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Abstract: In this paper, we apply a general family of basic (or q-) polynomials with double q-binomial
coefficients as well as some homogeneous q-operators in order to construct several q-difference equa-
tions involving seven variables. We derive the Rogers type and the extended Rogers type formulas
as well as the Srivastava-Agarwal-type bilinear generating functions for the general q-polynomials,
which generalize the generating functions for the Cigler polynomials. We also derive a class of mixed
generating functions by means of the aforementioned q-difference equations. The various results,
which we have derived in this paper, are new and sufficiently general in character. Moreover, the
generating functions presented here are potentially applicable not only in the study of the general
q-polynomials, which they have generated, but indeed also in finding solutions of the associated
q-difference equations. Finally, we remark that it will be a rather trivial and inconsequential exercise
to produce the so-called (p, q)-variations of the q-results, which we have investigated here, because
the additional forced-in parameter p is obviously redundant.

Keywords: homogeneous q-difference operator; double q-binomial coefficients; q-difference equa-
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1. Introduction
In this paper, we adopt the notation and terminology for the basic (or q-) hypergeo-

metric series as in [1,2]. Throughout this paper, we assume that q is a fixed nonzero real or
complex number and |q| < 1. The q-shifted factorial and its compact factorial forms are
defined for any real or complex parameter a, a1, a2, · · · , ar, respectively, as follows [1,2]:

(a; q)0 := 1, (a; q)n :=
n−1

∏
k=0

(1− aqk) and (a; q)∞ :=
∞

∏
k=0

(1− aqk), (1)

and
(a1, a2, · · · , ar; q)m = (a1; q)m(a2; q)m · · · (ar; q)m(

m ∈ N0 := {0, 1, 2 · · · } = N∪ {0}
)
.
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We will also frequently use the following relation:

(aq−n; q)n =
( q

a
; q
)

n
(−a)n q−n−(n

2). (2)

The generalized q-binomial coefficients are defined as follows (see [1]):[
α

k

]
q
=

(q−α; q)k
(q; q)k

(−1)k qαk−(k
2) (3)

and [
α

k

]
−q

=
(−q−α; q)k
(−q; q)k

qαk−(k
2) (α ∈ C), (4)

so that (
α

k

)
= lim

q→1−

{[
α

k

]
q

}
(α ∈ C)

for the familiar binomial coefficient.
The basic (or q-) hypergeometric function rΦs in the variable z is defined by

(
see, for

details, Slater ([3], Chap. 3) and Srivastava and Karlsson ([4], p. 347, Eq. (272)); see also [5]
)
:

rΦs

 a1, a2, · · · , ar;

b1, b2, · · · , bs;
q; z

 =
∞

∑
n=0

[
(−1)nq(

n
2)
]1+s−r (a1, a2, · · · , ar; q)n

(b1, b2, · · · , bs; q)n

zn

(q; q)n

when r > s + 1. In particular, for r = s + 1, we have:

r+1Φr

 a1, a2, · · · , ar+1;

b1, b2, · · · , br;
q; z

 =
∞

∑
n=0

(a1, a2, · · · , ar+1; q)n

(b1, b2, · · · , br; q)n

zn

(q; q)n
.

We remark in passing that, in the recently-published survey-cum-expository review
articles (see [6,7]), the so-called (p, q)-calculus was exposed to be a rather trivial and
inconsequential variation of the classical q-calculus, the additional forced-in parameter p
being redundant or superfluous (see, for details, ([6], p. 340) and ([7], pp. 1511–1512)).

Chen et al. [8] introduced the homogeneous q-difference operator Dxy as follows:

Dxy
{

f (x, y)} :=
f
(
x, q−1y

)
− f (qx, y)

x− q−1y
, (5)

which turns out to be suitable for dealing with the Cauchy polynomials. On the other hand,
Wang and Cao [9] presented the following two extensions of Cigler’s polynomials:

C(α−n)
n (x, y, b) =

n

∑
k=0

(−1)k q(
k
2)

[
α

k

]
q
bk (q; q)n

(q; q)n−k
pn−k(x, y) (6)

and

D(α−n)
n (x, y, b) =

n

∑
k=0

q(
k
2)

[
α

k

]
q
bk (q; q)n

(q; q)n−k

[
(−1)n+kq−(

n
2) pn−k(y, x)

]
, (7)

where
pn(x, y) := (x− y)(x− qy) · · · (x− qn−1y) =

( y
x

; q
)

n
xn

are the Cauchy polynomials.
Recently, Jia et al. [10] have introduced the following polynomials:

Lm̃,ñ(α, x, z, a) =
n

∑
k=0

[
n
k

]
q

[
α

k

]
−q

qτ(m̃,ñ)+(k
2) (a; q)k zk xn−k (8)
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with

τ(m̃, ñ) = m̃
(

k
2

)
− ñ

(
k + 1

2

)
, (9)

where m̃ and ñ are real numbers. More recently, Cao et al. [11] introduced an extension of
the above q-polynomials as follows:

L̃(r̃,s̃)
n (α, x, y, z, a, b, c) =

n

∑
k=0

[
n
k

]
q

[
α

k

]
−q

qτ(r̃,s̃)+(k
2) (a; q)k pn−k(x, y)zk (10)

and gave the following result.

Proposition 1 (see [11]). Let f (α, x, y, a, z, r̃, s̃) be a seven-variable analytic function in a neigh-
borhood of

(α, x, y, a, z, r̃, s̃) = (0, 0, 0, 0, 0, 0, 0) ∈ C7.

