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Abstract: Mistrust, amplified by numerous artificial intelligence (AI) related incidents, is an issue
that has caused the energy and industrial sectors to be amongst the slowest adopter of AI methods.
Central to this issue is the black-box problem of AI, which impedes investments and is fast becoming
a legal hazard for users. Explainable AI (XAI) is a recent paradigm to tackle such an issue. Being the
backbone of the industry, the prognostic and health management (PHM) domain has recently been
introduced into XAI. However, many deficiencies, particularly the lack of explanation assessment
methods and uncertainty quantification, plague this young domain. In the present paper, we elaborate
a framework on explainable anomaly detection and failure prognostic employing a Bayesian deep
learning model and Shapley additive explanations (SHAP) to generate local and global explanations
from the PHM tasks. An uncertainty measure of the Bayesian model is utilized as a marker for
anomalies and expands the prognostic explanation scope to include the model’s confidence. In
addition, the global explanation is used to improve prognostic performance, an aspect neglected from
the handful of studies on PHM-XAI. The quality of the explanation is examined employing local
accuracy and consistency properties. The elaborated framework is tested on real-world gas turbine
anomalies and synthetic turbofan failure prediction data. Seven out of eight of the tested anomalies
were successfully identified. Additionally, the prognostic outcome showed a 19% improvement
in statistical terms and achieved the highest prognostic score amongst best published results on
the topic.

Keywords: anomaly detection; bayesian methods; black-box models; CUSUM method; data analytics;
explainable artificial intelligence; machine learning; prognostic and health management; singular
value decomposition

1. Introduction
1.1. Artificial Intelligence

Artificial intelligence (AI) is officially the hype of the century, unraveling possibilities
that once resided only in our imagination. AI is currently serving numerous fields and
constantly breaking fresh boundaries. Its capability is consumed by the mass public and
reaches far into specialized domains. The intensive race between world powers to harness
its power stimulates a consistent stream of funds to support AI-based projects in all parts
of the globe. With AI technology presently within reach by literally everyone, the age of AI
has just begun.

How does one define AI? According to a survey conducted by Artificial General Intelli-
gence Sentinel Initiative in 2018, the most agreeable definition for AI voted by experts is that
stated in [1]. There, AI is described as having the faculty of adaptation and improvisation,
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despite possessing limited knowledge and resources. The description further implies the
autonomy and learning capacity of the system.

The European Commission describes AI as similar to the former definition, but with-
out the concept of limitation, albeit carefully specifying the system’s partial degree of
autonomy [2]. These depictions paint us the picture of a system capable of reasoning and
operating with partial or no supervision at all, thus potentially beneficial or dangerous to
the human being. The type and task of AI methods are commonly classified into seven
categories, as follows:

(i) Machine learning: This is based on deep learning and predictive analytics.
(ii) Natural language processing: This is related to translation, classification, and infor-

mation extraction.
(iii) Speech: This is visualized as speech to text and text to speech.
(iv) Expert systems: This corresponds to inference engine and knowledge base.
(v) Planning, schedule, optimization: This is associated with reduction (transforming

complex planning challenges into other forms such as the Boolean satisfiability prob-
lem), classical (completely deterministic planning with one initial state), probabilistic
(planning under uncertainty and incomplete information), as well as temporal (plan-
ning by the incorporation of duration and concurrency of actions and events).

(vi) Robotic: This considers reactive machine, limited memory, theory of mind, and
self-aware.

(vii) Vision: This is based on image recognition and computer/machine vision.

Such a vast catalog of abilities naturally finds its worth in many applications. Globally,
the impact of AI is more anticipated in crucial economic and social pillars, such as manu-
facturing, transportation, healthcare, business analytics, finance, and retail [3,4]. Likewise,
research on AI stretches over other niche domains such as entertainment [5], law enforce-
ment [6], security [7], safety [8], defense [9], construction [10], investment [11], and mining
operations [12]. The list goes on with endless possibilities, with new fronts being opened
by researchers daily.

Machine learning and deep learning have emerged as the most popular and powerful
tools in solving technical challenges [13–16]. Their nonlinearity power, ever-increasing data
volume, availability of open-source development tools within reach by everyone, together
with enhanced and affordable computing power, push deep learning to the forefront of
AI tools. Some of the notable deep learning achievements throughout the decade are
mentioned here. In the speech recognition field, deep learning outperformed the Gaussian
mixture modeling-based systems with record accuracy [17]. Alpha Go, an AI game system,
beat world champions, Lee Sedol and Ke Jie, in the Go game match in 2016 and 2017,
respectively [18,19]. In robotics, the OpenAI Five robot system beat the world champion
team in 2019 in the Dota game tournament [18]. In 2021, CoAtNet-7 achieved 90.88%
accuracy in ImageNet image classification dataset [20].

The AI investment landscape is diversified and dynamic. Price Water Cooper esti-
mated that AI could uplift global GDP by 14% or $15.7 trillion by 2030, with China and the
United States (US) as the biggest beneficiaries of this impact [21]. In 2019, the US possessed
the most investment under the form of private AI companies, representing around 64%
of the global share, followed by China. The rest of the world trails the US and China,
contracting around 400% in investment value from 2015 to 2019. During the said epoque,
transportation, customer relations, and business analytics received the biggest specific
investments in the US while transportation, security, and arts attracted more investment
in China. Globally, transportation and business analytic sectors constitute important in-
vestment grounds [22]. Soon, AI will fully replace capital and labor as the new factors of
production, being the main driver of productivity [21]. The labor market will experience
profound change where less workforce generating higher value will be required. To thrive
or merely survive the competition, increasing AI assimilation to replace low-skilled works
is expected to be the future agenda in the industries [23].
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According to the World Intellectual Property Organization, the number of new AI
patents registered tripled from 2013 to 2017, mirroring the intensive efforts led by the
technical community in exploiting AI potential to overcome challenges [24]. Geograph-
ically, the top world economies, majorly in Asia, occupy the biggest share in AI patent
registration headed by Japan (43%), followed by the US (20%), European Union (10%),
China (10%), South Korea (10%), and Germany (3%). The primary sectors where patent
and trademark registrations are concentrated correspond to computers and electronics,
machinery, information technology services, and transportation [25].

Surprisingly, the industrial, manufacturing, and energy sectors are amongst the slow-
est to adopt AI in their day-to-day operations [21]. Considering the continuous improve-
ment ethic in these areas, such slowness seems to be improbable. However, one can
understand that there is a confidence issue from the industrial actors to blindly accept
AI decisions. Thus, trust is the primary obstacle in AI implementation. In the industrial
sectors, this mistrust is more related to performance issues. In other areas, different types
of problems might arise. The Center for Security and Emerging Technology defines the
category of AI malfunction as follows [26]:

(i) Failures of robustness: The system is subjected to unusual or unforeseen inputs,
causing failures.

(ii) Failures of specification: The system is attempting to do something that is subtly
different from what the developer anticipated, which might result in surprising
behaviors or consequences.

(iii) Failures of assurance: In operational mode, the system cannot be fully supervised
or regulated.

The AI incident database (www.incidentdatabase.ai, accessed on 3 December 2021)
documents the growing AI incidents since 2019 [27]. This repertoire exhibits several pieces
of information worth noting. Today, the top domains where incidents are reported are
transportation, healthcare, manufacturing, and nuclear, as presented in Figure 1a. Most
of the incidents are caused by machine learning issues as shown in Figure 1b. These facts
strengthen the belief about why the industrial and energy sectors are hesitant in using AI.
On a more serious note, 8% of the incidents resulted in the loss of lives.
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Figure 1. Overview of AI incidents for (a) incidents’ domain and (b) incidents’ causes (data extracted
from www.incidentdatabase.ai, accessed on 3 December 2021).
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The emerging AI laws is another challenge. The rise of incidents and their conse-
quences risk to stall investments and prompted the call for regulations. The laws intend not
to punish but to foster a responsible AI culture. A summary of global AI regulations can
be found in [28]. Included is the General Data Protection Regulation, which is the strictest
regulation to date issued by Europe. This regulation would affect developers around the
world whose system’s output is related to Europe. Such a regulation classifies AI systems
into three categories as (a) limited and minimal risk, (b) high risk, and (c) unacceptable risk.
The unacceptable-risk system will not be authorized anymore while the high-risk system
will be conditioned to strict requirements. The minimal-risk system will also be subject
to a few conditions. Under this law, offenses could incur fines of up to € 30 million or 6%
of global revenue with the use of illegal systems, and the breach of the data-governance
requirements, by employing hazardous systems, could result in the heftiest penalties.

