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Abstract: The aviation industry is a prominent contributor to economic development. The existence
of an airport hub that provides a worldwide transportation network generates economic growth,
creates jobs, and facilitates international trade and tourism. This industry also helps in connecting
different continents, countries, and cultures. This study utilizes the Data Envelopment Analysis
models Charnes, Cooper, and Rhodes (CCR), Banker, Charnes, and Cooper (BCC), Slacks-Based
Measure (SBM), and Epsilon Based Measure (EBM) in analyzing and evaluating the operational
performance of the 21 major airports runway design during the years of 2016–2019 using the data
of the International Civil Aviation Organization (ICAO) air transport statistics. The objective of this
paper is to assess the efficiency of various airport runway configurations based on input factors
such as number of runways, dimension of runways, airport area, and output factors such as annual
number of flights and annual number of passengers. In the four applied models, the results indicated
London Heathrow Airport (LHR) and Munich International Airport (MUC) are efficient in utilizing
the runway during the considered periods. Surprisingly, airports in the Asian continent with a
parallel runway design are more efficient than in North America and Europe. This study can be a
valuable reference for operation managers in evaluating and benchmarking the performance of an
airport with different types of runway configurations. Moreover, it can be used by decision-makers,
investors, stakeholders, policymakers, private companies, and government agencies as a guideline
suitable for an airport.

Keywords: airport industry; efficiency; performance; Charnes, Cooper, and Rhodes (CCR); Banker,
Charnes, and Cooper (BCC); Slacks-Based Measure (SBM); Epsilon Based Measure (EBM)

1. Introduction

Airports are critical to a country’s economic growth. The expansion of airports has
coincided with the political and social environment in which airport organizations interact
with each other [1]. Airports establish the foundation of the civil aviation industry which
has developed immensely in terms of number, size, and complexity. Companies such as
Airbus and Boeing continue to design or improve new aircraft that corresponds to the need
for longer runways and bigger terminal buildings in the airport. The advancement of tech-
nology on aircraft will have a huge significance on the growth of the airports in terms of the
length of runways, the configuration of the runways, landing aids, taxiways, size of terminal
buildings, size of ground transportation, and airport hubs. The common goal of all airports
is to be compliant with international standards in air navigation and aviation operating ser-
vices that rely on high-quality services, the safety of the passengers, environment-friendly
with high-tech infrastructure and system, as well as a skilled workforce. Assessing the
airport efficiency and generating the performance while improving the policies for the
inefficient airports would have a significant impact on national economies [2]. The aviation
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industry is currently an important part of all modern, industrialized economies and it is
the fastest and quickest way of transporting people and goods/cargo. Airports are usually
affected by economic development. Such increased economic development in a region
often results in the expansion of existing airports as well as the construction of new ones.
The airports’ connections to the economy are often inextricably linked to political structures.
The fact that airports are often operated by the government, suggests that airports and
political structures are interdependent. When Chicago Convention was signed in 1944, a
specialized organization was formed by the United Nations called the International Civil
Aviation Organization (ICAO) which sets the international standards for the functioning
airports of 193 countries around the world. Those 193 countries are required to align the
international standards to their respective local regulations giving emphasis and impor-
tance to safety, security, and sustainable air operations. For example, Federal Aviation
Administration (FAA) is a transportation agency that regulates all aspects of civil aviation
in the United States while in Europe, the European Union Aviation Safety Agency (EASA)
is responsible for the civil aviation safety, certification, regulation, standardization and also
carrying out investigation and monitoring [3].