Then f (α, x, y, a, z, r̃, s̃) can be expanded in terms of L̃(r̃,s̃)
n (α, x, y, a, z, r̃, s̃) if and only if f

satisfies the following q-difference equation:

(x− q−1y)
{

f (α, x, y, a, z, r̃, s̃)− f (α, x, y, a, q2z, r̃, s̃)
}

= qα−r̃z
{

f (α, x, q−1y, a, zqr̃−s̃, r̃, s̃)− f (α, qx, y, a, zqr̃−s̃, r̃, s̃)
}

(11)

+ q−r̃−1(1− aqα)z
{

f (α, x, yq−1, a, zq1+r̃−s̃, r̃, s̃)− f (α, qx, y, a, zq1+r̃−s̃, r̃, s̃)
}

− azq−r̃−2
{

f (α, x, yq−1, a, zq2+r̃−s̃, r̃, s̃)− f (α, qx, y, a, zq2+r̃−s̃, r̃, s̃)
}

.

Our present investigation is motivated essentially by the earlier works by Jia et al. [10]
and by Cao et al. [11]. Our aim here is to introduce and study the following further
extension of the above-mentioned q-polynomials:

L̃(r̃,s̃)
n (α, x, y, z, a, b, c) =

n

∑
k=0

[
n
k

]
q

[
α

k

]
−q

qτ(r̃,s̃)+(k
2)

(a, b; q)k
(c; q)k

pn−k(x, y)zk, (12)

where τ(r̃, s̃) is defined as in (9).
Zhou and Luo [12] obtained some new generating functions for the q-Hahn polyno-

mials and their proofs are based upon the homogeneous q-difference operator. Saad and
Abdlhusein [13] utilized the Cauchy operator in proving some identities involving the
homogeneous Rogers-Szegö polynomials. However, we found it to be difficult to continue
to calculate and generalize the above-mentioned authors’ results for general q-polynomials
with more parameters (see, for example, [10,12–15]).

It is natural to ask whether some general q-hypergeometric polynomials exist, which
are solutions of certain generalized q-difference equations. The novelty of this paper is to
search and find these generalized q-difference equations that are satisfied by some of the
general q-hypergeometric polynomials, which we have investigated in this paper. The meth-
ods and techniques, which we have presented and used here, have produced potentially
useful generalizations of the above-mentioned results (see, for details, [10,12–15]). Deriva-
tions of various known or new particular cases of our results are indicated in Remark 1.

Remark 1. The general q-polynomials L̃(r̃,s̃)
n (α, x, y, z, a, b, c) defined in (12) provide a generalized

and unified form of the Hahn polynomials and the Al-Salam-Carlitz polynomials. Some of these
special cases of the general q-polynomials L̃(r̃,s̃)

n (α, x, y, z, a, b, c) are being listed below.

1. Upon setting y = 0 and b = c = 0, the general q-polynomials L̃(r̃,s̃)
n (α, x, y, z, a, b, c) defined

in (12) would reduce to (8) (see [10])

L̃(r̃,s̃)
n (α, x, 0, z, a, b, c) = Lr̃,s̃(α, x, z, a). (13)
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2. If we put
(α, r̃, s̃, x, y, z, a) = (∞, 0, 0, y, x,−z,−q, 0, 0),

the general q-polynomials L̃(r̃,s̃)
n (α, x, y, z, a, b, c) reduce to the trivariate q-polynomials Fn(x, y, z; q)

(see [16]):
L̃(0,0)

n (∞, y, x,−z,−q) = (−1)nq(
n
2)Fn(x, y, z; q). (14)

3. Upon setting

α = n ∈ Z and (r̃, s̃, a, b, c, x, y, z) = (0,−1,−yq, 0, 0, 1, 0, x),

the general q-polynomials L̃(r̃,s̃)
n (α, x, y, z, a, b, c) reduce to the polynomials ρe(n, y, x, q)

(see [10]):
L̃(0,−1)

n (n, 1, 0, x,−qy) = ρe(n, y, x, q). (15)

4. If we set
(α, r̃, s̃, y, a, b, c) = (∞,−1, 0, 0,−q, 0, 0),

the general q-polynomials L̃(r̃,s̃)
n (α, x, y, z, a, b, c) reduce to the homogeneous Rogers-Szegö

polynomials hn(x, y|q) (see [17]):

L̃(−1,0)
n (∞, x, y, 1,−q) = hn(x, y|q). (16)

5. By choosing
(α, r̃, s̃, a, b, c, x, y) = (∞,−1, 0,−q, 0, 0, xq−n, 0),

the q-polynomials L̃(r̃,s̃)
n (α, x, y, z, a, b, c) reduce to the Rogers-Szegö polynomials gn(z, x|q)

(see [17]):
L̃(−1,0)

n (∞, xq−n, 0, z,−q) = gn(z, x|q). (17)

The rest of this paper is organized as follows. In Section 2, we establish the main results
for the q-difference equations involving seven variables for the general q-polynomials. In
Section 3, we obtain the generating function of the general q-polynomials by the method
of q-difference equations. In Section 4, we derive the Rogers-type formula for the general
q-polynomials by using the q-difference equations. In Section 5, we present a mixed
generating function for the general q-polynomials by means of the q-difference equations.
We also consider the Srivastava-Agarwal-type bilinear generating functions for the general
q-polynomials in Section 5 itself. In Section 6, we derive a transformation identity involving
a Hecke-type series for the general q-polynomials. Finally, in Section 7, we present several
remarks and observations that are based upon the results and findings in this paper.