In brief, there are six system’s qualities demanded towards a responsible AI framework,
stated as:

(i) Transparency: An AI system mechanism should be understood.
(ii) Reliability and safety: An AI system should work as intended and be safe to use.
(iii) Privacy and security: AI systems should respect confidentiality and be protected.
(iv) Fairness: AI systems should behave equally toward all human beings.
(v) Inclusiveness: AI systems should inspire and promote human participation.
(vi) Accountability: Responsibility measures must be available when the AI system

malfunctions.

Note that most of the provisions in the law focus on the issue of transparency, fairness,
privacy, and data security related to AI algorithms. Transparency refers to the mechanism
of AI methods in obtaining their output. In fact, transparency is the main key in minimizing
AI malfunctions and achieving the AI quality goals mentioned before. This aspect is vital
due to the black-box characteristic of some AI techniques.

Deep learning, being the most powerful AI method until now, is a black-box model so
that it is opaque. Though very effective, its mechanism in generating forecasts is unknown.
Naturally, this opacity thwarts AI dissemination in high-stakes areas, such as the industry
and energy sectors, where the incomprehensible outcome could lead to incorrect predictions.
In turn, this can provoke disastrous effects in terms of life, safety, and finances. Obviously,
the experts of each area demand more than mere point estimate prediction to convince
them to take the correct course of action. Thus, the ball lies in the research community’s
hands to diminish this mistrust. This is where explainable AI (XAI) enters the scene.

The XAI is a field dedicated to making AI models transparent to humans through
various approaches. Though this notion has been known for decades, global attention
garnered in XAI shows a notable rise more recently, reflected by the increasing initiatives by
various parties, including the Defense Advanced Research Projects Agency since 2016 [29].
The steady accumulation in general and specialized review articles on XAI translates to
the growing interest in XAI from the research community [30–34]. This sudden spike in
interest on XAI is partly due to emerging laws as mentioned previously. However, the
advantages of XAI far outweigh the need for regulations based on:

(i) Justifying the model’s decision, detecting its problems, especially during the trial
period of the AI model, strengthening reliability and safety.

(ii) Complying with the regulations, transparency that leads to accountability, enhanced
security, and data privacy.

(iii) Helping to understand AI reasoning and decrease problems related to fairness in
AI use.

(iv) Assisting practitioners in verifying the required proprieties of the AI system from
the developer.

(v) Promoting interactivity and expanding human creativity by discovering new perspec-
tives on the model or the data.

(vi) Allowing resources to be more optimized, avoiding wastage.
(vii) Fostering collaboration between experts, data scientists, users, and stakeholders.
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Several published articles have organized XAI approaches into distinct taxonomies [35–37].
This paper briefly describes the categorization according to [35], which falls into two general
categories. Firstly, we consider transparent models, which are directly interpretable due to
their simple structure or comprehensible visualization such as linear or logistic regression,
decision tree, and rule-based methods. Secondly, we consider post-hoc explainability,
where the explanation is generated after the model to be explained is trained. Included in
this category is the model agnostic approach, an external method that can be used with
any AI model. In addition, post-hoc explainability is applied for shallow machine learning
models (tree ensembles, random forests, multiple classifier systems, and support vector
machines). Then, the approaches related to deep learning are considered, such as neural
networks (model simplification and feature relevance), techniques appropriate only for
certain deep learning models such as convolutional neural network and recurrent neural
network, layer-wise relevance propagation, class activation mapping, gradient weighted
class activation mapping, and hybrid-transparent-opaque models such as knowledge-based
and case-based reasoning.

As the backbone of the industry, prognostic and health management (PHM) is a set of
frameworks exploiting sensor signals to safeguard the health state of industrial assets by
identifying, examining, and tracking degradation and estimating failure evolution [38]. To
achieve this goal, three main activities, comprising of anomaly detection, failure prognostic,
and diagnostic, are employed:

(i) The first activity consists of identifying outliers in the system’s output data [39,40].
(ii) The second activity englobes the determination of remaining useful life (RUL) [41].
(iii) Lastly, we have the activity of classification and identification of the root cause of

failure [42].

In recent years, AI has become a predominant tool in reliability-based research [43].
PHM-XAI is still a very young discipline as testified by the recent systematic review
on PHM-XAI presented in [44] and shown in Figure 2a, where several peer-reviewed
journal articles treating the subject demonstrate that the PHM-XAI is still scarcely studied
but steadily rising. Several explainability approaches have been explored by the PHM-
XAI researchers. To forge trust in AI and facilitate its legal use in the industry, it is
urgent to disseminate the XAI know-how to the PHM players, in both the research and
industrial domains.
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Figure 2. Overview of PHM-XAI domain [44] for (a) PHM-XAI publications over the years and
(b) PHM-XAI published approaches.
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1.2. Research Gaps and Opportunities

The review presented in [44] further lists several deficiencies plaguing the research in
PHM-XAI that need to be remedied promptly, considering:

(i) Lack of human involvement: Human engagement is crucial for assessing the generated
explanation as the latter is meant for them. Furthermore, human–AI cooperation
could contribute to the integration of human-related sciences and for the development
of interactive AI, where experts and AI systems work hand in hand, providing more
assurance in the AI system’s output.

(ii) Explanation evaluation is practically absent: These measures are important for re-
searchers and developers when evaluating explanation quality.

(iii) Insufficiency in uncertainty management: Uncertainty quantification safeguards the
system against adversarial examples where false explanations could be generated
from unseen, new data. Moreover, it provides users with supplementary confidence
in trusting AI methods prediction compared to point estimation statistical models. It
is thus inconceivable for a working AI system to be devoid of this feature.

A summary of research opportunities in PHM-XAI was provided in [44], indicat-
ing that:

(i) As shown in Figure 2b, model agnostic explainability, layer-wise relevance propaga-
tion, and logic analysis of data are less explored, but they possess great potential as
they could be used with any black-box model without altering its performance.

(ii) While Shapley additive explanations (SHAP) is an established method and employed
in previous works, note that it was not used to improve PHM task’s performance.

Based on [44], we have the following research questions:

(iii) What are the important qualities of explanation issued from XAI methods, and how
does one verify them?

(iv) How does one distinguish between explanations of correct predictions and erro-
neous ones?

(v) What are the other advantages of deep learning uncertainty quantification to promote
its incorporation?

(vi) As a flexible method, how can SHAP be exploited to enhance PHM performance?

Addressing the weakness and seizing the opportunities that these research questions
provide to us, the present article shows the application of the SHAP model agnostic ap-
proach in explaining and improving anomaly detection and failure prognosis tasks in case
studies from the industrial sector related to gas turbine systems. Abrupt disturbances
in a gas turbine are tested for detection. Then, the root cause of degradation in a turbo-
fan prognostic problem using simulated data is deciphered. SHAP global explanation
is utilized to improve the prognostic performance. Prediction uncertainty, specifically
aleatoric uncertainty (AU), issued from a deep learning model to be explained, serves a
dual purpose: (a) as an anomaly indicator, monitored using cumulative sum (CUSUM)
changepoint detection [40] and (b) to bolster explanation in terms of the confidence of the
model in its output. Additionally, the uncertainties are minimized based on denoising and
hyperparameters optimization operations, a crucial aspect seldom ignored in probabilistic
deep learning articles. Decreased uncertainties amplified anomaly detection ability and
increased the accuracy of prognosis. Then, the explanation produced is evaluated utilizing
local accuracy and consistency metrics.

Therefore, the main objectives of this research are:

(i) To combine SHAP and deep learning uncertainty to constitute a wider explanation
scope, where the first one explains the decision of the model, while the latter one
describes its output confidence.