Every airport around the world has its uniqueness in terms of the structure of the
building, the number of runways, and its size. For example, in Asia, Singapore Changi
Airport (SIN) is one of the largest transportation hubs in both global passenger and freight
traffic which makes it one of the busiest airports in the world. Singapore Airport was the
first airport in the world rated as the World’s Best Airport by Skytrax [4]. London-Heathrow
Airport (LHR) and Munich International Airport (MUC) were among the busiest airport
hubs in the European continent and were consistent with high-density passengers and
cargo. Meanwhile, in the continent of America, Hartsfield Jackson Atlanta International
Airport (ATL) was the busiest airport in 2019 according to the Air Transport Statistics of
2019 by the ICAO which recorded 110,531,000 passengers embarked and disembarked
and 904,000 Aircraft movements. The similarities and differences of these airports are the
runway configurations according to Bertsimas et al. [5]. There were two important factors
in selecting the optimal airport runway configuration: to minimize the delay of in-flight
aircraft and on-the-ground aircraft along with their associated costs. Likewise, Ramanujam
et al. [6] stated the factors in the selection of runway configurations such as weather (wind
and visibility), expected arrival and departure demand, environmental considerations,
noise abatement procedures, and flows are coordinated with nearby airports. Commonly,
airports are either designed with parallel runways or intersecting runways. London-
Heathrow Airport was designed with parallel runways, Zurich Airport possesses two
intersecting runways and a single runway. Runways can also be a combination of both
configurations. The best example is San Francisco International Airport which consists of
two pairs of parallel runways intersecting each other. Li et al. [7] used a simulation tool in
measuring the operational efficiency in closely spaced parallel runways which yielded a
result of 5% efficiency using the parallel runway configuration. On the other hand, one of
the advantages of the airport with intersecting runway configuration is aircraft are allowed
to take-off and land effectively on most of the weather conditions such as strong winds or
depending on the direction of the wind. However, intersecting runways are more prone to
airborne collision risk. Henry et al. [8] applied the Monte Carlo simulation and developed
a strategy to mitigate the unacceptable risk by ensuring that aircraft can avoid certain
situations like a mid-air collision.

The Data Envelopment Analysis (DEA) paradigm is effective for studying multiple
Decision-Making Units (DMUs), multiple inputs, and numerous outputs. The model does
not presuppose a functional form in advance, and each factor’s weight can be determined
independently because the DEA model’s reference set may be utilized for benchmarking,
it is particularly well-suited to assess operational performance. Schaar and Sherry [9]
compared the DEA models such as CCR, BCC, and SBM models in benchmarking airport
performance efficiency that resulted in CCR analysis of the efficiencies being degraded
in small to medium to large airports while BCC displayed no significant difference in
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the efficiencies of the three classes of airports. Lastly, the SBM analysis from large to
medium to small airports reveals a decline in productivity. Baltazar et al. [10] compared
the DEA approaches and Multi-Criteria Decision Analysis (MCDA) in determining the
performance and efficiency of an airport and resulted in the MCDA approach as more
suitable for evaluation rather than the DEA approach. In selecting the optimal airport
runway configurations, Bertsimas et al. [5] determined the selection of the optimal runway
configuration and optimal balance of arrivals and departures to minimize the delay of
the in-flight and on-the-ground aircraft. Currently, the most commonly used runway
configurations of airports are parallel and intersecting runways. Li et al. [7] showed that
closely spaced parallel runways are capable to support 765–815 aircraft movements on
a peak day and 55 aircraft movements in each hour promoting operational efficiency by
about 5%. On the other hand, intersecting runways are prone to airborne collision risk that
can cause delays in operations, Henry et al. [8] simulated the intersecting runway using
the Monte Carlo simulation to mitigate the unacceptable risk that ensures that aircraft will
avoid a midair collision.

The concerns that must be determined as a foundation for this research investigation
were discovered in this study. It provides an overview of the operational performance of
the aviation industry of the 21 major airports with their runway configuration during the
years of 2016–2019. It also provides significant contributions in the aviation industry on
the airport services and how they cater to the embarking and disembarking passengers in
the airport. Further, it will also present the efficiency of an airport with different runway
configurations. In analyzing the DMUs, the DEA models (CCR, BCC, SBM, EBM) that are
utilized for industry analysis are also given and compare with each other based on input
factors (number of runways, dimension of runways, and airport area) and output factors
(annual number of flights and annual number of passengers). Acquiring the necessary
data to pursue the purpose of the research pinpoints the primary objects that will be led to
the DMUs.

Airports, also called air terminals, exist in all countries across the globe and serve
as a terminal for passengers, cargo and generally have paved runways and maintenance
facilities for aircraft. This paper utilized the DEA models to measures the technical efficiency
of airports in terms of the runway configuration to attend the targeted output (annual
number of flights and passengers). Therefore, the main contributions of this paper are
presented as follows:

• This study aims to present an overview comparative analysis for measuring the
runway utilization of airports using data envelopment analysis with CCR, BCC, SBM,
EBM models.