2. Fundamental Theorem
In this section, we first state and prove the following fundamental theorem.

Theorem 1. Let f (α, x, y, a, b, c, z, r̃, s̃) be a nine-variable analytic function in a neighborhood of:

(α, x, y, a, b, c, z, r̃, s̃) = (0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ C9.

Then f (α, x, y, a, b, c, z, r̃, s̃) can be expanded in terms of L̃(r̃,s̃)
n (α, x, y, z, a, b, c) if and only if

the function f satisfies the following q-difference equation:
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(x− q−1y)
{
[ f (α, x, y, a, b, c, z, r̃, s̃)− f (α, x, y, a, b, c, q2z, r̃, s̃)]

− cq−1[ f (α, x, y, a, b, c, qz, r̃, s̃)− f (α, x, y, a, q3z, r̃, s̃)]
}

= qα−r̃z
{

f (α, x, q−1y, a, b, c, zqr̃−s̃, r̃, s̃)− f (α, qx, y, a, b, c, zqr̃−s̃, r̃, s̃)
}

(18)

+ q−r̃−1(1− aqα − bqα)z
{

f (α, x, yq−1, a, b, c, zq1+r̃−s̃, r̃, s̃)− f (α, qx, y, a, b, c, zq1+r̃−s̃, r̃, s̃)
}

− (a + b− abqα)zq−r̃−2
{

f (α, x, yq−1, a, b, c, zq2+r̃−s̃, r̃, s̃)− f (α, qx, y, a, b, c, zq2+r̃−s̃, r̃, s̃)
}

− abzq−r̃−3
{

f (α, x, yq−1, a, b, c, zq3+r̃−s̃, r̃, s̃)− f (α, qx, y, a, b, c, zq3+r̃−s̃, r̃, s̃)
}

.

Remark 2. For b = c = 0 in Theorem 1, we can deduce Equation (11). Furthermore, if we set
y = 0 and b = c = 0 in Theorem 1, we are led to the concluding remarks of Jia et al. [10].

Lemma 1 (Hartogs’s theorem). If a complex-valued function is holomorphic (analytic) in each
variable separately in an open domain D ∈ Cn, then it is holomorphic (analytic) in D.

In order to prove Theorem 1, we need the following fundamental property of functions
of several complex variables (see, for example [18–20]; see also [21]).

Lemma 2 (see ([18], Proposition 1)). If f (x1, x2, · · · , xk) is analytic at the origin (0, 0, · · · , 0) ∈
Ck, then the function f (x1, x2, · · · , xk) can be expanded in an absolutely convergent power series
given by

f (x1, x2, · · · , xk) =
∞

∑
n1,n2,··· ,nk=0

Ωn1,n2,··· ,nk xn1
1 xn2

2 · · · x
nk
k .

Proof of Theorem 1. In light of Hartogs theorem and the theory of functions of several
complex variables, we assume that

f (α, x, y, a, b, c, z, r̃, s̃) =
∞

∑
k=0

Ak(α, x, y, a, b, c, r̃, s̃) zk. (19)

Firstly, by substituting from (19) into (18), we get:

(x− q−1y)
∞

∑
k=0

(1− q2k)(1− cqk−1)Ak(α, x, y, a, b, c, r̃, s̃) zk

=
∞

∑
k=0

{
qα+r̃(k−1)−s̃k + q(r̃+1)(k−1)−s̃k(1− bqα − aqα) (20)

− q(r̃+2)(k−1)−s̃k(b + a− abqα) + abq(r̃+3)(k−1)−s̃k
}

·
{

Ak(α, x, q−1y, a, b, c, r̃, s̃)− Ak(α, qx, y, a, b, c, r̃, s̃)
}

zk+1,

which readily yields

(x− q−1y)
∞

∑
k=0

(1− q2k)(1− cqk−1)Ak(α, x, y, a, b, c, r̃, s̃) zk

=
∞

∑
k=0

qr̃(k−1)−s̃k
{

qα + qk−1(1− bqα − aqα)− q2k−2(b + a− abqα) + abq3k−3
}

(21)

·
{

Ak(α, x, q−1y, a, b, c, r̃, s̃)− Ak(α, qx, y, a, b, c, r̃, s̃)
}

zk+1.
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Upon equating the coefficients of zk (k ∈ N) on both sides of the Equation (21), we
see that

(x− q−1y)(1− qk)(1 + qk)(1− cqk−1)Ak(α, x, y, a, b, c, r̃, s̃)

= qr̃(k−1)−s̃k(qα + qk−1)(1− aqk−1)(1− bqk−1) (22)

·
{

Ak−1(α, x, q−1y, a, b, c, r̃, s̃)− Ak−1(α, qx, y, a, b, c, r̃, s̃)
}

or, equivalently, that

Ak(α, x, y, a, b, c, r̃, s̃) = qr̃(k−1)−s̃k (q
α + qk−1)(1− aqk−1)(1− bqk−1)

(1− qk)(1 + qk)(1− cqk−1)

· Ak−1(α, x, q−1y, a, b, c, r̃, s̃)− Ak−1(α, qx, y, a, b, c, r̃, s̃)
x− q−1y

= qα+r̃(k−1)−s̃k (1 + q−α+k−1)(1− aqk−1)(1− bqk−1)

(1− qk)(1 + qk)(1− cqk−1)

· Dxy{Ak−1(α, x, y, a, b, c, r̃, s̃)}.