(ii) To demonstrate the SHAP global explanation’s ability to improve prognostic task’s
performance, which was absent from previous works.
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(iii) To conduct explanation evaluation, which is clearly deficient from previous PHM-XAI
literature.

(iv) To show the potential of deep learning uncertainty as an anomaly indicator for a
real-world industrial dataset, which validates its capability.

(v) To minimize deep learning uncertainties for enhancing anomaly detection and prog-
nostic tasks.

The secondary objectives are:

(i) To add model agnostic explainability to the collection of PHM-XAI articles, which is
still lacking currently.

(ii) To prove the local accuracy and consistency traits of the explanation. The former
validates the efficiency property of Shapley values while the latter confirms the
additivity and symmetry proprieties of these values.

1.3. Related Works

Next, the PHM-XAI works associated with anomaly detection and failure prognostic
are summarized in the following order of presentation: (a) interpretable model [45,46],
(b) extraction-based approach [47], (c) decision rules and knowledge-based explanation [48],
(d) attention mechanism [49], (e) model agnostic [50], and (f) visual explanation tech-
nique [51].

The dynamic structure–adaptive symbolic approach (DSASA), a cross-domain life
prediction model, is elaborated in [45] for slewing bearings RUL prediction. The DSASA
presents internal model structures visibly, takes historical run-to-failure data into account,
and dynamically adapts to real-time deterioration. In a nutshell, multi-signal-based health
indicators are fed into three genetic programming algorithms for symbolic life modeling.
This modeling visually displays the life process in the manner of legible mapping relation-
ships and obtains ideal RUL prediction results. Then, the DSASA reconstructs original life
expressions from the initial symbolic life model and uses dynamic coupling terms and their
exponents to track the real-time asset deterioration. The recorded performance is better
than the previously employed method for the case study and contributed by XAI ability.

An interpretable structured-effect neural network, stated as

SENNΘ(t; Xt, , . . . , X1) = λ(t) + βTXt + RNNΘ (Xt, , . . . , X1, t) (1)

consists of a non-parametric baseline, a linear component of the current condition, and
a recurrent component as proposed in [46] for turbofan prognostic application, with the
model being represented in (1). Here, the first component, λ(t), is the non-parametric
part consisting of a lifetime probabilistic model. The second component is a linear form
that can be employed with raw sensor readings, Xt, where the importance of features may
be evaluated based on the linear coefficients. The third component, RNNΘ, refers to a
recurrent neural network with weights Θ. Thus, the recurrent component needs to explain
less variance of the data compared to a pure neural network structure. The performance of
the model surpasses other traditional machine learning methods except for long short-term
memory (LSTM). However, the XAI does not contribute to this performance.

An autoencoder with an explanation discriminator is employed in [47] for continuous
batch washing equipment anomaly detection. The autoencoder’s reconstruction error,
which is the anomaly indicator, is utilized by the discriminator to measure the precision
and accuracy measurement of the anomaly detection task. The discriminator rescales
the reconstruction error using a sigmoidal function giving values 0 as normal, 1 as an
anomaly, and between 0 and 1 as a warning. The performance of the proposed method
is comparable to the best technique, namely isolation forest, previously employed for the
problem, assisted by the XAI approach.
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The fused-AI interpretable anomaly generation system (FLAGS), which combines both
knowledge-driven and data-driven abilities, is presented in [48] for anomaly detection,
failure recognition, and root cause analysis of train. The FLAGS consists of three stages,
as follows:

(i) In the first phase, both knowledge-driven and data-driven fault recognition and root
cause analysis, using data from failure mode/effect analysis and fault tree analysis, are
employed simultaneously. The data streams and case-specific context data are used as
inputs. Faults from the knowledge-driven methods or outliers from the data-driven
methods are produced with an interpretation of the detected anomalies and stored
inside a knowledge graph.

(ii) In the second phase, the detected anomalies are shown in a dynamic dashboard
complete that contains the raw data and interpretation of results, where the user
modification is authorized. This is also stored in the knowledge graph.

(iii) Then, in the third phase, the information in the knowledge graph, which are anomalies,
the feedback, and all contextual meta-information, are used to improve the techniques
of anomaly detection, fault recognition, and root cause analysis of both methods
(knowledge-driven and data-driven). The reported accuracy is good for anomaly
detection, better than other standalone data-driven methods, partly because of the
XAI approach.

The self-monitoring, analysis, and reporting technology (SMART), presented in [49],
is utilized to detect and predict failure in hard drives through its statistics in the attention-
augmented deep architecture model. The SMART statistics daily record is incorporated
into vectors through the feature integration layer. Then, these vectors are fed into the
temporal dependency extraction layer consisting of a gated recurrent unit, whose output
can be considered as a compact representation of the SMART temporal sequence of the
observed days. The attention distribution is calculated from the healthy context vector and
the SMART compact representation. The healthy context vector is the high-level feature
representation of healthy hard drives. The resultant distribution, together with the gated
recurrent unit hidden state, produces an attentional hidden state of the corresponding days.
This attention mechanism enables the model to focus on failure advancement. Then, the
attentional hidden state may be used to determine the health of the hard drive for the
associated day. The model’s performance is better than other tested methods in both hard-
drive health status classification and prognostic. The attention mechanism contributed to
this performance, besides being the mechanism for diagnostic.

A fouling prediction in the crossflow heat exchanger, using feed-forward neural
network architecture with local interpretable model agnostic explainability, is described
in [50]. The model is fed with operational data, such as inlet fluid temperatures, a ratio of
fouled fluid flow rates to flow rates under clean conditions, and output fluid temperatures
from the heat exchanger and predicts fouling resistances of the equipment. Note that the
predictive accuracy is very good.

A comprehensive visual explanation tool applied to turbofan engine prognostic is
suggested in [51]. This online diagnostic, prognostic, and situation awareness system
works with streaming data and is divided into the following sections: (a) machine learning-
based classifier, (b) visualization dashboard for health state monitoring, (c) cybersecurity
command center, and (d) high-performance local servers. The visualization dashboard
displays real-time predictive analytics to reveal potential flaws, risks, and harmful attacks.
In the form of heat maps, users may view the input and output. One heat map for each
sensor input and related engine at each time step are considered. The network weights of
each layer may be examined by practitioners to see how each feature contributes to the
output of the following layer. The network weights are represented by the line thickness.
As the weight values increase, the thickness of the lines increases as well. Practitioners
may also customize model hyperparameters, such as the number of layers, hidden units,
weights in each layer, regularizer types, and regularizer parameters, to integrate their
expertise into the learning process.
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This article is organized as follows. The methodology is described in Section 2. The
case study, its results, and a discussion are presented in Sections 3 and 4. Finally, the
concluding remarks are given in Section 5.

2. Methodology
2.1. Multi Output Bayesian LSTM and Uncertainty Quantification Layers

The computational programs were developed using the following system configura-
tions and libraries versions: NVIDIA GeForce GTX 1650 GPU, CUDA version 11.4, Python
version 3.7.6, TensorFlow version 2.3.0, TensorFlow GPU version 2.1.0, TensorFlow Proba-
bility version 0.11.1, SHAP version 0.39.0, scikit-learn version 0.23.2, SciPy version 1.4.1,
seaborn version 0.10.0, MATLAB R2019a, and MATLAB Bayesopt. The data and codes used
in this study are openly available at github.com/AhmadNor (accessed on 9 January 2022).