• A case study of the top 21 major international airports with different runway configu-
rations is used to illustrate the applicability and effectiveness of the proposed DEA
models.

• The findings also indicate the general overview of the aviation industry from a world-
wide perspective based on the performance, existence of the airport hub, location of
the airport, and the runway configuration design of the 21 major airports. Surprisingly,
airports from the Asian continent are more efficient than North America and Europe.

• For practical contributions, the current study provides holistic insights for operation
managers in evaluating and benchmarking the airports utilizing the runway layout
or design performance. Further, it can be used by decision-makers, investors, stake-
holders, policymakers, private companies, and government agencies as a guideline
for efficiency evaluation in this field or any related industry.

The following is the structure of the article. A brief review of the literature related
is presented in Section 2. The mathematical of DEA models are shown in Section 3. A
description of the data and considered factors are provided in Section 4. The results are
reported and discussed in Section 5. Sections 6 and 7 present the conclusion of this work,
limitations, and directions for future research.
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2. Literature Review

Charnes et al. [11] proposed the Data Envelopment Analysis (DEA) in 1978 as a data-
oriented tool for analyzing Decision-Making Units (DMUs). DEA is a non-parametric
approach that uses mathematical formulation to analyze DMUs’ efficiency and productivity
in terms of proportionate changes in input and output factors. DMUs are a group of
matched individuals that can be used to quantify their technical performance. A slew of
DEA models was developed and commonly used to determine the performance behaviors
and industrial efficiencies in emerging industries such as supply chain and logistics, mining,
tourism, banking, transportation, manufacturing, energy firms, and many more. DEA was
one of the tools in evaluating the efficiency of a certain industry. The input and output-
oriented DEA models may be separated into two types. It evaluates the technical efficiency
rate in input-oriented models by providing the minimal decrease in input indicators
required for DMUs to become technically efficient. The output-oriented models, on the
other hand, calculate the technical efficiency rate, which is the maximum rise in output
indicators required for DMUs to become technically efficient. The CCR (Charnes, Cooper,
and Rhodes) model was first introduced in measuring efficiencies in the industry and was
also called constant return to scale.

The BCC (Banker, Charnes, and Cooper) model was created after the CCR model how-
ever this model can only identify between technical and scale inefficiencies by estimating
by pure technical efficiency. The Variable Return to Scale (VRS) was implemented in this
model by identifying the numerous increase, decrease, and constant return scales present
during the model evaluation. The BCC model is also known as pure technical efficiency [12].
On the other hand, the CCR model was adjusted to become Slack-Based Measure (SBM)
model with the purpose of the model while observing calculation of efficiency score in
DEA-CCR and DEA-BCC model. Neither of the two models did take into consideration
the amount of slack for the inputs and outputs of the SBM model which considered the
slacks of the input and output [13]. Lastly, Tone [14] developed the Epsilon-Based Measure
(EBM) model, which assesses technical efficiency using radial and non-radial properties.
The affinity index between input and output was calculated using two parameters, as well
as principal component analysis on the affinity matrix. In this model, the diversity/affinity
index was introduced to replace the Pearson Correlation test to validate the data.

There are several studies in evaluating efficiency in other industries that can be con-
sidered for DEA as it is widely used in assessing the performance of the industry. The SBM
model and Malmquist productivity index were used by Wang et al. [15] to evaluate the
efficiency of Vietnam’s seaport terminal operators. This recent study showed most of the
global trade is seaborne and plays an important role in the national economy of a country.
Using the EBM and LTS models, Vietnam was identified as one of the fastest-growing
industries, Wang et al. [16] integrated these models in evaluating the supply chain of the
packaging industry that showed a result that one company in Vietnam achieved a strong
efficiency score and high productivity. The DEA method can be used as well in senior care
facilities. Lin et al. [17] investigated the efficiency and quality of care provided in elder care
facilities. In the banking sector, the DEA method is also used in evaluating the performance
of a bank. Ulas and Keskin [18] divided the banks into three categories—state-owned banks,
privately owned banks, and all banks—and then assessed and ranked the banking sector
in Turkey using DEA-CCR and DEA-BCC. It resulted that the state-owned banks are the
most efficient, and pure technical efficiency or BCC model contributes more to analyzing
compared to the technical efficiency. A recent study by Wang et al. [19] involving the
automobile industry while using the Malmquist productivity index analysis in evaluating
the automobile manufacturers using financial indicators as the input and output factors
reveals that the study contributed to the organizational performance and offered a resource
for auto executives, politicians, and investors to use in making management, investment,
and improvement decisions.

