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Abstract: The global epidemic caused by COVID-19 has had a severe impact on the health of human
beings. The virus has wreaked havoc throughout the world since its declaration as a worldwide
pandemic and has affected an expanding number of nations in numerous countries around the
world. Recently, a substantial amount of work has been done by doctors, scientists, and many others
working on the frontlines to battle the effects of the spreading virus. The integration of artificial
intelligence, specifically deep- and machine-learning applications, in the health sector has contributed
substantially to the fight against COVID-19 by providing a modern innovative approach for detecting,
diagnosing, treating, and preventing the virus. In this proposed work, we focus mainly on the
role of the speech signal and/or image processing in detecting the presence of COVID-19. Three
types of experiments have been conducted, utilizing speech-based, image-based, and speech and
image-based models. Long short-term memory (LSTM) has been utilized for the speech classification
of the patient’s cough, voice, and breathing, obtaining an accuracy that exceeds 98%. Moreover, CNN
models VGG16, VGG19, Densnet201, ResNet50, Inceptionv3, InceptionResNetV2, and Xception have
been benchmarked for the classification of chest X-ray images. The VGG16 model outperforms all
other CNN models, achieving an accuracy of 85.25% without fine-tuning and 89.64% after performing
fine-tuning techniques. Furthermore, the speech–image-based model has been evaluated using the
same seven models, attaining an accuracy of 82.22% by the InceptionResNetV2 model. Accordingly,
it is inessential for the combined speech–image-based model to be employed for diagnosis purposes
since the speech-based and image-based models have each shown higher terms of accuracy than the
combined model.

Keywords: convolution neural network; COVID-19; deep learning; long short-term memory;
Mel-frequency cepstral coefficients; X-ray image

1. Introduction and Literature Review

Since the outbreak of COVID-19 in December 2019 and its declaration as a global
worldwide epidemic, in March 2020, by the World Health Organization (WHO), almost
every human being’s life has been threatened by this virus. At present, there have been
more than 216 million confirmed cases of COVID-19 infections in more than 200 coun-
tries across the world. In addition, more than 4 million people have died, based on the
statistics from WHO [1]. COVID-19 has attracted an extraordinary amount of interest due
to the potentially fatal damage it has caused to the respiratory system in some patients,
in addition to its high transmissibility rates among humans [2]. Over time, it has been
revealed that the most common symptoms in most of the positive COVID-19 cases are fever,
cold, fatigue, sore throat, headache, and loss of smell. Due to the high rate of COVID-19
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casualties, the health industry is keenly interested in finding a more cost-efficient and faster
approach, than the classical approaches, such as polymerase chain reaction (PCR), reverse
transcriptase polymerase chain reaction (RT-PCR), and diffractive phase interferometry
(DPI), for COVID-19 detection [3]. COVID-19’s critical challenges are identification and
categorization. This is because of how it interacts with other lung infections. COVID-19
is highly transmittable compared to other lung diseases. Subsequently, the COVID-19
incubation period lasts between 3 to 10 days. Additionally, its high mortality rate along-
side its preposterously wide dissemination and its ramifications have made it extremely
threatening [4]. The current gold standard for COVID-19 identification is reverse transcrip-
tase quantitative polymerase chain reaction (RT-qPCR). Small portions of viral RNA are
extracted from the nasal swab and amplified before being identified using virus detection
techniques. Unfortunately, the standard method of RT-qPCR testing is time-consuming
and necessitates the participation of medical professionals, which may not be attainable. In
addition, many studies have shown high false-positive rates for RT-qPCR testing [5,6]. The
numbers of cases, and death rates, are increasing rapidly. Therefore, the early diagnosis of
infected individuals is crucial to controlling this pandemic. However, advanced intelligent
prediction systems and accurate modeling of techniques have made a valuable contribution
to managing and planning health resources to work against the virus [7].

The significant contributions of this work are as follows:

• We used a two-level classification system that is capable of automatically detecting
the acoustic sounds of coughing, breathing, and speaking, along with the presence
of COVID-19.

• The grid-search algorithm has been utilized to optimize the hypermeters of the differ-
ent CNN models for the image-based model.

• We conducted a deep investigation on the effect of the number of MFCC coefficients
on the system’s overall performance.

• We created a novel multimodal system utilizing audio and X-ray chest modalities.
• We assembled a new multimodal dataset encompassing both healthy and

COVID-19 patients.

Recently, AI has been extensively implemented in the digital health sector and specifi-
cally in the COVID-19 health crisis, due to the variety of information it provides, such as
COVID-19 growth-rate detection, risk, and infection severity identification, in addition
to death prediction. AI is a broad umbrella that consists of many subdivisions, including
machine learning (ML) and deep learning (DL), which both imitate the functionality of
the human brain and behaviors based on the data that is fed to cluster tasks [8]. AI has
numerous applications in both speech-signal processing and digital-image processing. Both
facilitate the process of controlling, monitoring, and overcoming the COVID-19 epidemic
through their four-step procedure: detection, prevention, recovery, and response [9]. Sci-
entists believe that it is possible to determine the presence of a COVID-19 infection by
analyzing the generated sounds from the respiratory system, whether cough, breathing, or
regular speech. Furthermore, medical imaging data such as chest X-ray and lung computed
tomography (CT) scans can be beneficial in COVID-19 detection [10].