A single input, multi outputs LSTM model was employed for anomaly detection
and RUL estimation tasks. The model, denoted by fx, comprises an input layer, where
input data are fed, a single LSTM layer, a fully connected or dense layer, and two output
layers, such as presented in Figure 3. The LSTM layer produces sequential prediction by
employing a gating mechanism to retain important memory or forget negligible ones. This
structure enables the accumulation of important information, a crucial ability in anomaly
monitoring and degradation tracking tasks. The input data’s matrix multiplication and
addition with the weights and bias factors of the model happen in the dense layer. Then,
the forecast, altogether with uncertainty, are enabled by the probabilistic nature of the
output layers. Both output layers of fx produced a range of predictions which form the
prediction distribution rather than scalar point estimates.
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Two types of uncertainties are defined in deep learning models. The first type is the
AU, linked to noise, acquisition error, and randomness in the dataset. Thus, the first output
layer is the AU layer. It learns and predicts, using the sequential output of the LSTM layer
as input, the mean and standard deviation that form the output distributions as depicted
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in layer “dense2” of fx in Figure 3. The predictions’ spread (the prediction distribution
width) is the uncertainty measure. The second type is the epistemic uncertainty (EU),
corresponding to the uncertainty of the weights of the deep learning model. Thus, the
second output layer is the EU layer, also known as the dense variational layer. This layer
learns and predicts the posterior distribution of the weights using variational inference by
maximizing the evidence lower bound objective stated as

L(D, θ) =
∫ (

q(w|θ) log
(

q(w|θ)
P(w)

)
− q(w|θ) log(P(D|w))

)
dw (2)

L(D, θ) = KL[q(w|θ)||P(w)]− Eq(w|θ)[log(P(D|w))], (3)

where P(D|w) is the probability of the occurrence of data D given a model with parameters
w. Note that P(w) is the prior or the initial distribution of the weights, whereas q(w|θ) is
the approximated distribution once the training of the deep learning model is completed.
The sampled value q(w|θ) is the prediction output. The complete calculation of (2) and (3)
can be found in Appendix C.

2.2. Minimization of Uncertainties, Anomaly Detection, and RUL Estimation

The normal distribution, a well understood and commonly used probability model,
was utilized to describe both types of uncertainties. The AU and EU are represented by
the rolling standard deviation of the predicted distribution’s sequence. The only possible
way to reduce the AU of the recorded data is by removing their noise. Hence, the data
were firstly denoised using the singular value decomposition algorithm following the
methodology stated in [52,53]. The denoised data were later utilized to optimize the deep
learning hyperparameters with Bayesian hyperparameter optimization (BayesOpt), whose
limits are shown in Table A1 in Appendix A [54]. The BayesOpt optimized the model and
decreased the EU.

For anomaly detection, the model was trained with healthy data, as it is expected that
the AU will show a spike when the model detects an abrupt anomalous observation. This
spike, or change-point, was detected using a CUSUM algorithm with a specified control
limit C as stated in [55]. Note that C was determined via the prediction’s AU of the healthy
data. Given AUstdmax, AUstdmean, and AUstdstd corresponding to the maximum, mean, and
standard deviation (std) of the standard deviations of the AUs, respectively, the specified
control limit is defined as C = (AUstdmax − AUstdmean)/AUstdstd.

Given a sequence yi, . . . , yn of process measurements with mean µx and standard
deviation σx, the lower and upper cumulative process sums are defined as

ui =

{
0,

max
(

0, ui−1 + yi − µx − 1
2 nσx

)
,

i = 1,
i > 1,

(4)

li =

{
0,

min
(

0, li−1 + yi − µx +
1
2 nσx

)
,

i = 1,
i > 1,

(5)

where ui and li stated in (4) and (5) are the lower and upper cumulative process sums.
Deviation is detected at point yj if uj > Cσx or lj < −Cσx. For prognostic purpose, the

deep learning model was trained with both healthy and degradation data. The trend of
the AU reflects the confidence of the model in its prediction. The rising AU trend mirrors
a growing uncertainty, while the contrary represents increasing confidence of the deep
learning model.

2.3. Model Performance Assesment and SHAP Explainability

The root mean squared error (RMSE) and early prognostic metric were employed
for performance assessment. The first metric was applied to evaluate both the anomaly
detection and prognostic tasks while the second one was only used for prognostic.
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The RMSE was utilized to examine the model’s predictive performance with AU and
EU [56]. To obtain a meaningful measure, the mean performance for 100 predictions was
calculated. The RMSE measures how spread the errors are between the prediction values
and the true values, defined as

RMSEmean =

√
1
N ∑N

i=1

(
True(i) − Pred(i)

mean

)2

100
, (6)

where True(i) stated in (6) is the true value and Pred(i)
mean is the predicted value (the mean of

predicted distribution). In anomaly detection, i refers to instance i, N to the total instances,
and True(i) and Pred(i)

mean correspond to the true and predicted mean outputs at instance
i, respectively. In prognostic, i refers to asset/machine i, N to the total assets/machine,
and True(i) and Pred(i)

mean are the true and predicted mean RUL of asset i, respectively. In
addition, we define the early prognostic metric as

S =
( N ∑N

i=1 si)

100
, (7)

where

si =

 e
−di
13 − 1, di < 0

e
di
10 − 1, di > 0

, di =
(

RUL(i)
pred − RUL(i)

true

)
.

The metric S stated in (7) gives higher score for errors of similar amplitude in early
prediction than late prediction, as the former is more important in failure estimation. Note
that si is the individual asset’s prognostic score, which is the individual asset’s prognostic
error between the predicted RUL of asset i, RUL(i)

pred, and the true RUL of asset i, RUL(i)
true.

Here also, the mean of 100 prediction scores of AU and EU were calculated.
The SHAP is a technique to explain any machine learning model’s output mechanism

based on game theory [57]. It uses Shapley values to assess the contribution of each feature
to the prediction. The formula for the Shapley value is given by

φj(val) = ∑
R⊆{x1, ...,xp}\{xj}

|R|!(p− |R| − 1)!
p!

(
val
(

R ∪
{

xj
})
− val(R)

)
. (8)

The Shapley value of feature j defined in (8), φj, is the average marginal contribution of
feature j’s value over all probable combinations of feature values regarding the prediction.
Note that R is a subset of the total p features and x is the instance’s vector to be explained.
The prediction for feature values in set R that are marginalized over those excluded from
set R is valx(R) defined as

valx(R) =
∫

f̂
(
x1, . . . , xp

)
dPx/∈R − EX( f̂ (X)) (9)

where EX( f̂ (X)) expressed in (9) is the expected value of all predictions. The description
of the SHAP is provided next. Given the model of explanation, e, the coalition vector,
z′ ∈ {0, 1}N , with z′ = 1 indicating that the feature is present in the coalition, while z′ = 0
points to the contrary, and N being the maximum coalition size, we have that

e
(
z′
)
= φ0 +

N

∑
j=1

φjz′j, (10)

where, as mentioned, φj expressed in (10) is the Shapley value of feature j.
The SHAP can explain both global and local outputs. However, it is not compatible

with probabilistic deep learning and only accepts a single output vector for explanation.
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Thus, a workaround, in the form of a non-probabilistic model labelled as f ′x, was developed
as shown in Figure 4a. Note that f ′x has the same layers and weights as those figured along
the explanation path in fx, except for the weights in dense2 of fx. Here, only the weights
corresponding to the mean were used and transferred from fx to f ′x, while the weights
associated with the standard deviation were ignored. The output layer out3 in f ′x slices
only the first value of each sequence vector and arranges them in a single vector for the
SHAP explanation.
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2.4. Explanation Visualization

Three means of visualization were used for illustrating the local and global explana-
tions, as follows:

(i) Local: This is based on force and waterfall plots, which highlight the positive or
negative forces of features influencing an instance’s output. On the one hand, the force
plot shows successive colored bars, where each bar represents a feature contribution.
The length of the colored bar represents its force amplitude or impact on the prediction,
and the values associated with the features are the normalized values of the features.
The red color means that the feature in question is pushing the prediction positively
to increase the output value, f (x), while the blue color means that the feature is
dragging the prediction negatively to decrease the output. This plot was utilized for
explaining anomalous instances. On the other hand, the waterfall plot arranges the
feature contribution values in bar-like form according to their force amplitude, where
the highest is in the top position, while the lowest is at the bottom spot, forming a
waterfall-like pattern. Note that the color’s meaning is the same as before, that is, the
direction of the force is clearly shown. This plot was used to verify the local accuracy
and consistency properties of the explanation elaborated in the next subsection.