There are similar studies in evaluating the operational performance of an airport
using the DEA method. Keskin and Köksal [20] used a hybrid of AHP and DEA-CCR
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and DEA-BCC in evaluating the publicly or privately operated airports in Turkey which
resulted that there were two airports from the private sector that are efficient and none of
the public sectors were found as efficient. Sarkis [21] applied the DEA method in analyzing
the operational efficiency of the 44 major airports in the United States using the inputs such
as airport operational cost, number of airport employees, number of gates, and number of
runways and outputs such as operational revenue, passenger flow, commercial/general
aviation movement, and total cargo transportation. Meanwhile, before privatizing the
Spanish airports, Martín and Roman [22] measured the efficiency which resulted in the
extraction of some policy considerations before processing the privatization of the Spanish
airport system. Stichhauerova and Pelloneova [23] used DEA to analyze the performance
efficiency of 27 German airports and found that 13 out of 27 were efficient because they used
best practices and followed the proper method in their management. Five airports were
described in achieving the optimal and most productive size. Song et al. [24] implemented
the three-stage DEA in evaluating the air transport sector in China with the consideration
of various regional environmental factors and statistical noise that shows that the results
pose an influence on the operational efficiency in the provincial air transport sector. Örkcü
et al. [25] also evaluated the Turkish airports using the Malmquist productivity index and
DEA with the inputs of a number of runways, dimension of runways, terminal area, and
output of the annual number of flights, annual passengers, and annual cargo which resulted
that most of the airports in Turkey experienced losses in efficiency but progressed in terms
of technology. The factors that were identified were operating hours and percentage of
international traffic using the Simar-Wilson double bootstrapping regression analysis as
it had explained in the variation of the airport efficiency. As previously mentioned, the
DEA-BCC model was used to analyze the pure technical efficiency. Nwaogbe et al. [26]
applied the BCC model to the Nigerian airports with the results of the airport hub, large city
airport, and the private airport being the productive and efficient airports. In recent years,
the airport sector in New Zealand has undergone significant expansion. Tsui et al. [27] used
DEA-SBM and Malmquist productivity index in estimating the airport efficiency in New
Zealand where most of the airports experienced gains in efficiency however, they regressed
in terms of technology.

Airports from Asia-Pacific began to emerge and service international airlines and
passengers. Tsui et al. [28] also evaluated the operational efficiency of the 21 Asia-Pacific
airports using DEA first followed by regression analysis in identifying the determinants of
the airport efficiency. During the first stage of evaluation of the Asia-Pacific airports, the
results indicate that airports from Australia (Adelaide, Brisbane, and Melbourne) and China
(Beijing, Hong Kong, Shenzhen) are efficient. The second stage where the determinants
are with variations of airport efficiency were identified such as percentage of international
passengers handled by an airport, airport hinterland population size, dominant airline, and
increase of GDP per capita. A detailed examination of performance efficiency by Barros and
Dieke [29] showed that airports in Italy that imply managerial ramifications are then taken
to confirm previous observations of similar relationships in other geographical contexts. To
be able to determine the international airport’s operational efficiency drivers, Pacagnella
et al. [30] were using the DEA method to assess 60 of the busiest international airports
and discovered Beijing International Airport (Beijing, China), Heathrow International
Airport (London, UK), Dubai International Airport (Dubai, United Arab Emirates), and
Hartsfield-Jackson Atlanta International Airport (Atlanta, GA, USA) as the most efficient
airports, with Heathrow International serving as the base reference of an efficient airport.
A recent study by Huynh et al. [31] comparing the efficiency analysis using DEA-SBM and
Tobit regression to the Southeast Asia major airports such as Changi International Airport
(Singapore, Singapore), Suvarnabhumi International Airport (Samut Prakan, Thailand), KL
International Airport (Sepang, Malaysia), Soekarno Hatta International Airport (Banten,
Indonesia), Ninoy Aquino International Airport (Metro Manila, Philippines), Noi Bai
Airport (Hanoi, Vietnam), Tan Son Nhat Airport (Ho Chi Minh City, Vietnam), Guangzhou
Baiyun International Airport (Guangzhou, China) and Hong Kong International Airport
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(Hong Kong, China) provided a surprising result that Hong Kong International Airport
achieved the highest efficiency score and maintained the leading position in Southeast Asia
airports. The factors that were also considered to have a positive impact on airport efficiency
in Southeast Asia are passenger throughput, cargo, and corporatization. A summary of
inputs, outputs, DMU, and applied area in relevant studies is presented in Table 1.