The utilization of respiratory data could help to detect COVID-19 through three main
approaches: (1) using cough sounds for the classification process of COVID-19-positive and
-negative cases; (2) COVID-19 patient screening using breathing sounds and breathing rates;
and (3) using patient sounds to detect COVID-19 symptoms, due to the fact that patients
have experienced dysphonia symptoms with a severity rate ranging from moderate to
acute, which resulted in voice alterations—these symptoms are not usually observed with
these levels of severity in the usual lung infections. In [2], Bader et al. have proposed a
cost-efficient model that combines both Mel-frequency cepstral coefficients (MFCCs) and
speech signal processing for a sample extraction from non-COVID and COVID patients,
and obtained the personal correlation from their relationship coefficients. The dataset we
utilized is comprised of healthy and infected sound divisions where each division is split
into three subdivisions; namely, cough, breath, and voice. That dataset has been collected
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from a group of 14 patients, divided into 7 healthy patients and 7 infected patients. The
dataset has been acquired from a hospital in Sharjah in the United Arab Emirates. All the
recordings have been captured via smartphones, which could impact the quality of the
sound. Hassan et al. [8] have employed long short-term memory (LSTM) to construct a
COVID-19 detection system for the analysis of the acoustic features of the cough, breathing,
and voice of the patients from the audio dataset, which also consist of COVID-19 and non-
COVID-19 sound samples. The results have shown a low accuracy in the voice test (88.2%)
compared to both coughing and breathing sound samples, which achieved 98.2% and 97%
accuracy, respectively. COVID-19 epidemic forecasting has attracted intensive attention
from researchers, doctors, and scientists from all over the world. In addition to that, it has
been a vital task to keep tracking and monitoring the ongoing pandemic. Several papers
have proposed a COVID-19 gray forecasting-based model. In [11], authors have developed
a new gray prediction model using a quadratic polynomial term. The proposed forecasting
model has been applied to the confirmed COVID-19 cases, the fatal cases, and the recovered
cases from COVID-19 of China at the early stage. By utilizing the gray method and
mathematical derivations, based on the attained computational results, it can be observed
that the proposed model has attained higher precision compared to other proposed models.
Furthermore, Saxena [12], has proposed two internally optimized gray prediction models;
namely, GM(1,1) and NGM(1,1,k). The presented work is a proposal of two internally
optimized gray prediction models (IOGMs). These models are based on modifying the
conventional gray forecasting model (GM(1,1)). The IOGMs have been formed by stacking
infected case data with diverse overlap periods for forecasting pandemic spread at different
locations in India. Multiple tests have been conducted for the performance evaluation
of proposed gray models and conventional gray models GM(1,1) and NGM(1,1,k). It is
observed that the prediction accuracies of the proposed models are satisfactory, and the
forecasted results align with the mean infected cases. Investigations based on the evaluation
of error indices indicate that the model with a higher overlap period provides better results.

Madhurananda et al. [13] proposed a contactless and easily applied COVID-19 classi-
fier. This screening method used coughs recorded with a smartphone and applied several
deep-learning techniques to discriminate between positive and negative coughs. They
have utilized two datasets, collected across the six continents, which are comprised of both
natural and forced coughs. The first, which is the publicly available coswara dataset, has
1079 healthy recordings and 92 COVID-19-positive recordings. The second dataset was
collected in South Africa and has a total of 21 recordings, which are split into 8 COVID-
19-positive subjects and 13 COVID-19-negative subjects. A variety of classifiers, including
multilayer perceptron (MLP), logistic regression (LR), long short-term memory (LSTM),
support vector machine (SVM), convolutional neural networks (CNN), and residual-based
neural networks (RNN), have been evaluated in that work. The Resnet50 classifier has
shown the best results among the classifiers, where it has achieved an accuracy of 95.3%.
Deshpande et al. [14] have presented an automatic recognition system for COVID-19
coughs that demonstrates the use of the audio breathing patterns of coughs in identifying
the presence of COVID-19. Authors have utilized an encoder–decoder architecture, where
the encoder works on encoding the audio signal into breathing patterns, and the decoder
decodes the status of COVID-19 for the corresponding breathing patterns using an atten-
tion mechanism. The encoder utilizes a stacked bi-directional long short-term memory
(BI-LSTM) architecture, obtaining an area under curve (AUC) of 64.42%.

Kumar et al. [15] proposed an approach for COVID-19 detection based on cough
sounds. Authors have employed a novel auditory acoustic cue based on the long-term
transform, an equivalent rectangular bandwidth (ERB) spectrum, and a gammatone filter
bank. The spectrum derived from constant-Q transform (CQT), the gammatone cepstral
coefficients (GTCC) features, and the spectrum derived from the ERB constitute. In ad-
dition, the MFCCs have been evaluated using the LR, random forest (RF), and MLP. The
combination of ERBspec–RF has achieved the highest term of AUC, obtaining an AUC of
81.89%. Jord et al. [16] projected an AI model based on the sounds of cough recordings
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collected via cell phones to detect COVID-19 symptoms. This model permits a costless
solution for prescreening COVID-19 sound samples globally. In this method, cough record-
ings have been transformed with MFCCs and inputted into a CNN-based architecture
comprised of one Poisson biomarker layer and three ResNet50s in parallel, providing an
output of a binary prescreening diagnostic. The model has achieved an accuracy of 97.1%
for predicting COVID-19-positive symptoms based on cough sounds and 100% accuracy in
detecting asymptomatic COVID-19, based on the cough sounds of 5320 selected samples.
Gunavant et al. [17] have utilized the crowdsourced cough audio samples, which were
globally collected using mobile phone devices; numerous groups have collected enough
COVID-19 cough-recording datasets to utilize them for machine-learning training to detect
the presence of COVID-19. Nevertheless, these models have been trained on data from a
variety of formats and recording settings. The dataset collection was taken from several
sources, such as public media interview extraction, crowdsourcing, and clinical environ-
ments. The MFCCs have been evaluated to obtain the provided results; the proposed
algorithm has achieved a 77.1% ROC-AUC.

On the medical imaging side, several studies have developed deep-learning models
for COVID-19 identification and diagnosis, which are mainly based on CT scans and X-ray
images. Maghdid et al. [18] have proposed an AI tool that can be utilized by radiologists or
healthcare professionals to quickly and precisely detect COVID-19. They have established
a wide-ranging dataset of X-rays and CT scan images from a variety of sources. In addition,
they have utilized deep-learning and transfer-learning techniques; in this vein, a simple
CNN and modified AlexNet model have been applied on preprocessed X-rays and CT-scan
images datasets. The models showed an accuracy of up to 98% via a pretrained network
and 94.1% accuracy by using the modified CNN. Wang et al. [19] introduced COVIDNet-
CT, a deep CNN architecture dedicated to the detection of COVID-19 cases from chest CT
images through a machine-driven design exploration technique. Moreover, they have also
introduced COVIDx-CT, a benchmark CT image dataset comprised of CT imaging data
gathered by the China National Center for bio information, encompassing 104,009 images
collected from 1489 patient cases. Their method was evaluated with the models ResNet-50,
NASNet-A-Mobile, EfficientNet-B0, and COVIDNet-CT, achieving an accuracy of 98.7%,
98.6%, 98.3%, and 99.1%, respectively.