(ii) Global: This is based on a summary plot, which highlights the most contributing
features in a sequence. The plot arranges the features according to its contributing
power and its forces’ directions. Here, the explanation was exploited to enhance the
prognostic accuracy by employing only the most contributing features. The model
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was initially tested with all the features followed by only using 75% of the best of them.
Therefore, the performances of the different settings were analyzed and compared
with published results.

The first explanation property to be verified was the local accuracy of the SHAP as
stated in [58]. It establishes that the sum of the feature contributions, ∑N

j=1 Φj, is equal to

prediction of x or f (x), minus the average prediction, Ex( f̂ (X)).
From the definition of the SHAP given in (10), posing f̂ (x′) = e(z′) and φ0 = Ex( f̂ (X)),

we get that

f̂
(
x′
)
= Ex( f̂ (X)) +

N

∑
j=1

Φjx′j, (11)

where Φjx′j, as indicated in (10), is the contribution of feature j, Φj times whether it is

present (x′j = 1) or absent (x′j = 0). Hence, ∑N
j=1 Φjx′j is the sum of feature contributions.

By setting x′j = 1 in (11), the efficiency property of the Shapley values defined in (12) is
retrieved. This property was examined using a waterfall plot. Note that

N

∑
j=1

Φj = f̂
(
x′
)
− Ex( f̂ (X)). (12)

The second property is consistency, which states that if a model is modified, resulting
to either the unchanged or increased marginal contribution of a feature, the Shapley value
also follows the marginal contribution’s trend, as defined in [58].

Let v′ be the complete set of features and v′\j
the absence of feature j from the set of

features v′, for models f ′ and f ′′ . Thus, if

f ′x
(
v′
)
− f ′x(v

′
\j
) ≥ f ′′x

(
v′
)
− f ′′x (v′\j

), (13)

for v′ ∈ {0 , 1}N , then we have that

Φj
(

f ′, x
)
≥ Φj( f ′′ , x) (14)

where f ′x(v′) is calculated from f ′x and f ′′x (v′) for the model f ′′x shown in Figure 4b, having
the same layers as f ′x, but with different weights. Observe that f ′x(v′\j

) and f ′′x (v′\j
) are

obtained by removing the weights of the feature j from f ′x and f ′′x , respectively. To calcu-
late the expression presented in (13), a waterfall plot was used for obtaining the values
of fx(v′), fx

(
v′\j

)
, f ′x(v′), f ′x(v′\j

) and to confirm Φj( f , x) and Φj( f ′, x) in the inequality
formulated in (14).

3. Results
3.1. Case Study 1 from Industry: Real Gas Turbine Anomaly Detection

Data from an 18.8 megawatt-powered, twin-shaft industrial gas turbine from Petronas
Angsi Oil Platform in Terengganu, Malaysia, recorded over a one-year period, or 8737
hours, were used in this study. Note that 98 sensor signals, comprising of various pressure,
temperature, velocity, and positional readings, make up the largely healthy data. While
the features number is overwhelming, only some of them were used in modeling the gas
turbine, as indicated in [59]. The inputs and outputs utilized are shown in Tables 1 and 2,
respectively. Four deep learning networks using fx architecture, labelled as Bayes_LSTMN1,
Bayes_LSTMP2, Bayes_LSTMP4, and Bayes_LSTMT4, were fed with all the inputs to predict
each output.
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Table 1. List of inputs as well their notations and units.

Notation Input Unit

N2 Power turbine rotational speed RPM
P1 Compressor inlet pressure Bar
m{ Fuel mass flow rate kg/s
T1 Compressor inlet temperature K

Table 2. List of outputs as well their notations and units.

Notation Output Unit

N1 Gas generator rotational speed RPM
P2 Compressor outlet pressure Bar
P4 Gas generator turbine outlet pressure Bar
T4 Gas generator turbine outlet temperature K

First, we preprocessed the data. The anomaly part was separated from the dataset
and the healthy part was split for training, validation, and testing datasets as shown in
Table 3. Sequence of input and output were set to 24 h. The only abrupt null sensor’s
reading instances from 12 a.m. to 1 a.m. on 20 March 2020 to 21 March 2021 and 11 p.m. to
12 a.m. on 8 April 2018 to 9 April 2018 were tested. They were chosen from the anomaly
data collection and merged with the neighboring healthy data to put together a sequence
of 24 h. Both anomalies were set to be on 12th to 13th instances of the sequences.

Table 3. Summary of gas turbine datasets.

Dataset Date Quantity (hour)

Training 1 January 2018–23 October 2018 6672
Testing 26 November 2018–30 December 2018 816

Validation 23 October 2018–26 November 2018 816
Anomaly 1 20–21 March 2018 24
Anomaly 2 8–9 April 2018 24

Unused Data 385

Total 8737

The RMSE results of Bayes_LSTMN1, Bayes_LSTMP2, Bayes_LSTMP4, and Bayes_LSTMT4
predictions with both AU and EU are shown in Table 4. The best result comes from
Bayes_LSTMN1, where both RMSEs are low while the worst corresponds to the P2 model.
The high difference between the training and testing datasets might be the cause of the
poor performance of Bayes_LSTMP2. Note that Bayes_LSTMP4 produces an interesting
outcome, where the RMSE between AU and EU are not in the same order. This result could
be improved by extending the BayesOpt evaluations to minimize the EU. Nevertheless, no
performance comparison may be done due to the inexistence of a benchmark result.

Table 4. RMSE results for the indicated model and uncertainty.

Model Aleatoric Uncertainty Epistemic Uncertainty

Bayes_LSTMN1 20.40 27.11
Bayes_LSTMP2 702.49 787.87
Bayes_LSTMP4 11.10 92.15
Bayes_LSTMT4 32.68 49.74

For an illustration purpose, the anomalies modelled with Bayes_LSTMN1 and AU are
shown in Figures 5 and 6. The AU anomaly spike on the 12th and 13th instances can be
noted in these figures.
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Predictions for Bayes_LSTMP2, Bayes_LSTMP4, and Bayes_LSTMT4 are in Figures A1–A3
for 20–21 March 2018. In Figures A6–A8, we report the predictions for 8–9 April 2018,
respectively; see Appendix B. The parameters AUstdmax, AUstdmean, AUstdstd, and C calcu-
lated from each model are listed in Table 5.
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Table 5. CUSUM chart’s parameters obtained from the indicated deep learning model.

Model AUstdmax AUstdmean AUstdstd C

Bayes_LSTMN1 52.10 47.92 1.53 2.72
Bayes_LSTMP2 87.35 82.70 1.87 2.49
Bayes_LSTMP4 22.90 21.46 0.47 3.07
Bayes_LSTMT4 14.20 13.27 0.30 3.05

The CUSUM charts for anomalies predicted from Bayes_LSTMN1 obtained from the
parameters in Table 5 are shown in Figure 7. Note that both AU spikes are detected by
the CUSUM method with the formulated control limit C, as it is the case for all the other
models, except for Figure A4a; see Appendix B. The CUSUM charts of the anomalies
predicted from Bayes_LSTMP2, Bayes_LSTMP4, and Bayes_LSTMT4 are in Figure A4 for
20–21 March 2018 and Figure A9 for 8–9 April 2018; see Appendix B.
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Figure 7. CUSUM chart with Bayes_LSTMN1 predictions for anomalies: (a) 20–21 March 2018 and
(b) 8–9 April 2018.

The force plots for the anomalies predicted from Bayes_LSTMN1 are shown in Figure 8.
The base value is the mean of training data outputs. Only instances 10 to 15 are displayed
for illustration purposes. In Figure 8, f (x) relates to N1’s gas generator rotational speed in
revolutions per minute (RPM). As depicted in Figure 8 as well as Figures A5 and A10 in
Appendix B, N2 is the anomalous feature due to its negative normalized value.