These studies presented thus far provide evidence that the DEA method is commonly
used in evaluating the operational efficiency of the airport industry and the usual input
factors were the number of runways, number of employees, and other financial indicators.
While on the other hand the output factors commonly used were the number of passengers,
number of aircraft movements, and air cargo movements. It is also evident that the DEA
method can be widely used in any type of industry in measuring efficiency scores and
comparing the scores with other DMUs to identify which DMUs are efficient and inefficient.

Using the DEA approach, the current study assesses the operational performance of
major international airports with different runway configurations/designs. The research
develops and examines many theories on the link between airport operational performance
and runway design. In this paper, the three airport input factors (number of runways,
dimension of runways, and airport area) and two airport output factors (annual number of
flights and annual number of passengers) were selected for the CCR, BCC, SBM, and EBM
models in determining the efficiency of each DMU despite the different weights of each
model in assessing the efficiency score of the 21 major airports during the years of 2016–
2019. The research data is derived or compiled data of the ICAO which provided the top
airports based on traffic at major airports in the world and ranked by the total passengers
in each airport. A variety of methods are used to assess the operational efficiency of each
major international airport in the world. Each has its advantages and drawbacks that will
be discussed.

Different from the Stochastic Frontier Approach (SFA) [32], DEA (non-parametric
approach) does not require an assumption of a functional form relating inputs to outputs.
As a nonparametric method based on mathematical programming, DEA is a data-oriented
approach for benchmarking a set of peer units called decision-making units (DMUs) in
terms of their efficiency indices converting multiple inputs into multiple outputs. There are
three primary reasons why this study is meaningful: (1) The runway utilization of the major
international airports seems to be less researched compared to operational performance
in previous studies using operating variables such as number of employees, number of
terminals, punctuality, terminal area, capacity, gates, distance from the city center, transport
to the airport, cargo, aprons, and climate, etc. (2) This study utilized the DEA models (CCR,
BCC, SBM, EBM) to uncover the pattern of technical efficiency of airports with comparative
analysis during the 2016–2019 periods. (3) This study contributes to the existing literature
by analyzing the efficiency of a large group of major international airports (21 airports); the
size of sampled airports in this study is a good reflection and representation of the airport
industry.
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Table 1. Summary of methodologies and problem characteristics in relevant studies.

Paper Inputs Outputs DMUs Methodologies Applied Areas

Baltazar et al.,
2014 [10]

Number of runways
Aircraft parking stands
Passenger terminal area

Cargo terminal area
Number of boarding gates
Number of check-in desks

Number of baggage carousels

Aircraft movements
Processed passengers

Processed cargo
6 Australian airports MCDA and DEA Approaches Performance and efficiency of the

airport by using two methods

Tsui et al.,
2014 [27]

Operating expenses
Number of runways

Operating revenues
Air passenger movements
Aircraft traffic movements

11 major New Zealand Airports DEA-SBM and Malmquist
productivity index (MPI) Evaluation of airport efficiency

Tsui et al.,
2014 [28]

Number of employees
Number of runways
Total runway length

Passenger terminal area

Air passenger numbers
Air cargo volumes

Aircraft movements
21 Asia-Pacific airports DEA and regression analysis

Assessing the airport efficiency
and identifying the key

determinants of airport efficiency

Örkcü et al.,
2016 [25]