Due to limited access to COVID-19 datasets, several studies addressed pretrained
model and transfer-learning paradigms [20,21]. For example, Jaiswal et al. [22] employed
the deep-transfer-learning approach to establish a classification algorithm for chest CT
scans by utilizing the DenseNet201 model. The proposed model was utilized to extract
features by using its own learned weights on the ImageNet dataset along with a convo-
lutional neural structure. A total of 1260 CT images for COVID-19 patients and 1232 CT
chest images for healthy patients were used for the training and testing phases for the
DenseNet201 model. The proposed system has achieved remarkable results on several
metrics, including precision, recall, F-measure, and accuracy, at 96.20%, 96.20%, 96.20%, and
96.21%, respectively. Moreover, Weng et al. [23] utilized the Inception model as a feature
extractor. They collected 1065 CT images of pathogen-confirmed COVID-19 cases and other
cases diagnosed with typical viral pneumonia. An internal and external validation was
then done. The internal validation achieved a total accuracy of 89.5% with a specificity of
88% and a sensitivity of 87%. The external testing dataset showed a total accuracy of 79.3%,
with a specificity of 83% and a sensitivity of 67%. In [24], five convolutional neural network-
based models (ResNet50, ResNet101, ResNet152, InceptionV3, and Inception-ResNetV2)
have been benchmarked for the detection of infected COVID-19 patients by the analysis
of the chest X-ray images. Three different classifications with four classes (COVID-19,
healthy, viral pneumonia, and bacterial pneumonia) have been implemented and tested
with a fivefold cross. The ResNet50 model outperformed all the other models, achieving an
accuracy of 99.7%.

In this research, we propose and experiment with three frameworks for detecting
COVID-19; namely, a speech-based model, an image-based model, and a multimodal model
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encompassing both speech and image. We have utilized the MFCC as the extracted features
with the LSTM as a classifier for the speech-based model. We investigated different CNN
models to design both the image-based and multimodal speech-image-based models.

The rest of the paper is organized as follows: Section 2 presents the methodology of
the speech-based model. Section 3 demonstrates the image-based model methodology.
Section 4 provides the experimental results. Section 5 discusses the concluding remarks.

2. Speech-Based Model Methodology
2.1. Data Acquisition

Deep-learning models are data-driven, and training them requires a relatively large
amount of data. In this work, data collection is the initial step in the proposed work. The
gathered dataset is comprised of both speech and image datasets.

2.2. Speech Corpus

The speech corpus consists of 1159 sound samples of coughing, breathing, and speak-
ing obtained from 592 participants, divided into 379 healthy and 213 COVID-19 infected
patients. All dataset samples were captured using a mobile microphone. From the speech
corpus, 42 sound samples were collected from a hospital in Sharjah, United Arab Emirates,
where 14 healthy and COVID-19 infected patients participated. The participants were
asked to cough four times, take a deep breath, and count from one to ten. Moreover, the
patients were obliged to sit with their heads upright in a relaxed manner while recording
their speech signals. Accordingly, three recordings per speaker were obtained during the
session of data, using a mobile phone device, which can affect the sound quality. The
remaining 1117 sound recordings were collected from the Coswara dataset [25], which is an
open-source library. The sound samples were recorded using the same criteria mentioned
earlier. Unfortunately, due to the inconvenience caused by the pandemic, we could not
obtain an exact number of 3 recordings each for all the remaining 1117 participants per
speaker. Some participants have only provided cough, breathing, or voice recordings, or a
combination of two of these.

2.3. Speech Preprocessing

Speech signal preprocessing is an essential step that took place after the database was
captured [26] It has a recognizable effect on the performance of the analysis. As a result,
it must be performed on the recordings. This procedure is done by isolating the silent
portions of sounds [27]. The preprocessing for this study was done using PRAAT software,
which was implemented to eliminate the silence portions. In addition, it has a filtering
option that can eliminate all other noises. Nevertheless, the silent portions of the captured
recordings at the beginning and the end have been cut. Furthermore, in its discrete form,
the speech signal is represented by the following expression [28],

x(n) = s(n) + d(n) (1)

where s(n) is the source signal, and d(n) is a noise signal. Moreover, speech data augmen-
tation is extensively utilized in deep learning, specifically in speech signal processing, to
inflate and provide increments and effectiveness for the dataset. In speech recognition, data
augmentation includes: audio waveform deformation (AWD), which is done by increasing
or decreasing the speed of audio; time stretching (TS), which can slow down or speed
up the audio samples while keeping the pitch unchanged; and background noise (BG),
where the sample is mixed with another recording containing background sounds from
different acoustic scenes [29]. All these speech augmentation approaches were used in this
proposed work.

2.4. Feature Extraction

Speech signals and sound waves carry numerous parameters, which are called speech
features. The determination of these features is a crucial step in the speech signal-processing
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algorithm impacting the accuracy of the system [30]. In the proposed work, the extracted
features for the speech signal optimum representation are the Mel-frequency cepstral coef-
ficients (MFCC) [2]. MFCC is a fundamental feature that is utilized in speaker and emotion
recognition by virtue of the advanced representation of human auditory perception it
provides [31–33]. MFCC is based on human hearing perceptions, which means that it relies
on human listening features that cannot perceive frequencies over 1000 Hz. Specifically,
MFCC is based on the known variations of the human ear’s critical bandwidth frequency.
The MFCC has two types of filters which are set linearly at a frequency below 1000 kHz
and a logarithmic spacing that exceeds 1000 Hz [34]. The computation of MFCC is depicted
in Figure 1.

Figure 1. Block diagram of the MFCC algorithm.

Furthermore, the computation of the MFCCs is done using the following six steps [34,35]:

Step 1: Pre-emphasis. In this step, the speech signal is passed to a high-pass filter. This
process aims to increase the energy of the signal at higher frequencies and is represented
by [36],

y(n) = x(n) − a × x (n − 1) (2)

where x(n) denotes the audio signal, y(n) refers to the output signal, and the value of a is
roughly between 0.9 and 1.0.

Step 2: Framing. In this step, the speech signals that have N samples are divided into
segments, where each segment is evaluated and described as a vector; the division of
signals is made with a fixed N interval in a range between 20 and 40 ms. The framing is
carried out with a 50% overlap of the frame size, and the overlapping is used for frames
continuity [37]. The contiguous frames are separated by M, where M is less than N. The
typical utilized values are N = 256 and M = 100.

Step 3: Windowing. In windowing, each frame will be passed through a Hamming
window; the main purpose of this phase is to provide an incrementation for both frame
continuity and spectrum accuracy. In addition, the Hamming window can be denoted
as w(n) where 0 ≤ n ≤ N − 1. Then, the output signal Y(n) after applying the Hamming
windowing becomes,

Y (n) = X (n) ×W (n) (3)

w(n) = 0.54− 0.46 cos
(

2πn
N − 1

)
(4)

where N refers to the number of samples in each frame and X(n) is the input signal.