By iterating this process, we find that

Ak(α, x, y, a, b, c, r̃, s̃) = qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)k
(q2, c; q2)k

· Dk
xy{A0(α, x, y, a, b, c, r̃, s̃)},

which, upon letting

f (α, x, y, a, b, c, 0, r̃, s̃) = A0(α, x, y, a, b, c, r̃, s̃) =
∞

∑
n=0

µn pn(x, y),

yields

Ak(α, x, y, a, b, c, r̃, s̃) = qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α ,a,b;q)k
(q2,c;q2)k

·∑∞
n=0 µn

(q;q)n
(q;q)n−k

pn−k(x, y).
(23)

We thus obtain

f (α, x, y, z, a, b, c, r̃, s̃) =
∞

∑
k=0

qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)k
(q2, c; q2)k

·
∞

∑
n=0

µn
(q; q)n

(q; q)n−k
pn−k(x, y)zk

=
∞

∑
n=0

µn

n

∑
k=0

[
n
k

]
q

[
α
k

]
−q

qτ(r̃,s̃)+(k
2)
(a, b; q)k
(c; q)k

pn−k(x, y) zk

=
∞

∑
n=0

µn L̃(r̃,s̃)
n (α, x, y, z, a, b, c).

Secondly, if f (α, x, y, a, b, c, z, r̃, s̃) can be expanded in terms of L̃(r̃,s̃)
n (α, x, y, z, a, b, c),

we can verify that the function f (α, x, y, a, b, c, z, r̃, s̃) satisfies Equation (18). The proof of
Theorem 1 is now complete.

3. Generating Functions of the General q-Polynomials
In this section, we first give a generating function of the general q-polynomials by the

method of q-difference equations as the application of our main results.
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Theorem 2. The following assertion holds true:

∑∞
n=0 L̃(r̃,s̃)

n (α, x, y, z, a, b, c) tn

(q;q)n

= (yt;q)∞
(xt;q)∞

∑∞
k=0

(−q−α ,a,b;q)k
(q2,c;q2)k

qkα+r̃(k
2)−s̃(k+1

2 ) (zt)k (
|xt| < 1

)
.

(24)

As a special case of Theorem 2, if we take r̃ = s̃ = 0, we are led to Corollary 1 below.

Corollary 1. For max{|xt|, |ztqα|} < 1, it is asserted that

∞

∑
n=0

L̃(0,0)
n (α, x, y, z, a, b, c)

tn

(q; q)n
=

(yt; q)∞

(xt; q)∞
3Φ2

 −q−α, a, b;

−q, c;
q; ztqα

. (25)

Proof of Theorem 2. Denoting by f (α, x, y, a, , b, c, z, r̃, s̃) the right-hand side of the Equa-
tion (24), we can rewrite equivalently as follows:

f (α, x, y, a, b, c, z, r̃, s̃) = ∑∞
k=0

(−q−α ,a,b;q)k
(q2,c;q2)k

qkα+r̃(k
2)−s̃(k+1

2 ) zk · tk (yt;q)∞
(xt;q)∞

= ∑∞
k=0

(−q−α ,a,b;q)k
(q2,c;q2)k

qkα+r̃(k
2)−s̃(k+1

2 ) zk Dk
xy

{
(yt;q)∞
(xt;q)∞

}
.

(26)

Now, letting:

f (α, x, y, a, b, c, z, r̃, s̃) =
∞

∑
k=0

Ak(α, x, y, a, b, c, r̃, s̃) zk

and

Ak(α, x, y, a, b, c, r̃, s̃) = qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)k
(q2, c; q2)k

Dk
xy

{
(yt; q)∞

(xt; q)∞

}
, (27)

we obtain:

A0(α, x, y, a, b, c, r̃, s̃) =
(yt; q)∞

(xt; q)∞
(28)

and
f (α, x, y, a, b, c, 0, r̃, s̃) = A0(α, x, y, a, r̃, s̃).

Thus, upon substituting from (28) into (27), we find that

Ak(α, x, y, a, b, c, r̃, s̃) = qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α ,a,b;q)k
(q2,c;q2)k

·Dk
xy{A0(α, x, y, a, b, c, r̃, s̃)}.

(29)

It is easily observed that f (α, x, y, a, , b, c, z, r̃, s̃) is a nine-variable analytic function in a
neighborhood of

(α, x, y, a, b, c, z, r̃, s̃) = (0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ C9.

Hence, f (α, x, y, a, b, c, z, r̃, s̃) can be expanded in terms of L̃(r̃,s̃)
n (α, x, y, z, a, b, c) as fol-

lows:

f (α, x, y, a, b, c, z, r̃, s̃) =
∞

∑
n=0

µn · L̃(r̃,s̃)
n (α, x, y, z, a, b, c). (30)

Setting z = 0 and using the following relation:

L̃(r̃,s̃)
n (α, x, y, 0, a, b, c) = pn(x, y)
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in the resulting equation, we get:

f (α, x, y, a, b, c, 0, r̃, s̃) =
(yt; q)∞

(xt; q)∞
=

∞

∑
n=0

µn · pn(x, y). (31)

Finally, upon comparing the coefficients of pn(x, y), we find that

µn =
tn

(q; q)n
.

Substituting the above equation into Equation (30), we deduce that f (α, x, y, a, b, c, z, r̃, s̃)
equals the left-hand side of Equation (24). This evidently completes the proof of Theorem 2.

Remark 3. Setting y = 0 and b = c = 0 in (24), we get the following concluding remark in the
earlier work [10]:

∞

∑
n=0

Lr̃,s̃(α, x, z, a)
tn

(q; q)n

=
1

(xt; q)∞

∞

∑
k=0

(−q−α, a; q)k
(q2; q2)k

qkα+r̃(k
2)−s̃(k+1

2 ) (zt)k (
|xt| < 1

)
. (32)

In Equation (24), we let α→ ∞ and set r̃ = s̃ = 0, a = −q, and b = c = 0. Then, upon
interchanging x and y, and replacing z by −z, we get the following corollary.