Number of runways
Dimension of runway units

Passenger terminal area

Annual number of flights
Annual passenger throughput

Annual cargo throughputs
21 Turkish Airports DEA and MPI Evaluation of operational

efficiency of airports

Keskin and Köksal,
2019 [20]

Number of employees
Number of gates

Runway area
Terminal area

Number of passengers
Amount of cargo

Aircraft movements
Total revenue

48 Turkish airports Hybrid AHP and DEA-AR Measuring and comparing the
efficiency of the airports

Stichhauerova and
Pelloneova,

2019 [23]

Number of employees
Number of terminals
Number of runways

Airport area
Capacity

Distance from the city center

Number of passengers
Number of aircraft movements

Amount of cargo
27 German airports DEA-CCR and DEA-BCC Efficiency assessment of airports

Song et al.,
2020 [24]

Capital stock
Number of employees

Infrastructure construction level

Volume of passenger
Volume of freight

Aircraft movements

30 regional air transport sectors
in China Three-stage DEA Air transport sector operational

efficiency

Huynh et al.,
2020 [31]

Runway length
Terminal size

Number of aprons
Operational cost

Number of employees
Number of gates

Passenger movement
Air cargo movement
Aircraft movement

9 major airports in Southeast Asia DEA-SBM and Tobit regression Efficiency analysis of major
airports in southeast Asia

This paper,
2022

Number of runways
Dimension of runways

Airport area

Annual number of flights
Annual number of passengers 21 major international airports DEA-CCR, BCC, SBM, EBM

Evaluating the operational
performance of major
international airports
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3. Materials and Methods

This section presents the methodology including four DEA models (CCR, BCC, SBM,
EBM) used for evaluating the efficiency of the top major international airports. The proce-
dure of research is illustrated in five steps, as can be seen in Figure 1.
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3.1. Validation of Data

Various statistical tools were used to validate and correlate the gathered data—among
which is the Pearson correlation coefficient. The correlation of input and output data will
be tested before the calculation of the efficiencies. The Pearson’s coefficient of correlation
test is a known method globally and has been used in previous studies. Scores consist of
values ranging from −1 to +1 in respect to each score that represents being dependent in
linear scale between two determinants or data sets, as in model (1) [15].

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(1)

where n denotes the sample size, xi, yi are the individual points indexed i, lastly the
x = 1

n ∑n
i=1 xi is the sample mean and analogous for y.

The homogeneity and isotonicity will prove that tests of correlation are significant, and
it will proceed in using any DEA methods. To have an isotonic relationship between input
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and output factors, it must show a positive correlation, and if the input factor’s values
increase, the output factors’ values must not drop. In short, achieving correlation scores
that are close to +1 means having a better positive linear relationship.

3.2. Data Envelopment Analysis

Data Envelopment Analysis is a data-oriented method that is used to evaluate the
DMUs which indicates the set of matching entities in a way the individual technical
efficiency can be computed. It uses linear programming as an optimization method in
assessing the productivity of the DMUs and computing the efficiency scores with relation
to the input and output proportional change. At the same time, DEA can assess the total
efficiency, production efficiency, and scale economies, as well as identify the inefficient
units in the dataset and provide target enhancement numbers [15].

3.2.1. Charnes, Cooper, Rhodes Model (CCR)

According to Charnes et al. [11], under the CCR model as in model (2), decision-
making units correlates to specified input and output (x0, y0) when measuring technical
efficiency θ∗. As shown in the equation below, λ represents the intensity vector of the
weight of inputs and the non-radial slacks represents s−.

