. Therefore, regarding tra-
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jectory planning, the performance optimization of redundant robots, such as manipulability,
should be studied.

The manipulability is the evaluation index of robot flexibility, which is defined as

M =
√

det(J JT) (45)

According to the knowledge of matrix theory, it can be obtained

M = ξ1ξ2 · · · ξn (46)

where ξ1, ξ2, · · · ξn refers to the eigenvalue of Jacobian matrix J.
When the robot approaches the singular configuration, the minimum eigenvalue of

the Jacobian matrix is close to zero. At this moment, the manipulability M→ 0 . In other
words, the greater the manipulability of the robot, the more flexible it is.

The Jacobian matrix is related to the joint configuration of the robot. We hope that the
robot can perform tasks in a better configuration, so the robot control is transformed into
an optimization problem. It involves objective function and constraint conditions, and the
specific mathematical model is as follows.

maxM =
√

det(J JT)
s.t.
qmin ≤ q ≤ qmax
τmin ≤ τ ≤ τmax

(47)

where qmin, τmin, qmax, τmax correspond to lower bound and upper bound of q, τ, respec-
tively.

According to the optimization model, the optimal joint angle is obtained. Based on
the joint data, the trajectory planning can be carried out. Then, the PD negative feedback
method is used to realize the motion control of the robot.

For obstacle avoidance task, the redundant space of the robot is used to avoid the
obstacle without affecting the terminal motion. Here, the concept of virtual repulsive force
acting on the connecting link is introduced. The obstacle avoidance speed increases with
the decrease of distance. By detecting the minimum distance between the obstacle and
the robot, the corresponding redundant range of the robot, i.e., the joint variation range,
can be obtained and recorded as q ∈ [qmin qmax]. Then, the redundant parameter ε can be
determined. Finally, PD negative feedback is applied to the robot for motion control, and
the obstacle avoidance in the null space can be conducted.

5. Conclusions

This paper takes the SCHUNK PowerCube modular robot in our laboratory as a
research object. By locking part of joints, it is equivalent to a 4-DOF redundant robot. Then,
the kinematic model and redundant space analysis research are carried out. Based on the
established model, the simulation shows that the change of each joint angle of the robot
is smooth and without mutation. So, it can ensure the stable motion of the robot. The
relationship between the solution equation of joint angle and the end trajectory equation is
obvious. The calculation amount is relatively small and easy to program. Additionally, the
path calculation data of the joints are obtained, which is conducive to the motion control of
the modular robot. The projection method and cosine theorem method in this paper are of
great significance for analyzing the kinematics, especially the inverse solution model of a
multi-DOF redundant robot.

Additionally, the simulation results of redundant space show that when the end
effector of the robot is in different positions, even if the interval length of the redundant
range and the initial value and the final value of the redundant range are same, there is
still a big difference in the configuration of the robot. Namely, the end position will have a
greater impact on the range of variation of other joints. Moreover, when the end position is
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fixed, the interval length of the redundant range is the same, but for a different initial value
and the final value, the motion range of other joints is very different. Accordingly, the end
position of the robot, the size of the redundancy range, and the initial and final value of the
redundancy range have a great influence on the configuration of other joints. Based on the
results, the motion optimization, control, and obstacle avoidance of a redundant robot are
briefly studied. The research of this paper provides an important basis for these aspects of
research.

In the future, I will further study how to select redundant parameters to avoid singularity.
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