From the figures mentioned, note that N1 and N2 influence positively in instance 11,
becoming negative in the 12th and 13th instances, except for the T4 prediction. In addition,
positive influence of P1 and T1 grows on the 12th and 13th instances compared to previous
instances, except for the N1 prediction. In Figure 8, N1 and N2 forces become dominant
on the 12th and 13th instances, making the predictions to be less than the base value. In
Figures A5 and A10, P1 and T1 are generally the major forces, causing the outputs to be
greater than the base value. From the illustrations, observe that most features assert positive
impact, pushing the output value higher.
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3.2. Case Study 2: Turbofan Engines Failure Prognostic

The FD001 dataset related to NASA turbofan, produced by the Nasa Prognostic Centre
(from Ames Research Centre), was used for the prognostic study [60]. These synthetic time
series data were generated by modeling a variety of operational scenarios and inserting
defects with diverse degrees of deterioration. The original data comprises of training,
testing, and true RUL for 100 turbofan engines as summarized in Table 6. Thus, there are
100 turbofan records, referring to turbofans’ health that declined until breakdown after a
given cycle, or failure start point (FSP). Note that 21 sensor signals, described in Table A2 of
Appendix A, working per cycle and three operating conditions form the recorded data. The
operating condition corresponds to diverse operating regimes, a combination of altitude,
throttle resolver angle, and Mach number (ratio of object velocity to speed of sound) that
conceal the extent of degradation of each turbofan. On top of this, high-level noise is
blended to the dataset.

Table 6. FD001 dataset summary.

Dataset Fault Mode Operating Condition Training Data Testing Data

#1 1 2 100 100

As in case study 1, we first preprocessed the data. Out of the 21 signals, only 14 sen-
sors whose signals’ trends are strictly monotonic were selected as they best represent
degradation contrary to irregular and unchanged signals. The total inputs, including three
operating conditions, are 17.
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A piece-wise linear degradation assumption was adopted, where the RUL is assumed
to be stable before the FSP and decreased linearly thereof until failure. In the initial phase,
the RUL is equal to the value of the recorded signal’s last cycle and decreases linearly as
illustrated for Turbofan 1 in Figure 9a without the FSP. Then, the CUSUM method with C
equal to 5 standard deviations was used to calculate the FSPs of the signals of the concerned
turbofan. The mean of these FSPs was set as the FSP of the turbofan. The combination of
linear degradation obtained earlier and the FSP, forming the final RUL sequence is shown
in Figure 9b. The obtained RULs are limited at 50 to ease the model’s generalization.
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Note that some testing data with long sequence lengths are associated with very small
true RULs that differed from the characteristic of the training data. Hence, it is anticipated
that the model will perform more poorly on these abnormal data. The prognostic results of
Turbofans 1 and 18 are examined as the former data’s characteristic bore similarity to the
training data’s input-output nature while the latter resembles the abnormal data’s trait.

Next, we provide the results with 100% features. The RMSE and score results with AU
and EU are presented in Table 7.

Table 7. RMSE and score results for the indicated uncertainty.

RMSE with
Aleatoric

Uncertainty

RMSE with
Epistemic

Uncertainty

Score with
Aleatoric

Uncertainty

Score with
Epistemic

Uncertainty

17.94 18.41 1025.31 1231.10

The 3D representation of Turbofan 1 prognostic with AU is shown in Figure 10 to
provide the full picture of the modeling. As noted in this illustration, the range of prediction
or uncertainty decreased along the cycle, signaling growing model’s confidence in its
prediction. For the rest of the work, only the 2D presentations are shown.
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The 2D depictions of Turbofans 1 and 18 with AU and EU are presented in Figure 11.
Looking at the AU rolling standard deviation slope of each prediction, one can observe
a decreasing trend for Turbofan 1 and the contrary for Turbofan 18. Hence, the model
expresses increasing confidence in the former and decreasing confidence in the latter one.
The different AU outcomes are translated by the model’s prognostic outputs that show
better performance for Turbofan 1 than for Turbofan 18. In Figure 11, observe that the RUL
prediction with AU agrees with the true RUL in the early cycle before showing degradation
and failure earlier than the true RUL curve, which is a demanded quality for prognostic
modeling. The prediction oscillates at the end of the degradation phase before stabilizing
at the failure stage. Meanwhile, a small gap separates the RUL prediction with AU and
EU during the early cycle before both seemingly coincide during the degradation phase
onward until failure. This is not the case for Turbofan 18, where both prognostics are far off
from the true RUL.

The global explanation for 100% features is provided next. The feature contributions
and their directions, issued from f ′x explanation model, are presented in the summary plots
in Figure 12. Both plots seem similar, but they differ. One should prioritize choosing the
more confident prediction, which is, in this case, Turbofan 1.
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Figure 12. Summary plots 17 features for prognostic for (a) Turbofan 1 and (b) Turbofan 18.

Although the top contributing features influenced the predictions negatively, most
of the features had a positive impact on the estimates. The features, according to their
contributing power, are ordered in Table 8. Note that 75% (13) of the original features,
selected to improve the prognostic modeling, are shown in italic characters corresponding
to sensors (S11, S13, S8, S12, S21, S4, S20, S7, S15, S2) and operating conditions (OC2,
OC3, OC1).
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Table 8. 17 features contributions according to contribution order.

Combination Contribution Order

17 Features S11, S13, S8, S12, S21, S4, S20, OC2, OC3, S7, OC1, S15, S2, S17, S9, S3, and S14

Now, the performance and prognostic results with 75% of the features are reported.
The RMSE and score outcomes with the selected features are presented in Table 9. As
observed, the RMSE results with AU and EU show drastic improvement from the previous
results, with the score, however, being worse. Outcomes for Turbofans 1 and 18 are
depicted in Figure 13. The same manifestation of AU slope trends as in previous results is
observed, matching the prognostic outcomes. Turbofan 1 modeling shows improvement as
the oscillation at the end of the degradation phase decreases before stabilizing in the failure
phase. The AU level for Turbofan 18 improves in general from the previous result. In the
global explanation for 75% of the features, the features contributions, and their directions,
which are mostly having positive impacts in the predictions, are presented in summary
plots in Figure 14.

Table 9. RMSE and score results for the indicated uncertainty.

RMSE with
Aleatoric

Uncertainty

RMSE with
Epistemic

Uncertainty

Score with
Aleatoric

Uncertainty

Score with
Epistemic

Uncertainty

14.59 15.87 431.99 594.88
Mathematics 2022, 10, x FOR PEER REVIEW 21 of 37 
 

 

 
Figure 13. Prognostic modeling with 13 features for (left) Turbofan 1 and (right) Turbofan 18. 

  

(a) (b) 

Figure 14. Summary plots 13 features for prognostic of (a) Turbofan 1 and (b) Turbofan 18. 

When conducting the performance comparison, only the best RMSE and score with 
the AU obtained previously are compared being the best published works according to 
the year of publication [61]. As presented in Table 10, the results are on par with these 
methods, with the prognostic score occupying the top position amongst all the techniques. 

  

Figure 13. Prognostic modeling with 13 features for (left) Turbofan 1 and (right) Turbofan 18.



Mathematics 2022, 10, 554 22 of 37

Mathematics 2022, 10, x FOR PEER REVIEW 21 of 37 
 

 

 
Figure 13. Prognostic modeling with 13 features for (left) Turbofan 1 and (right) Turbofan 18. 

  

(a) (b) 

Figure 14. Summary plots 13 features for prognostic of (a) Turbofan 1 and (b) Turbofan 18. 

When conducting the performance comparison, only the best RMSE and score with 
the AU obtained previously are compared being the best published works according to 
the year of publication [61]. As presented in Table 10, the results are on par with these 
methods, with the prognostic score occupying the top position amongst all the techniques. 

  

Figure 14. Summary plots 13 features for prognostic of (a) Turbofan 1 and (b) Turbofan 18.

When conducting the performance comparison, only the best RMSE and score with
the AU obtained previously are compared being the best published works according to the
year of publication [61]. As presented in Table 10, the results are on par with these methods,
with the prognostic score occupying the top position amongst all the techniques.

Table 10. RMSE comparison with published methods.