Step 4: Fast Fourier Transform (FFT). In this phase, all the frames obtained from the
previous windowing phase are represented in the frequency domain by applying the Fast
Fourier Transform (FFT). This process aims to achieve better representations of the speech
signal characteristics. To perform FFT on a signal, the framed signal should be periodic
and continuous. Nevertheless, FFT could still be applied on a discontinuous signal, but
the result is undesirable. Consequently, Hamming windowing is applied to each frame to
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guarantee continuity between the first and the last frame. The FFT can be performed by
using the following formula:

Y(w) = FFT [h(n) × X(n)] = H(w) × X(w) (5)

where X(n) refers to the input signal, Y(n) refers to the output signal, h(n) is the vocal tract
impulse response in the time domain, and X(w), H (w), and Y (w) are the FFT representations
of X(n), h(n) and Y(n), respectively.

Step 5: Mel Filter Bank. The obtained spectrum from the FFT will be exposed to a Mel Filter
Bank, which contains a set of triangular bandpass filters. Moreover, the Mel frequency is
computed using the following formula,

Mel( f ) = 1125× ln
(

1 +
(

f
700

))
(6)

Step 6: Discrete Cosine Transform (DCT). This phase represents the Mel spectrum in the
time domain to obtain the MFCCs. The collection of coefficients is denoted as the acoustic
vectors. Consequently, the input signals are represented as acoustic vector sequences. DCT
can be expressed in the following formula,

C(n) = ∑N
K=1 cos

[
n× (k− 0.5) ∗

( π

N

)]
Ek (7)

where n = 0, 1, . . . to N, and a number of triangular bandpass filters is referred to N,
Ek represents the obtained energy from the filter bank, and L is equal to that number of
Mel-scale cepstral coefficients.

2.5. Long Short-Term Memory (LSTM)

Classification is a type of mapping where input vectors are mapped into one of a given
number of classes. In this proposed work, neural networks have been employed. The
neural networks represent the output classes by N output neurons or units, of which the
one corresponding to the input vector’s class has an activation value of 1, whereas all other
outputs have a 0 activation. This is commonly utilized in speech recognition in order to
match speech frames to phoneme classes. Moreover, RNN is a class of neural networks,
which is mainly utilized for the prediction of the future data sequence by means of the
previous data samples. The RNN is frequently employed to model sequence data such as
speech or text. Nevertheless, these networks have not been extensively utilized, due to
difficulties with training them, such that they capture the long-term dependencies [8,38].
RNN output is obtained by calculating and iterating the following equations from time
t = 1 to t = T [39],

ht = H(Wxhxt + Whhht−1 + bh) (8)

yt = Whyht + by (9)

where x is the input, the output sequence is denoted by y, and the hidden vector sequence
is referred to as h. Furthermore, W is the weight matrix, b refers to the bias vector, and
the hidden layer function is denoted byH [40]. The idea behind utilizing RNN instead of
conventional neural networks is that traditional neural networks presume that all inputs
and outputs are independent of one another. As a result, using conventional neural
networks in speech recognition is not a good idea. Besides this, prediction of every term in
a sentence necessitates information about the word which was already used.

An advanced variant of RNN is the long short-term memory (LSTM) model. LSTM
stores data information for a sustained period, and it is easier to retrieve past data in the
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memory. Furthermore, considering the LSTM version used in our system, the standard
formulation of a single LSTM cell unit can be given by the following equations [40],

ft = σ
(

W f [ht−1, xt] + b f

)
(10)

it = σ(Wi[ht−1, xt] + bi) (11)

C̃t = tanh(WC[ht−1, xt] + bC) (12)

Ct = ft × Ct−1 + it ∗ C̃t (13)

ot = σ(Wo[ht−1, xt] + bo) (14)

ht = ot × tan h(Ct) (15)

where, f, i, o, C̃, C, σ is the forget gate, input gate, output gate, new memory cell content,
memory cell content, and sigmoid function, respectively. The sigmoid function is used
to form three gates in the memory cell, whilst the tanh function is utilized to enlarge the
memory cell output [40]. In LSTM, each memory block contains a memory cell and three
gate units, namely, input gate, output gate, and forget gate. The behavior of the memory
block is controlled by these gates. The forget gate resets the cell variable, which leads the
stored input Ct to be forgotten; furthermore, the input is read from the feature vector xt
and the output is written to ht, by the aid of input and output gates respectively. As a
result, the network can store input over a longer period and thus exploit a self-learned
amount of long-range temporal context [41]. An illustration of the proposed speech model
is shown in Figure 2. The input consists of the patient’s cough, breathing, and voice, which
is subjected to preprocessing to eliminate noise and distortions. Then, the MFCC features
are extracted, and the output is passed through the LSTM model for classification. Figure 3
displays the structure of the LSTM. Finally, a multiclass classification model is established,
which classifies the presence of COVID-19.

Figure 2. The methodology of the speech-based model.
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Figure 3. LSTM network architecture.

3. Image-Based Model Methodology
3.1. Image Dataset

The image dataset consists of 13,808 chest X-ray (CXR) images that are comprised
of 10,192 X-ray images categorized as “healthy” that are collected from RSNA [42] and
Kaggle [43]. Furthermore, the remainder of the images (3615), collected from padchest
dataset are categorized as COVID-19-positive. [44], German medical school [45], SIRM [46],
Github [47], Kaggle [48], and Twitter [49].

3.2. Image Preprocessing

Image preprocessing has been conducted for the elimination of the undesired distor-
tions and to enhance the image features for further processing. In image preprocessing,
resizing and scaling of the images was carried out to yield the same size of images as the
models. The original size of the images was 299 × 299 pixels. For the experimental setup,
the size of the images has been scaled to 150 × 150 pixels. Moreover, data augmentation
for images is an approach heavily employed in deep learning to overcome the issue of
small training datasets. Its main aim is to artificially inflate the training dataset with label-
preserving transformations. In other words, data augmentation increases the diversity of
the training dataset by applying several transformations and distortions to the original
images, such as brightness modifications, zooming, scaling, rotating, and horizontal and
vertical flipping. Typically, many kinds of transformations and distortions are applied in
the training phase, none of which alters the semantics of the images [50,51].