Corollary 2 ([16], Theorem 2.6). For |yt| < 1, it is asserted that

∞

∑
n=0

Fn(x, y, z; q)
(−1)n q(

n
2) tn

(q; q)n
=

(xt, zt; q)∞

(yt; q)∞
. (33)

4. Rogers Type and Extended Rogers Type Formulas for the General q-Polynomials
In this section, we apply the main results to state and prove the Rogers type and the

extended Rogers-type formulas for the general q-polynomials by using the q-difference
equations, so that we can derive the Rogers formula for the trivariate q-polynomials.

We first recall that Chen and Liu [22] studied the q-exponential operator as follows
(see [17]):

T(bDa) =
∞

∑
n=0

(bDa)n

(q; q)n
, (34)

where the usual q-differential operator, or the q-derivative, is defined by

Da f (a) =
f (a)− f (qa)

a
. (35)

The following q-Leibniz rule for the q-derivative operator Da is a variation of the
q-binomial theorem (see [23]):

Dn
a { f (a)g(a)} =

n

∑
k=0

qk(k−n)
[

n
k

]
q
· Dk

a{ f (a)}Dn−k
a

{
g
(
aqk)}, (36)

where D0
a is understood as the identity operator.

The following important property of the q-derivative operator Da is easily derivable.
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Lemma 3. For |aω| < 1, the following result holds true:

Dn
a

{
(as; q)∞

(aω; q)∞

}
= ωn (s/ω; q)n

(as; q)n

(as; q)∞

(aω; q)∞
. (37)

Lemma 4. For k ∈ N0 and |xω| < 1, it is asserted that

T(tDω)

{
(yω; q)∞

(xω; q)∞
ωk
}

=
(yω; q)∞

(xω; q)∞
ωk

k

∑
j=0

(−1)j qkj−( j
2)(q−k, xω; q)j (t/ω)j

(yω, q; q)j
(38)

· 2Φ1

 y/x, 0;

yωqj;
q; xt

.

We now turn to the generalized Rogers-Szegö polynomials which are defined by
(see [24,25]):

rn(x, y) =
n

∑
k=0

[
n
k

]
q

xk yn−k, (39)

where (see [25]):
rn(x, y) = T(xDy){yn}. (40)

We are now in a position to state and prove the following Rogers-type formula for the
general q-polynomials by using the q-difference equations.

Theorem 3. For max{|xω|, |xt|} < 1, the following Rogers-type formula holds true:

∞

∑
n=0

∞

∑
m=0

L̃(r̃,s̃)
n+m(α, x, y, z, a, b, c)

tn

(q; q)n

ωm

(q; q)m

=
(yω; q)∞

(xω; q)∞

∞

∑
k=0

k

∑
j=0

qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)k(ωz)k

(−q, c; q)k(q; q)k−j
(41)

·
(xω; q)j(t/ω)j

(yω, q; q)j
2Φ1

 y/x, 0;

yωqj;
q; xt

.

Remark 4. As a special case of Theorem 3, we let α → ∞ and set r̃ = s̃ = 0, a = −q, and
b = c = 0 (41). Then, upon interchanging x and y, and replacing z by −z, we get the following
corollary.

Corollary 3 (see [16], Theorem 3.1). It is asserted that

∞

∑
n=0

∞

∑
m=0

Fn+m(x, y, z; q)(−1)n+m q(
n+m

2 ) tn

(q; q)n

ωm

(q; q)m

=
(xω, zω; q)∞

(yω; q)∞

∞

∑
j=0

(−1)j q(
j
2)(yω; q)j(zt)j

(xω, zω, q; q)j
(42)

· 2Φ1

 x/y, 0;

xωqj;
q; yt

 (
|ωy| < 1

)
.
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Proof of Theorem 3. Denoting the right-hand side of the Equation (24) by f (α, x, y, a, b, c, z, r̃, s̃),
it can be written equivalently as follows:

f (α, x, y, a, b, c, z, r̃, s̃)

=
(yω; q)∞

(xω; q)∞

∞

∑
k=0

∞

∑
j=0

qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)k(ωz)k

(−q, c; q)k(q; q)k−j

(xω; q)j (t/ω)j

(yω, q; q)j

· 2Φ1

 y/x, 0;

yωqj;
q; xt


=

∞

∑
k=0

qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)kzk

(q2, c; q2)k

k

∑
j=0

(yωqj; q)∞(q; q)k ωk−j tj

(xωqj; q)∞(q; q)j(q; q)k−j

· 2Φ1

 y/x, 0;

yωqj;
q; xt


=

∞

∑
k=0

(−q−α, a, b; q)k
(q2, c; q2)k

qkα+r̃(k
2)−s̃(k+1

2 )zkT(tDω)

{
(yω; q)∞

(xω; q)∞
ωk
}

= T(tDω)

{
(yω; q)∞

(xω; q)∞

∞

∑
k=0

(−q−α, a, b; q)k
(q2, c; q2)k

qkα+r̃(k
2)−s̃(k+1

2 )(ωz)k

} (
by using (24)

)
= T(tDω)

{
∞

∑
m=0

L̃(r̃,s̃)
m (α, x, y, z, a, b, c)

ωm

(q; q)m

}

=
∞

∑
m=0

L̃(r̃,s̃)
m (α, x, y, z, a, b, c)

1
(q; q)m

T(tDω){ωm}
(
by (40)

)
=

∞

∑
m=0

L̃(r̃,s̃)
m (α, x, y, z, a, b, c)

rm(t, ω)

(q; q)m

=
∞

∑
m=0

L̃(r̃,s̃)
m (α, x, y, z, a, b, c)

1
(q; q)m

m

∑
n=0

[
m
n

]
q

tn ωm−n

=
∞

∑
n=0

∞

∑
m=n

L̃(r̃,s̃)
m (α, x, y, z, a, b, c)

tn

(q; q)n

ωm−n

(q; q)m−n
.