Year Methods RMSE Score

2017 variatioanal auto encoder + recurrent neural network 14.80 419
2018 convolutional neural network + feed forward neural network 12.61 274
2019 convolutional neural network + LSTM + feed forward neural network 12.56 231
2021 proposed method 14.59 431

For the illustration purpose, we carry out an explanation evaluation using the waterfall
plots of the real-world gas turbine’s T4 prediction. Note that predictions issued from f ′x
and f ′′x are presented in Figures 15 and 16, respectively. The feature removed is N1.
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Next, we calculate the local accuracy.
Applying the expression given in (12) on Figure 15a, we obtain:

• ∑N
j=1 Φj = 31.46 + 11.23 + 9.32 + 7.71 = 59.72.

• f (x)− Ex( f̂ (X)) = 5131.426 − 5071.702 = 59.724 ≈ 59.72.

Now, applying the expression given in (12) on Figure 15b, we obtain:

• ∑N
j=1 Φj = 1.69 + 0.63 + 0.12 = 2.44.

• f (x)− Ex( f̂ (X)) = 464.511 − 462.076 = 2.435 ≈ 2.44.

Then, applying the expression given in (12) on Figure 16a, we have:

• ∑N
j=1 Φj = 1.17 + 1.1 + 0.48 + 0.28 = 3.03.

• f (x)− Ex( f̂ (X)) = 622.625 − 619.595 = 3.03.

Hence, applying the expression given in (12) on Figure 16b, we reach:

• ∑N
j=1 Φj = 0.28 − 0.02 + 0.02 = 0.28.

• f (x)− Ex( f̂ (X)) = 416.175 − 415.899 = 0.276 ≈ 0.28.

Observe that the calculations confirm the local accuracy property of the explanation.
Next, we evaluate the consistency property similarly, that is, applying the expression given
in (13) on Figures 15 and 16, we obtain that:

• f ′x(v′) = 5131.426; f ′x(v′\N1
) = 464.511; f ′x(v′) − f ′x(v′\N1

) = 4666.915.

• f ′′x (v′) = 622.625; f ′′x (v′\N1
) = 416.175; f ′′x (v′) − f ′′x (v′\N1

) = 206.45.

Thus, we reach

• f ′x(v′) − f ′x(v′\N1
) > f ′′x (v′) − f ′′x (v′\N1

).

Applying the expression given in (14) on Figures 15 and 16, we obtain that:

• Φj( f ′, x) = 9.32; Φj( f ′′ , x) = 1.1, thus Φj( f ′, x) > Φj( f ′′ , x).

Therefore, the calculations now confirm the consistency property of the explanation.

4. Discussion

The insights gained from the study as well as its limitation and future opportunities
are elaborated in this section.

4.1. Anomaly Detection

This paper firstly proposed an anomaly detection framework based on deep learning
AU and CUSUM change-point detection. Bayesian deep learning models, capable of gener-
ating uncertainties, were trained using only healthy data. Thus, it is expected that the AU,
which is influenced by the input data quality, is stable for healthy data and shows abnor-
mality when encountering abrupt anomalies. As demonstrated in Figures 7, A4 and A9,
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the strategy yielded 87.5% success or 7 out of 8 anomalies detected in the real-world gas
turbine dataset. The achievement was partly due to the minimization of AU by the mean
of singular value decomposition denoising. As observed, the AU around healthy data
prediction is so small because of denoising, except for Figure A4a, where AU variation
was too big to be minimized by singular value decomposition denoising. Without this
operation beforehand, the anomaly spikes risk is invisible from the rest of the prediction’s
AU, hindering effective anomaly detection.

The force plot for local explanation uncovers the dynamic caused by N2 anomaly to
the predictions. Note that N1 seems to follow N2 behavior, changing force direction from
positive to negative and dragging the prediction lower. The two features’ influence seems
amplified in instance 13 due to the consecutive N2 anomaly. In addition, observe that the
positive influences of P1 and T1 rose, increasing the prediction. It is also learnt that most
features are exerting positive impact that pushed the output value higher. Nonetheless,
whether N2 influenced N1, P1, and T1 is not certain and could be investigated by other
means such as partial dependence plot in the future.

Since the investigation only focused on abrupt anomalies, it is recommended to apply
the technique on long consecutive anomalies and examine the generated explanation.

Additionally, this work defined the calculation of control limit C using AU level
calculations. However, one can see from Figures 7, A4 and A9 that the anomalies were
only identified on the 13th or higher instance, even when the disturbances had already
started from the 12th instance. Faster detection could be possible with a proper definition
of control limit C. One could lower the limit but a risk of having more false alarms exists,
especially when the range of AU is important, such as in Figure A4a. As can be seen in this
figure, using 1/3 of C as control limit to identify an anomaly on the 12th instance led to
many erroneous detections.

4.2. Failure Prognostic

Secondly, the deep learning model was employed for a failure prognostic purpose.
This time, it was fed with both the healthy and failure recorded data. The AU in this task
served as a confidence indicator, expressing the uncertainty of the model in its output.
Based on the graphical results in Figures 11, 13 and 15, the AU indicator matched all the
prognostic modeling, where it increased when the prediction was bad and decreased when
the prognostic was good. This feature is vital in failure prediction, especially in the absence
of a true RUL. Then, practitioners could judge the quality of the prediction for important
decision making.

The global explanation in the form of summary plot helped to improve the perfor-
mance of the deep learning model. By only using the best contributing features, the RMSE
obtained was on par with the best published techniques in this problem. Interestingly, all
the operating conditions played important roles in the prediction and made it to the final
selection. While the results coming from frequentist models may seems a bit better, this is
mainly due to their more complex structures as their designations suggest. The Bayesian
deep learning model employed in this work only consisted of a single LSTM and dense
layer that limits its nonlinearity modeling power compared to the other methods. Further-
more, the frequentist models could never be utilized in real-life applications, and its usage
scope is limited to an experimental purpose as they are devoid of uncertainty quantification.
Hence, one could incorporate more complex networks to the existing Bayesian deep learn-
ing model in the future to enhance its performance. Other high-performance models, such
as transformer, can also be used. Moreover, feature selection could be done from another
angle, where features are chosen according to their influence direction rather than their
contributing power, to investigate the effect on the performance. The feature selection also
improved the AU level using 17 features shown in Figure 11 to using 13 features depicted
in Figure 13. This decrease implies that the selection procedure is correct.
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The AU indicator provided another dimension in explanation, where it indicated
which prediction was reliable before explanation when the XAI approach takes place. This
feature enabled the differentiation between explanation of reliable outputs and unreliable
ones, helping users and developers to obtain a deeper insight into the AI decision. This
distinction facilitates users to prioritize explaining either one of the output types for fast
decision making. Time is always a natural constraint in this situation. The prioritization, in
turn, will lead to resources optimization for the task at hand. Furthermore, the distinction
aided in selecting which global explanation to use for improving the model. Obviously, it
would be wiser to choose the explanation from a more confident prediction than a lesser
one. Note that the EU level in all the plots hovered around the same range. This is normal
as the uncertainty for the weights is fixed once the training was done.

4.3. Safeguarding Security and Explanation Evaluation

Uncertainty quantification excels in minimizing adversarial example risk. This issue
arises when new and unseen data, either unintentionally generated or engineered by
attackers, is fed to the network. An adversarial example could fool deep learning models.
Obviously, frequentist models are unable to detect this abnormality. However, a Bayesian
model can signal its presence in the form of rising uncertainty. While this work focused
on mechanical failure assumption, it is equally important to investigate failure due to
adversarial example as well.

The explanation generated conformed to the local accuracy and consistency properties.
The former one also equals to efficiency nature of the Shapley values. Certifying the latter
one also means justifying the symmetry and additivity qualities of the Shapley values.
The first characteristic asserts that the Shapley values of two features should be equal if
their contributions to all probable coalitions are even. The final attribute denotes that for
an ensemble prediction, for a specific feature, one can calculate the Shapley value of the
feature in each individual ensemble, average them, and obtain the Shapley value for the
feature for the whole ensemble.

While the explanation fulfils several demanded general qualities, the need to evaluate
an explanation based on PHM criteria, such as security and safety, cost, and time, are still
present. This aspect is also echoed in [44]. Therefore, it is crucial for PHM-XAI researchers
to develop explanation metrics satisfying the PHM needs.