3.3. Convolution Neural Network (CNN)

CNN is one of the most popular deep neural networks [47]. It has been utilized
extensively in machine learning, where it has performed remarkably well, specifically in
applications related to image recognition, such as natural language processing (NLP), and
the most extensive image classification data set (ImageNet), in addition to computer vision.
Additionally, CNN has achieved significant results in the pattern recognition field in both
image and speech processing. CNN has a variety of well-known, recognized architectures
such as VGG, LENET, and AlexNet [52]. CNNs are composed of three layers: convolutional
layers, pooling layers, and fully connected layers. Whenever these layers are stacked, the
CNN architecture is instantly formed. The fundamental mechanism of CNN can be divided
into these main areas [53,54]:

1. The input layer is responsible for holding the pixel value for the images.
2. The convolutional layer is responsible for the determination and computation of the

neurons output, which are connected to local regions of the input, by calculating the
scalar product between their weights and the region which is connected to the input
volume. Convolutional layers are able to reduce the model complexity by optimizing
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its output. They are optimized through the following hyperparameters: the depth,
the zero-padding, and the stride.

3. The non-linearity layer, which is the next layer after the convolutional layer. This
layer can be utilized to adjust the generated output. The reason for using this layer is
to saturate or limit the generated output. In this layer, the rectified linear unit (RELU)
applies an activation function that converts all negative pixels to 0, which is similar to
tanh and sigmoid for the same reasons.

4. The pooling layers, which are responsible for performing the downsampling along
with the given input’s spatial dimensionality, in addition to the reduction of the
number of the parameters.

5. The fully connected layers are responsible for computing the class scores.

3.4. CNN Hyperparameters

Defining the architectures of the model is a challenging step due to the vast number of
design choices available. The model architecture can be manually configured by manual
autotuning, or automatically by asking the machine to perform it. The configuration
variables in the proposed architecture are called hyperparameters. Hyperparameters are
classified into two tiers. The first is made up of hyperparameters that determine the
network structure, such as [53,54]:

• Hidden layers: located between input and output layers.
• Padding: added layers composed of 0s to ensure the flow of the kernel over the

image edge.
• Depth: used for visual recognition and refers to the third dimension of the image.
• Stride: represents the rate at which the kernel passes over the input image.
• Kernel type: the actual filter values such as sharpening, edge detection, etc.
• Kernel size: the size of the actual filter.

The second hyperparameter tier determines the network-trained elements, such
as [53,54]:

• Number of epochs: representing the number of iterations of the whole training dataset
to the network during the training phase.

• Batch size: representing the number of patterns that are visible to the network before
the weights are updated.

• Learning rate: regulating the update of the weight at the end of each patch.

Models can have numerous parameters; obtaining a suitable combination of hyperpa-
rameters is challenging and choosing the wrong hyperparameters could affect the system’s
performance.

3.5. CNN Models

In this work, seven different CNN models were utilized; namely, VGG16, VGG19,
DenseNet201, ResNet50, InceptionV3, Xception, and InceptionResNetV2. VGGnet is con-
sidered one of the most notable and popular CNN architectures. The unique model of the
VGGnet is comprised of parameters varying from 138 to 144 million, including an approx-
imation of 16 to 19 convolutional layers, with 3 × 3 convolutional filters, 5 max-pooling
layers, 3 fully connected layers, and a classifier layer as an output layer [55]. Moreover,
ResNet is a typical feed-forward network that has a residual connection. The residual
layer output can be well-defined based on the (l − 1) th outputs, which come from the
previous layer, which are referred to it as xl − 1. F (xl − 1) refers to the output after a
variety of operations are performed (e.g., convolution with different sizes of filters, batch
normalization (BN) followed by an activation function such as a ReLU on xl − 1. The final
output of the residual unit is xl, which can be defined with the following equation [55]:

xl = F (xl − 1) + xl − 1 (16)



Mathematics 2022, 10, 564 11 of 24

The residual network are comprised of several basic residual blocks. Nonetheless,
the operations in the residual block vary based on the different architectures of residual
networks. The fundamental block diagram of the ResNet architecture [55] is illustrated in
Figure 4a. The ResNet50 is a short form of residual network that has 50 layers. The ResNet
reduces the dilemma of vanishing gradient by allowing this alternate shortcut path for
the gradient to flow through. The identity mapping used in ResNet allows the model to
bypass a CNN weight layer if the current layer is not necessary. This helps us to avoid the
overfitting problem in training. The architecture of Resnet50 is shown in Figure 4b [56].

Figure 4. (a) ResNet architecture; (b) ResNet50 architecture.

Xception is a convolutional neural network architecture that stands for “extreme
inception”. The Xception architecture is a linear stack of depth-wise separable convolution
layers with residual connections. It has 36 convolutional layers, which form the feature
extraction base of the network [57]. A densely connected network (DenseNet) is comprised
of densely connected layers, where the outputs of the layers are connected to all the
successors in what is called the dense block [58]. Consequently, it is structured according
to the dense connectivity between layers from which it takes its name. DenseNet also has
an approximation of this, referred to as an efficient feature reuse approach, which aims for
the network parameters reduction. Densnet201 has 201 layers loaded with weights from
the image dataset. Moreover, Inceptionv3 is utilized to enhance the computing resources
by the incremental of the network’s depth and width [59]. The model consists of 48 layers.
The proposed model is repeated with max-pooling to reduce the dimensionality. The
InceptionResNetV2 is a combination of inception structures with a residual connection that
includes 164 layers. The model has multiple-sized convolutional filters that are trained on
numerous images to prevent any related degradation problem [55].

3.6. K-Fold Cross-Validation

Cross-validation is a widely employed technique for estimating the true prediction
errors of models and tuning the model parameters [60] to prevent generalization errors.
This remarkable technique is frequently used to handle the overfitting dilemma that many
systems regularly face due to irregularity (small size) in the dataset [61,62]. In order to
initiate the K-fold cross-validation procedure, the training data must be partitioned into
K portions; each part has an n/k sample, where n defines the training sample number.
Consequently, k − 1 parts are used in the training phase, while the remaining parts are
utilized in the validation phase [63]. This important approach has been implemented in
our proposed system as a part of the grid-search algorithm. The holdout method, which
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is the process of splitting the data into different splits and using one split for training the
model and other splits for validating and testing the models, was also used in this study;
specifically, a three-split hold out. Furthermore, the K-fold cross-validation is applied for
three different CNN models; the paper will discuss the results in more detail below.