It is easily seen that f (α, x, y, a, , b, c, z, r̃, s̃) is a nine-variable analytic function in a
neighborhood of:

(α, x, y, a, b, c, z, r̃, s̃) = (0, 0, 0, 0, 0, 0, 0, 0, 0) ∈ C9.

Hence, f (α, x, y, a, b, c, z, r̃, s̃) can be expanded in terms of L̃(r̃,s̃)
n (α, x, y, z, a, b, c) by

Theorem 1 as follows:

f (α, x, y, a, b, c, z, r̃, s̃) =
∞

∑
m,n=0

µm,n · L̃(r̃,s̃)
m (α, x, y, z, a, b, c). (43)
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Letting z = 0 in Equation (43), we obtain:

f (α, x, y, a, b, c, 0, r̃, s̃) =
(yω; q)∞

(xω; q)∞
2Φ1

 x/y, 0;

yω;
q; yt


=

∞

∑
n=0

pn(x, y)tn

(q; q)n

∞

∑
m=0

pm(x, yqn)ωm

(q; q)m

=
∞

∑
m,n=0

µm,n · pm(x, y). (44)

Comparing the coefficients of pm(x, y), we deduce that

µm,n =
tnωm−n

(q; q)n(q; q)m−n
.

Substituting the above equation into Equation (43), we find that f (α, x, y, a, b, c, z, r̃, s̃) is
equal to the left-hand side of Equation (41). This completes the proof of Theorem 3.

5. Mixed Generating Functions for the General q-Polynomials
The Hahn polynomials [26,27] (or the Al-Salam-Carlitz polynomials [28,29]) are de-

fined as follows:

φ
(σ)
n (x|q) =

n

∑
k=0

[
n
n

]
q
(σ; q)k xk. (45)

In the year 1989, Srivastava and Agarwal [30] utilized the method of transformation
theory in order to establish the following result. More recently, Cao [29] used the decompo-
sition technique of exponential operators to give an alternative proof. For more information
about the Srivastava-Agarwal-type generating functions and other related results, the
reader is referred to the works [13,26–31].

Lemma 5 (see [30], Eq. (3.20)). It is asserted that

∞

∑
n=0

φ
(σ)
n (x|q)(λ; q)n

tn

(q; q)n
=

(λt; q)∞

(t; q)∞
2Φ1

 λ, σ;

λt;
q; xt

 (46)

(
max{|t|, |xt|} < 1

)
.

In Theorem 4 below, we apply the main results to state and prove a mixed generating
function for the general q-polynomials by making use of the q-difference equations.

Theorem 4. For |ut| < 1, the following result holds true:

∞

∑
n=0

φ
(σ)
n (x|q)L̃(r̃,s̃)

n (α, u, v, z, a, b, c)
tn

(q; q)n

=
(vt; q)∞

(ut; q)∞

∞

∑
m=0

∞

∑
k=0

m

∑
j=0

(σ; q)m xm

(q; q)m

(q−m, ut; q)jqj

(vt, q; q)j
(47)

· (−q−α; q)k(a, b; q)k (tzqj)k

(q2, c; q2)k
qkα+r̃(k

2)−s̃(k+1
2 ).

In our proof of Theorem 4, the following q-Chu-Vandermonde formula will be needed.
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Lemma 6 (q-Chu-Vandermonde sum [1], Eq. (II.6)). The following q-summation holds true:

2Φ1

 q−n, a;

c;
q; q

 =
(c/a; q)n

(c; q)n
an. (48)

Remark 5. If we let α→ ∞, set a = −q and b = c = 0, and r̃ = s̃ = 0, interchange u and v, and
replace z by −z, in Theorem 4, we are led to the following corollary.

Corollary 4 (Mixed Generating Function for the Trivariate q-Polynomials Fn(x, y, z; q)). The
following mixed generating function holds true:

∞

∑
n=0

φ
(σ)
n (x|q)Fn(u, v, z; q)

(−1)n q(
n
2) tn

(q; q)n

=
(σx, ut, zt; q)∞

(vt, x; q)∞
4Φ3

 σ, vt, 0, 0;

ut, zt, q/x;
q; q

. (49)

Proof of Theorem 4. Equation (47) can be written equivalently as follows:

∞

∑
n=0

φ
(σ)
n (x|q)L̃(r̃,s̃)

n (α, u, v, z, a, b, c)
tn

(q; q)n

=
∞

∑
m=0

(σ; q)m xm

(q; q)m

m

∑
j=0

(q−m; q)j qj

(q; q)j

∞

∑
k=0

qkα+r̃(k
2)−s̃(k+1

2 ) (50)

· (−q−α; q)k(a, b; q)k zk

(q2, c; q2)k
Dk

uv

{
(vtqj; q)∞

(utqj; q)∞

}
.