4.4. Other Aspects

The first dataset employed in this paper comes from a real-world gas turbine. As
such, it is expected that failure data to be rare as the gas turbine is well maintained. Thus,
the only data exploitable are intermittent anomalies occurring in the system, and we try
to explain those abnormalities. This lack of failure data is a known problem in reliability
engineering, which resulted in the development of synthetic data. The second dataset is of
this latter type, which a is well-known problem in the PHM community and was part of the
PHM 08 competition. Recall that the extent of degradation for each turbofan is unknown
with high level noise incorporated in the dataset and the failures found are hidden by the
effect of various operating conditions. Specifically, dataset FD001 was chosen as it is the
most employed dataset in this problem, as indicated in [62], and permits the comparison of
the enhanced results with other existing methods. The real-world and synthetic datasets
were intentionally used to show that this work is applicable everywhere. Then, the use of
both of these datasets is justified. In terms of the practical applications of this work, the
objectives of this paper are simply to fulfil some of the research gaps mentioned in [44].
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Note that, while trying to obtain the best performance in the problem is an important
aspect, it is not part of the objective of this paper. Rather, the SHAP global explanation was
used to improve the performance of the model, which is a research gap that was identified
in [44]. The performance comparison was only done for the validation purpose. Addition-
ally, for problems related to reliability engineering/industrial maintenance, uncertainty
quantification has a higher priority than performance, since the error of prediction can lead
to a disastrous effect on productivity, cost, and safety.

4.5. Impacts of the Current Work

Assessing the prediction’s quality should be the first step before its explanation. This
assessing is the primary goal of this work. It is the first work in the domain to propose
a larger explanation scope through deep learning uncertainties and the XAI approach.
Identifying good and bad predictions’ explanations offers more insight to the data, enabling
correct analysis that, in turn, leads to accurate decision making.

Uncertainty quantification can assess prediction quality and, thus, should be a manda-
tory feature in any PHM-XAI work. On top of this, the uncertainty can act as an indicator
for an anomaly, adding to its advantage. In addition to its usage flexibility, the potential
of SHAP, as a tool for explanation and for enhancing prognostic task’s performance, was
also demonstrated in this work. This study could be a catalyst for more researchers in this
area exploiting the diverse abilities of SHAP in their forthcoming projects. In addition, our
paper provided the first application of explanation evaluation at the XAI method’s level in
this field. The sole activity of producing explanation is obviously insufficient.

The quality of the explanation should be examined as it is intended to be reliable
for the user. This article could result in more PHM-XAI studies incorporating such a
vital assessment in the future. Finally, the paper showed the importance of reducing
deep learning uncertainties, a logical process that is usually neglected in investigations
related to probabilistic deep learning methods and should be encouraged. As shown in the
present research, uncertainties reduction via denoising and hyperparameter optimization
procedures proved to be beneficial to the model’s performance.

5. Conclusions

Opacity of AI models constitutes operational and legal risks that could potentially
derail investments of AI in the energy and industrial sectors. To promulgate the assimilation
of AI in real-world prognostic and health management applications, this article tackles
the challenges afflicting PHM-XAI domain, specifically the lack of explanation assessment
and uncertainty quantification. PHM tasks relating to anomaly detection and failure
prognostic of a gas turbine engine were investigated. The Shapley additive explanation
model agnostic approach was employed to generate local and global explanations from a
Bayesian deep learning model. The former one was for the anomaly explanation, while
the latter one was for the failure prediction. The global explanation was also exploited
to improve the prognosis performance. The deep learning model was able to predict
with uncertainty whose trend served as anomaly marker that changes intensely with
abnormal data. The anomaly detection strategy succeeded in identifying seven out of
eight available abnormalities, while the best selected features from the global explanation
enhanced prognostic performance to be on par with the best results in the problem. The
Shapley additive explanations were validated with the local accuracy and consistency
characteristics of explanation.
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Appendix A

Table A1. BayesOpt hyperparameters ranges.

Parameters Hidden Units Fully Connected Layer Size Mini Batch Size Learning Rate

Space 10 to 1000 10 to 500 26 to 130 5× 10−4 to 1× 10−3

Table A2. Turbofan datasets sensors description.

Sensor Description Unit

S1 Total temperature fan inlet 0R
S2 Total temperature at low pressure compressor (LPC) outlet 0R
S3 Total temperature at high pressure compressor (HPC) outlet 0R
S4 Total temperature at low pressure turbine (LPT) outlet 0R
S5 Pressure at fan inlet PSIA
S6 Total pressure in bypass-duct PSIA
S7 Total pressure at HPC outlet PSIA
S8 Physical fan speed RPM
S9 Physical core speed RPM

S10 Engine pressure ratio (P50/P2) N/A
S11 Static pressure at HPC outlet PSIA
S12 Ratio of fuel flow to Ps30 Pps/PSI
S13 Corrected fan speed RPM
S14 Corrected core speed RPM
S15 Bypass ratio N/A
S16 Burner fuel-air ratio N/A
S17 Bleed enthalpy N/A
S18 Demanded fan speed RPM
S19 Demanded corrected fan speed RPM
S20 HPT coolant bleed lbm/s
S21 LPT coolant bleed lbm/s

github.com/AhmadNor
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Appendix C

Appendix C.1. Bayes Theorem

The posterior distribution of the weight can be expressed by the Bayes theorem as

P(w|D) =
P(D|w)P(w)

P(D)
=

P(D|w)P(w)∫
P(D|w)P(w)dw

, (A1)

where P(w|D) is the posterior distribution, P(D|w) is the probability of the occurrence of
data D given a model with parameters w, P(w) the prior, and P(D) the data distribution.
Here, P(w) is the initial distribution of weights and biases, and D is the training data
(input/output pairs). In the full form of the Bayes theorem stated in (1), P(D) is intractable
to compute due to the number of the parameters that influence the integral. Thus, the only
way is to approximate P(w|D) [63,64].

Appendix C.2. Variational Inference

(i) A probability, q(w|θ), is created over the weights w and parameterized by θ as an
approximation of P(w|D) given by

q(w|θ) ≈ P(w|D). (A2)

The approximation is done by minimizing the Kullback–Leibler (KL) divergence
between q(w|θ) and P(w|D) . The KL divergence is a measure of similarity between
distribution functions that must be minimized. Minimizing the KL divergence results in
finding the optimal θ for the network [64] considering

θopt = argminθ KL [q(w|θ)
∣∣∣∣P(w|D)

]
. (A3)

The KL divergence states that

KL [q(x) ‖ P(x)] =
∫

q(x) log
(

q(x)
P(x)

)
dx. (A4)

Thus, we have

θopt = argminθ

∫
q(w|θ) log

q(w|θ)
P(w|D)

dw, (A5)

θopt = argminθ

∫
q(w|θ) log

q(w|θ)
P(D|w)P(w)

dw (A6)

θopt = argminθ

∫
q(w|θ) log

(
q(w|θ)
P(w)

)
− q(w|θ) log(P(D|w))dw (A7)

(ii) From the above, a cost function, which seeks the minimum setting θ, can be devel-
oped for

L(D, θ) =
∫ (

q(w|θ) log
(

q(w|θ)
P(w)

)
− q(w|θ) log(P(D|w))

)
dw. (A8)

or
L(D, θ) = KL[q(w|θ)||P(w)]− Eq(w|θ)[log(P(D|w))] (A9)

with −L being called the evidence lower bound. Hence, minimizing the cost function
equals maximizing the evidence lower bound. As shown in [64], the cost function can
be approximated as in (A10) using ith Monte Carlo sampled weights, wi, drawn from
qθ

(
wi).

L(D, θ) ≈
n

∑
i=1

(log(q(wi|θ))− log
(

P
(

wi
))
− log(P(D|wi))). (A10)
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(iii) Then, during backpropagation, every time a forward pass is performed, this cost
function is evaluated with sampled weights. In turn, backward pass updates the
weights. This iteration is conducted until the training is over. To perform backpropa-
gation through distribution, the local reparameterization trick introduced in [65] for
the variational autoencoder is employed.
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