3.7. Grid Search

In a machine-learning model, hyperparameters are set before training. These hyper-
parameters have to be optimized in order to adapt a model to a dataset. Nevertheless,
it is implausible that the optimal hyperparameter settings on one dataset are optimal on
another, which makes the feasibility of hyperparameter optimization unattainable. Grid
search is considered to be a traditional hyperparameter optimization, which ensures that
the search over a given subset of the hyperparameters space of the training algorithm. The
range of the possible parameters is manually set. Afterward, the algorithm initiates the
complete search over these parameters. All possible hyperparameter combinations are
brute-forced, then the models are evaluated using the cross-validation technique [64].

3.8. Fine-Tuning

Fine-tuning has been immensely utilized in deep learning for the performance incre-
ment of the system, which is intended to fine-tune the weights of the top layers of the
model, in addition to the Classifier training. The training process obliges the weights to be
tuned from generic feature maps to features explicitly associated with the dataset, and aims
to adapt these specialized features to work with the new dataset instead of overwriting the
generic learning.

4. Experiments and Results
4.1. Evaluation Criteria

To evaluate the deep learning models, a large number of performance metrics, includ-
ing precision, F1-score, recall, and accuracy, have been established. In addition, a confusion
matrix is utilized for the LSTM performance based on the four classes: true positive, false
positive, true negative, and false negative; the performance metric is obtained upon the
calculation of these four classification classes. The four confusion matrix classes can be
defined as follows:

• TP (true positive)
• FP (false positive)
• TN (true negative)
• FN (false negative)

Additionally, in this proposed system, accuracy measures the degree to which the
model correctly predicts the presence of COVID-19 and how the result conforms to the
desired value. The following equation describes how accuracy is calculated [48,65]:

Accuracy =
TP + TN

TP + FN + TN + FP
(17)

Precision represents the proportion of correctly predicted (positive) predictions to all
(positive) predictions. The precision is obtained as given in the following formula [48,65]:

Precision =
TP

TP + FP
(18)

Recall defines the percentage of correctly predicted (positive) predictions that are
identified by the model. In order to compute the recall, the following expression has been
used [48,65]:

Recall =
TP

TP + FN
(19)
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The F1 score designates the harmony between both recall and precision. It is mainly
utilized for the dilemma of imbalanced classes in the collected dataset. The following
equation describes how the F1-score is calculated [48,65]:

F1 Score = 2×
(

Recall × Precision
Recall + Precision

)
(20)

4.2. Speech-Based Model Experimental Results

As previously mentioned, two principal, but very different, approaches have been
introduced for COVID-19 classification: the speech-based model and the medical imaging-
based model. In the proposed speech model, the unique architecture of the RNN, the long
short-term memory (LSTM), has been utilized. The split of the dataset has been done as
follows: 70% of the speech dataset has been used for training, 20% for the testing, and 10%
for the validation. The training tests are represented in a vector that is passed through
the LSTM network. Then, the measurements are compared with the desired classes. In
addition, the weights during the preparation process are modified. Afterward, the test
signals are sent to the network, their aim values are calculated depending on the trained
weights. Both training and testing code has been made on Python, and TensorFlow has
been utilized as the deep-learning library. Additionally, speech data augmentation has
been used to inflate the data to enhance the accuracy of the system. Furthermore, the
hyperparameters optimization has been done using manual tuning to obtain the most
suitable hyperparameter, as illustrated in Table 1. The system has attained the highest
accuracy, precision, recall, and F1-score of 98.9%, when the parameters’ values of epochs,
batch size, dropout rate, and learning rate are set to 100, 32, 0.1, and 0.001, respectively.
Also, it has been observed that manipulating the number of MFCCs affects the system’s
accuracy due to the large number of speech features that MFCCs possess. Figure 5 provides
an illustration of the effect of MFCC numbers on the system’s accuracy. It can be observed
that 13 or 39 MFCCs are considered to be the optimum choice for the extracted utilized
features in the network.

4.3. Image-Based Model Experimental Results

In the proposed CNN model, the grid search optimization technique was used to
obtain the optimum hyperparameters of batch size, dropout, epochs, and learning rate,
which are 32, 0.1, 20, and 0.01, respectively. Furthermore, data augmentation has been
utilized to enhance the accuracy of the system by inflating the dataset. In addition, the
K-fold cross-validation technique has been employed to overcome generalization problems.
Figure 6 shows the methodology that was followed in implementing the COVID-19 detec-
tion system based on X-ray images. For this system, a binary classification has been done
to detect the presence of COVID-19. For the image-based model, two tests were conducted
to assess the performance of the system. In the first test, seven different CNN models were
utilized; namely, VGG16, VGG19, ResNet50, DenseNet201, InceptionV2, Xception, and
InceptionResNetV2. The models were employed as feature extractors in the system without
any fine-tuning. As shown in Figure 7, the VGG16 model outperformed all other models,
obtaining the highest accuracy, 85.25%.

Furthermore, to improve the system’s accuracy, the VGG16 model was fine-tuned in
the second test. Thus, it has achieved the highest performance. The results of the second
test are illustrated in Figure 8. In this figure, the letter B refers to the word block, and the
convolution layer is denoted by the letter C. For instance, B5-C1&C2 indicates that we have
unfrozen the first and second convolution layers of the fifth block of the VGG16 model. As
a result of the fine-tuning, the system has obtained an accuracy of 89.64%; also, losses in
the system have been decreased.
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Table 1. Speech-based model performance for different values of hyperparameters.