Now, if we use g(α, u, v, a, b, c, z, r̃, s̃) to denote the right-hand side of (50), it is easy to
see that g(α, u, v, a, , b, c, z, r̃, s̃) satisfies (18). Thus, upon letting

g(α, u, v, a, b, c, z, r̃, s̃) =
∞

∑
k=0

Bk(α, x, y, a, b, c, r̃, s̃)zk

and

Bk(α, u, v, a, b, c, r̃, s̃)

= qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α; q)k(a, b; q)k
(q2; c, q2)k

· Dk
uv

{
∞

∑
m=0

(σ; q)m xm

(q; q)m

m

∑
j=0

(q−m; q)jqj

(q; q)j

(vtqj; q)∞

(utqj; q)∞

}
, (51)
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we obtain

B0(α, u, v, a, b, c, r̃, s̃)

=
(vt; q)∞

(ut; q)∞

∞

∑
m=0

(σ; q)m xm

(q; q)m

m

∑
j=0

(q−m, ut; q)jqj

(vt, q; q)j

=
(vt; q)∞

(ut; q)∞

∞

∑
m=0

(σ; q)m xm

(q; q)m
2Φ1

 q−m, ut;

vt;
q; q

 (
by (48)

)
=

(vt; q)∞

(ut; q)∞

∞

∑
m=0

(σ; q)m xm

(q; q)m

(v/u; q)m(ut)m

(vt; q)m

=
(vt; q)∞

(ut; q)∞
2Φ1

 v/u, σ;

vt;
q; uxt


=

∞

∑
n=0

φ
(σ)
n (x|q) pn(u, v) tn

(q; q)n
(52)

and
g(α, u, v, a, b, c, 0, r̃, s̃) = B0(α, u, v, a, b, c, r̃, s̃).

Upon substituting from Equation (52) into Equation (51), we get:

Bk(α, u, v, a, b, c, r̃, s̃) = qkα+r̃(k
2)−s̃(k+1

2 ) (−q−α, a, b; q)k
(q2, c; q2)k

Dk
uv{B0(α, u, v, a, b, c, r̃, s̃)}. (53)

In light of the above identities, g(α, u, v, a, , b, c, z, r̃, s̃) satisfies Equation (18), so we
have:

g(α, u, v, a, b, c, z, r̃, s̃) =
∞

∑
n=0

µn · L̃(r̃,s̃)
n (α, u, v, z, a, b, c). (54)

Furthermore, we deduce that

g(α, u, v, a, b, c, z, r̃, s̃)

=
n

∑
k=0

(−q−α, a, b; q)k
(q2, c; q2)k

qkα+r̃(k
2)−s̃(k+1

2 ) zk Dk
uv

{
∞

∑
n=0

φ
(σ)
n (x|q) pn(u, v) tn

(q; q)n

}

=
∞

∑
n=0

n

∑
k=0

(−q−α, a, b; q)k
(q2, c; q2)k

qkα+r̃(k
2)−s̃(k+1

2 ) zk φ
(σ)
n (x|q) pn−k(u, v) tn

(q; q)n−k

=
∞

∑
n=0

φ
(σ)
n (x|q) tn

(q; q)n

n

∑
k=0

[
n
k

]
q

[
α
k

]
−q

qτ(r̃,s̃)+(k
2)

(a, b; q)k
(c; q)k

pn−k(u, v) zk

=
∞

∑
n=0

φ
(σ)
n (x|q) L̃(r̃,s̃)

n (α, u, v, z, a, b, c)
tn

(q; q)n
. (55)

By comparing the coefficients of L̃(r̃,s̃)
n (α, u, v, z, a, b, c) on both sides of Equations (54)

and (55), we obtain:

µn = φ
(σ)
n (x|q) tn

(q; q)n
. (56)

The proof of Theorem 4 is thus completed.
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6. A Transformation Identity Involving Hecke-Type Series for the General
q-Polynomials

Jia and Zheng [32] proved a general expansion formula involving the Askey-Wilson
polynomials by applying the Bailey transform and the Bressoud inversion.

Proposition 2 (see [32], Proposition 2.3). The following series identity holds true for suitably-
bounded sequences {βn}n∈Nn and {δn}n∈Nn :

∞

∑
n=0

βn δn =
∞

∑
n=0

(1− aq2n)(a, a/b; q)n(b/a)n

(1− a)(bq, q; q)n

n

∑
k=0

(1− bq2k)(aqn, q−n; q)k qk

(1− b)(bqn+1, bq1−n/a; q)k
βk

·
∞

∑
r=0

(b/a; q)r(b; q)r+2n

(q; q)r(aq; q)r+2n
δr+n. (57)

In this section, we give an application of the above series identity (57).

Theorem 5. For max{|aq|, |aq/αβ|} < 1, the following transformation identity holds true:

∞

∑
n=0

[
N
n

]
q

[
α̃
n

]
−q

(ã, b̃, α, β; q)n

(c̃; q)n
qτ(r̃,s̃)+(n

2)

(
aq
αβ

)n
PN−n(x, y) zn

=
(aq/α, aq/β; q)∞

(aq, aq/αβ; q)∞

∞

∑
n=0

(1− aq2n)(α, β, a; q)n

(1− a)(aq/α, aq/β, q; q)n

(
aq
αβ

)n

·
n

∑
k=0

[
N
k

]
q

[
α̃
k

]
−q

(aqn, q−n, ã, b̃; q)k
(c̃; q)k

qτ(r̃,s̃)+(k
2) PN−k(x, y) zk. (58)

In our proof of Theorem 5, the following q-Gauss sum will be needed.