Epoch Batch Size Dropout Learning Rate Accuracy F1 Score Precision Recall

50

16

0.1

0.01 73.8% 76.4% 79.2% 73.8%

0.001 94.3% 94.4% 94.6% 94.3%

0.0001 86.6% 87.5% 88.4% 86.6%

0.3

0.01 72.1% 75.2% 78.6% 72.1%

0.001 93.2% 93.6% 94.0% 93.2%

0.0001 83.2% 84.1% 85.1% 83.2%

0.5

0.01 60.1% 65.3% 71.5% 60.1%

0.001 92.6% 92.6% 92.6% 92.6%

0.0001 75.2% 77.0% 78.8% 75.2%

32

0.1

0.01 86.9% 87.4% 87.9% 86.9%

0.001 97.4% 97.4% 97.4% 97.4%

0.0001 84.3% 85.4% 86.5% 84.3%

0.3

0.01 71.5% 74.2% 77.0% 71.5%

0.001 97.2% 97.2% 97.2% 97.2%

0.0001 78.6% 80.7% 82.9% 78.6%

0.5

0.01 69.5% 72.9% 76.7% 69.5%

0.001 92.9% 93.4% 93.9% 92.9%

0.0001 67.0% 69.4% 72.1% 67.0%

64

0.1

0.01 91.7% 92.4% 93.1% 91.7%

0.001 93.4% 93.7% 94.0% 93.4%

0.0001 73.2% 75.8% 78.6% 73.2%

0.3

0.01 79.2% 80.6% 82% 79.2%

0.001 96.3% 96.6% 96.8% 96.3%

0.0001 66.4% 69.9% 73.7% 66.4%

0.5

0.01 68.7% 71.9% 75.5% 68.7%

0.001 94.0% 94.2% 94.3% 94.0%

0.0001 61.8% 66.6% 72.1% 61.8%

100 16

0.1

0.01 84.3% 86.4% 88.6% 84.3%

0.001 98.6% 98.6% 98.6% 98.6%

0.0001 92.6% 92.7% 92.9% 92.6%

0.3

0.01 76.9% 79.5% 82.3% 76.9%

0.001 95.4% 95.7% 96.0% 95.4%

0.0001 93.2% 93.3% 93.4% 93.2%

0.5

0.01 77.2% 80.1% 83.1% 77.2%

0.001 94.3% 94.3% 94.3% 94.3%

0.0001 88.3% 88.6% 88.3% 88.3%
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Table 1. Cont.

Epoch Batch Size Dropout Learning Rate Accuracy F1 Score Precision Recall

32

0.1

0.01 91.5% 92.4% 93.3% 91.5%

0.001 98.9% 98.9% 98.9% 98.9%

0.0001 84.9% 85.4% 85.9% 84.9%

0.3

0.01 76.1% 78.0% 79.9% 76.1%

0.001 98.0% 98.0% 98.0% 98.0%

0.0001 94.3% 94.4% 94.6% 94.3%

0.5

0.01 87.5% 88.2% 89.0% 87.5%

0.001 93.4% 93.7% 94.0% 93.4%

0.0001 89.2% 89.6% 89.9% 89.2%

64

0.1

0.01 90.3% 90.7% 91.1% 90.3%

0.001 96.0% 96.0% 96.0% 96.0%

0.0001 90.9% 91.3% 91.7% 90.9%

0.3

0.01 87.5% 88.3% 89.2% 87.5%

0.001 97.4% 97.4% 97.4% 97.4%

0.0001 90.3% 90.7% 91.1% 90.3%

0.5

0.01 59.8% 65.1% 71.4% 59.8%

0.001 96.9% 97.1% 97.1% 96.9%

0.0001 86.9% 87.6% 88.4% 86.9%

Figure 5. The accuracy of the system based on different MFCC numbers.
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Figure 6. Methodology for detecting COVID-19 in X-ray images.

Figure 7. Image-based model performance for different CNN models.
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Figure 8. Image-based model performance during fine-tuning for VGG16.

4.4. Speech-Image-Based Model Experimental Results

In this model, a combination of speech spectrograms and chest X-ray images was
utilized to produce a robust speech–image-based model, which can leverage both speech
and image inputs. Figure 9 illustrates the methodology that was employed to implement the
COVID-19 recognition system. For this system, a binary classification has been conducted
to detect the presence of the COVID-19 infection from the binary input consisting of
both spectrograms and chest X-ray scans. The model has been evaluated by the CNN
models, namely, VGG16, VGG19, ResNet50, DenseNet201, InceptionV2, Xception, and
InceptionResNetV2. The models have been employed as feature extractors in the system
without any fine-tuning. The grid search has also been utilized in this model. As a
result, the same image-based model’s hyperparameters were obtained and used in this
test. Moreover, as shown in Figure 10, the InceptionResNetV2 network outperforms all the
models, obtaining the highest accuracy, at 82.22%. The accuracy of the speech-based model
alone was much lower than the accuracy of the image-based model alone, as well as the
hybrid speech-image model. This is due to the variations in the inputs, since the speech
samples in this combined model have been utilized and inputted as spectrograms, which
gives an accuracy of 98.9%, and the image-based model alone yields an accuracy of 89.64%.
However, the system in this experiment achieves a relatively reasonable accuracy despite
the utilization of two kinds of inputs.
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Figure 9. Methodology for detecting COVID-19 from X-ray scans and speech signals.

Figure 10. Speech- and image-based model performance for different CNN models.

4.5. Statistical Significance Analysis

Another evaluation of the proposed models has been carried out by the utilization
of the statistical significance analysis, which is commonly performed to ensure that the
models are statistically different by utilizing the P-value value test technique. The P-value
signifies the probability under which the statistical result occurs, which should be less
than the significance level for the results to be deemed statistically significant. In our
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proposed research, we conducted experiments using 95% confidence interval (CI). The
evaluation of the proposed models has been carried out using the Wilcoxon test, which
is a non-parametric statistical test that compares two paired groups. The results of the
Wilcoxon test are presented in Table 2.

Table 2. Nonparametric Wilcoxon test results.

Classifier LSTM VGG16 InceptionResnetV2

LSTM NA 0.00018 0.0008

VGG16 0.0018 NA 0.03318

InceptionResnetV2 0.0008 0.03318 NA

The results demonstrate that the LSTM is statistically different from VGG16, as well as
InceptionResnetV2, based on the 95% confidence level.

4.6. Comparison of the Proposed Designs with Previous Techniques

To assess the effectiveness of our proposed designs, we have compared their per-
formance with previous approaches, as presented in Table 3. It can be observed that
conjugating the MFCC with LSTM has had a remarkable impact on enhancing the classifi-
cation system. Our speech-based system has achieved an accuracy, F1-score, recall, and
precision of 98.9%, 98.9%, 98.9%, 98.9%, respectively, outperforming the nearest second-
highest speech COVID-19 detection system, which has achieved an accuracy of 98.2%.
Moreover, the image-based system has achieved an accuracy of 89.64%. The majority of
speech-based models have utilized the LSTM in addition to the MFCCs, while the major-
ity of image-based approaches have used novel CNN architectures, alongside different
CNN models, including DensNet, AlexNet, VGGNet, and ResNet. The combined speech-
image-based model has achieved an accuracy of 82.22%, which is relatively low, due to
the presence of the spectrograms, when compared to either speech-based or image-based
models alone.

Table 3. Previous work techniques and performance.

Work Techniques Description Performance Metrics

Mohamed Bader et al. [2] MFCC features

Performs early diagnosis of
COVID-19 by evaluating the
MFCC acoustic features and

providing analysis for the
correlation coefficients

0.42 average correlation
coefficient (low

positive correlation)

Hassan Abdelfatah et al. [8] Long short-term
memory (LSTM)

Performs early diagnosis of
COVID-19 and evaluates
different acoustic features

Accuracy: 98.2%
Precision: 100%

Recall: 97.7%
F1-score: 98.8%

AUC: 98.8%

Pahar Madhurananda et al. [13]

Multilayer perceptron (MLP),
logistic regression (LR), long
short-term memory (LSTM),

support vector machine (SVM),
convolutional neural network

(CNN), and residual-based
neural network (RSNET)

Discriminating
COVID-19-positive coughs from

COVID-19-negative coughs

Accuracy: 95.33%
AUC: 97.6%

Specificity: 98%
Sensitivity: 93%
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Table 3. Cont.

Work Techniques Description Performance Metrics

Deshpande et al. [14] Bi-directional long short-term
Providing a COVID-19

recognition system based on
cough analysis

AUC: 64.42%

Kumar et al. [15]
Logistic regression (LR),

random forest (RF)
multilayer perceptron (MLP).

Providing an early screening for
COVID-19 based on cough

analysis
AUC: 81.89

Laguarta Jord et al. [16] MFCC, CNN, Rsnet50
Providing an early screening for

COVID-19 based on
cough analysis

Accuracy: 97.3%

Gunavant et al. [17] MFCC
Providing an early screening for

COVID-19 based on
cough analysis

ROC: 77.1%
AUC: 77.1%

Accuracy: 78.3%

Maghdid et al. [18] CNN and Alex-Net
COVID-19 detection based on

the X-rays and CT scans
of patients

Accuracy: 98%

Wang et al. [19]
Densenet
Resnet-50

Nasnet-Amobile

Detecting the presence of
COVID-19 from chest CT scans Accuracy: 99.1%

Jaiswal et al. [22] Densenet-201 pretrained
CNN model

Detecting the presence of
COVID -19 from chest CT scans

Accuracy: 97%
F1-score: 96.29%
Recall: 96.29%

Precision: 96.29%

Weng et al. [23] Inception pretrained
CNN model

Detecting the presence of
COVID-19 from chest CT-scans

Accuracy: 89.5%
Specificity: 88%
sensitivity: 87%

Narin, Ali et al. [24]
ResNet50, ResNet101,

ResNet152, InceptionV3 and
Inception-ResNetV2

Detection of coronavirus or
pneumonia-infected patients by

the chest X-ray radiographs
Accuracy: 99.7%

Proposed System Long short-term
memory (LSTM)

COVID-19 detection system
based on cough, voice, and

breathing sounds

Accuracy: 98.9%
Precision: 98.9%

Recall: 98.9%
F1-score: 98.9%

Proposed System

VGG16, VGG19, ResNet50,
DenseNet201, Xception,

InceptionV3 and
Inception-ResNetV2

COVID-19 detection system
based on cough, voice, and

breathing spectrograms, and
chest X-ray images

Accuracy: 82.22%

Proposed System

VGG16, VGG19, ResNet50,
DenseNet201, Xception,

InceptionV3 and
Inception-ResNetV2

COVID-19 detection system
based on chest X-ray images Accuracy: 89.64%

The apparent superiority of our speech-based system is due to the remarkable prop-
erties exhibited by the LSTM, which is the predictor of possible future scenarios. This
superiority is also due to the capability of MFCCs to reduce errors. These accumula-
tions of special features have led to achieving high rates of accuracy compared to other
proposed approaches.

5. Concluding Remarks

The COVID-19 outbreak had a significant effect on the well-being of people globally,
with a steep increase in casualties. Deep- and machine-learning techniques have provided
significant help since the beginning of the global epidemic. In this paper, multiple COVID-
19 classification approaches have been proposed. The first approach is a speech-based
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system to detect the presence of COVID-19 from the patient’s cough, breath, and voice. The
second method is a medical image-based system that can detect the presence of COVID-19
from patients’ chest X-ray images. The final approach is a combined speech–image-based
model that detects the presence of COVID-19 from both audio spectrograms and chest
X-ray images. The system’s fundamental mechanism is to detect, diagnose, and classify
any presence of COVID-19 infection. In addition, the hyperparameters tuning has been
done manually for the speech-based model using grid searches for both image-based and
speech–image-based models. Furthermore, it has been observed that the manipulation of
the MFCCs enhances the model’s accuracy. The proposed speech model has conjugated
the MFCC alongside the LSTM model, exhibiting remarkable proficiency in detecting
COVID-19, as evidenced by its accuracy, precision, F1-score, and recall accuracy rates of
98.9% each, outperforming a variety of previous systems and approaches. Moreover, the
chest X-rays dataset has been characterized by an imbalance towards normal labels. Due to
that, it has a negative impact on the system’s accuracy.

Additionally, the grid search technique has been used to determine the optimum CNN
model hyperparameters. Therefore, the CNN VGG16 model has attained an accuracy of
85.25%. When fine-tuning techniques have been applied to VGG16, the accuracy of the
system has been enhanced to 89.64%, outperforming all of the other proposed models.
Finally, it can be observed that the implementation of the speech-based model alone
or the image-based model alone provides better accuracy than the combination of both
models. Consequently, it is unnecessary to combine the two models into a new model for
diagnostic purposes.

In this work, the overall performance of the proposed systems is nonideal due to the
small size of both speech and image datasets. This is due to the strict restrictions, which have
limited the process of acquiring a sufficient amount of audio files. Thus, data augmentation
techniques have been used to inflate the dataset and enhance the model’s performance.

The proposed systems can be improved using many approaches. For instance, a hybrid
cascaded CNN–LSTM classifier can be implemented to enhance the speech-based system’s
functionality. Moreover, the speech-image-based model can be improved by overcoming
the dilemma of imbalanced classes, which has negatively affected the model’s performance.

Furthermore, a dataset expansion option could be feasible in the near future, which
would significantly enhance the accuracy of the system. Also, imbalanced remedies can be
utilized to overcome the dilemma of imbalanced classes. Finally, the proposed image-based
model can be utilized for drug and vaccination development by analyzing the changes that
occur in the respiratory system after the utilization of the current vaccines.
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