Lemma 7 (q-Gauss sum [1], Eq. (II.8)). The following q-summation formula holds true:

2Φ1

 a, b;

c;
q;

c
ab

 =
(c/a, c/b; q)∞

(c, c/ab; q)∞

(∣∣∣ c
ab

∣∣∣ < 1
)

. (59)

Proof of Theorem 5. Upon setting b = 0,

βn =

[
N
n

]
q

[
α̃
n

]
−q

(ã, b̃; q)n

(c̃; q)n
qτ(r̃,s̃)+(n

2) PN−n(x, y) zn

and

δn = (α, β; q)n

(
aq
αβ

)n

in (57), we obtain
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∞

∑
n=0

[
N
n

]
q

[
α̃
n

]
−q

(ã, b̃, α, β; q)n

(c̃; q)n
qτ(r̃,s̃)+(n

2)

(
aq
αβ

)n
PN−n(x, y) zn

=
∞

∑
n=0

(1− aq2n)(α, β, a; q)n(aq/αβ)n

(1− a)(q; q)n(aq; q)2n

n

∑
k=0

[
N
k

]
q

[
α̃
k

]
−q

(aqn, q−n, ã, b̃; q)k
(c̃; q)k

· qτ(r̃,s̃)+(k
2) PN−k(x, y) zk

∞

∑
r=0

(αqn, βqn; q)r

(aq1+2n, q; q)r

(
aq
αβ

)r

=
∞

∑
n=0

(1− aq2n)(α, β, a; q)n

(1− a)(q; q)n(aq; q)2n

(
aq
αβ

)n n

∑
k=0

[
N
k

]
q

[
α̃
k

]
−q

(aqn, q−n, ã, b̃; q)k
(c̃; q)k

· qτ(r̃,s̃)+(k
2) PN−k(x, y) zk

2Φ1

 αqn, βqn;

aq1+2n;
q;

aq
αβ

. (60)

Thus, by applying the q-Gauss sum (48) in the right-hand side of the above equation, we
find that

∞

∑
n=0

[
N
n

]
q

[
α̃
n

]
−q

(ã, b̃, α, β; q)n

(c̃; q)n
qτ(r̃,s̃)+(n

2)

(
aq
αβ

)n
PN−n(x, y) zn

=
(aq/α, aq/β; q)∞

(aq, aq/αβ; q)∞

∞

∑
n=0

(1− aq2n)(α, β, a; q)n

(1− a)(aq/α, aq/β, q; q)n

(
aq
αβ

)n

·
n

∑
k=0

[
N
k

]
q

[
α̃
k

]
−q

(aqn, q−n, ã, b̃; q)k
(c̃; q)k

qτ(r̃,s̃)+(k
2) PN−k(x, y) zk,

which completes the proof of the result asserted by Theorem 5.

Remark 6. In Theorem 5, we set z = q and let N, α̃, α, β→ ∞. Then, upon putting r̃ = 0, s̃ = 1,
y = 0, x = 1, and b̃ = 0 in Theorem 5, we can deduce the following result:

∞

∑
n=0

(ã; q)n

(c̃,−q, q; q)n
an

=
1

(aq; q)∞

∞

∑
n=0

qn2
(1− aq2n)(a; q)n an

(1− a)(q; q)n

n

∑
k=0

(aqn, q−n, ã; q)k
(c̃,−q, q; q)k

qk

=
1

(aq; q)∞

∞

∑
n=0

qn2
(1− aq2n)(a; q)n an

(1− a)(q; q)n
3Φ2

 q−n, aqn, ã;

c̃,−q;
q; q

. (61)

7. Further Remarks and Observations
In our present investigation, we have made use of a general family of basic (or q-)

polynomials, together with double q-binomial coefficients, as well as some homogeneous
q-operators with a view to constructing several q-difference equations involving seven
variables. We have derived the Rogers and the extended Rogers-type formulas as well as
the Srivastava-Agarwal type bilinear generating functions for the q-polynomials considered
in this paper, which generalize the generating functions for the Cigler polynomials. We
have also derived a class of mixed generating functions by means of the above-mentioned
q-difference equations.

In addition to the remarks and observations concerning the novelty and generality
of the q-hypergeometric polynomials and their associated q-difference equations, which
we have investigated in the preceding sections, by appropriately using the list of special
cases presented in Remark 1, the various results which we have derived in this paper
for the general q-polynomials L̃(r̃,s̃)

n (α, x, y, z, a, b, c) defined in (12) would apply to derive
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the corresponding results for each of the q-polynomials listed in Remark 1. Indeed, as
it is widely recognized, studies involving q-generating functions can lead naturally to
interesting and useful properties of the q-polynomial sequences which they generate.
Moreover, as pointed out in the monograph by Srivastava and Karlsson ([4], pp. 350–351),
the widely- and extensively-investigated families of q-series and q-polynomials have been
demonstrated to be useful in a wide variety of fields such as, for example, number theory
and partition theory, Lie theory, quantum mechanics and particle physics, non-linear electric
circuit theory, combinatorial analysis, and so on. Our results for a significantly wide class
of q-polynomials are potentially useful in some of these fields. With a view to motivating
the interested readers toward the theory and widespread applications of various families of
q-series, q-polynomials, as well as q-difference and q-derivative operators, we have chosen
here to include references (see, for example, [33–45]) to various related developments in
recent years.

We remark in conclusion that, in the recently-published survey-cum-expository re-
view articles by Srivastava (see [6,7]), the so-called (p, q)-calculus was exposed to be a
rather trivial and inconsequential variation of the classical q-calculus, the additional forced-
in parameter p being redundant or superfluous (see, for details, ([6], p. 340) and ([7],
pp. 1511–1512)). This remarkable demonstration by Srivastava (see [6,7]) will surely apply
to any attempt to produce the rather straightforward (p, q)-variations of the results that we
have presented herein.
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