θ∗ = min
θ,λ,s−

θ

subject to
θx0 = Xλ− s−

y0 ≤ Yλ,
λ ≥ 0, s− ≥ 0

(2)

3.2.2. Banker, Charnes, and Cooper Model (BCC)

In the BCC model, as can be seen in model (3), Banker et al. [12] added a restriction
that generalizes the model to variable return to scale (VRS) where ε is a non-Archimedean
element and s−i and s+r account, respectively, for the input and output slack variables.

min ∅− ε(∑m
i=1 s−i + ∑s

r=1 s+r )
subject to

∑n
j=1 λj xij + s−i = ∅xi0 (i = 1, . . . , p)

∑n
j=1 λj yrj − s+r = yro (r = 1, . . . , q)

∑n
k=1 λk = 1

λk ≥ 0, k = 1, 2, . . . , n
s−i ≥ 0, i = 1, 2, . . . , p
s+j ≥ 0, j = 1, 2, . . . , q

(3)

The BCC model can be recognized between technical and scale inefficiencies by es-
timating it as pure technical efficiency at the likely scale of operation. It also identifies
numerous increase, decrease, and constant return scales present during the model evalua-
tion. The measure of efficiency provided by the BCC model is also known as pure technical
efficiency.

3.2.3. Slacks-Based Measure Model (SBM)

The SBM model was formulated by Cooper et al. [33] as shown in Equation (4). For
the given input and output factors, Cooper et al. [33] defined τ∗ as the decision-making
unit’s technical efficiency. Tone [13] demonstrated that in model (2), θ∗ in the CCR model
in terms of technical efficiency is equal or significantly greater to τ∗, for example, τ∗ ≤ θ∗.
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τ∗ = min 1− 1
m

m
∑

i=1

s−i
xi0

subject to
xi0 = ∑n

j=1 xijλj + s−i (i = 1, . . . , m)

yi0 ≤
n
∑

j=1
yijλj (i = 1, . . . , s)

λj ≥ 0 (∀j), s−i ≥ 0 (∀i)

(4)

3.2.4. Epsilon Based Measure Model (EBM)

In evaluating the DMUs efficiency, DEA works with a variety of input and output
factors. The CCR model is a basic model in which the focus is on proportional changes
in input and output while ignoring the presentation of slacks, as in the radial method.
Meanwhile, the SBM model explicitly displays the slacks but ignores the proportionality
change of input and output, as does the non-radial method. The EBM model is a scalar
that calculates the epsilon, which represents the variety or dispersion of the observed data
set. The set of symbols and notations is used during the EBM model development. The
input and output matrices serve the model that considers n DMUs (j = 1, 2, . . . , n) along
with m inputs (i = 1, 2, . . . , m) and s outputs (r = 1, 2, . . . , s). X =

{
xij
}
∈ Rm×n and

Y =
{

yrj
}
∈ Rs×n. The X and Y matrices are non-negative. The input-oriented EBM model

with a constant return to scale is shown in model (5) as follows [34].

δ∗ = min
θ,λ,s−

θ − εx ∑m
i=1

w−i s−i
xio

subject to
n
∑

j=1
xijλj = θxi0 − s−i (i = 1, . . . , m)

n
∑

j=1
yrjλj ≥ yro (r = 1, . . . , s)

λj ≥ 0, j = 1, 2, . . . , n
s−i ≥ 0, i = 1, 2, . . . , m

(5)

It implies that λj is the DMU’s intense vector, the DMU under evaluation is represented
by the subscript “o”, and the amount of slack and weight is represented by the s−i and w−i
in the ith input. Finally, a parameter εx specifies the radial qualities and is dependent on
the degree of input dispersion.

The affinity index is used in determining the correlation between the input and output
factors. According to Tone and Tsutsui [34], D(a, b) and S(a, b) between two factors,
represent diversity index and affinity index, respectively. The prerequisites for the EBM
model to work are as follows: 0 ≤ D(a, b) = D(b, a) ≤ 1/2, and 0 ≤ S(a, b) = 1 −
2D(a, b) ≤ 1.

4. A Case Study
4.1. Selection of Input and Output Factors

In order to measure efficiencies using DEA, it is critical to choose appropriate input
and output factors, determine the total number of airport observations, and ensure that the
number of airports observed is at least twice the sum of the number of input and output
factors. In this paper, the three airport input factors (number of runways, dimension of
runways, and airport area) and two airport output factors (annual number of flights and
annual number of passengers) were selected for the CCR, BCC, SBM, and EBM model in
determining the efficiency of each DMUs despite the different weights of each model in
assessing the efficiency score. There was no change in the number of runways since large
investments and long-term planning are required. Obtaining the factor input/output as
the weighted sum of the original values with weights and displaying the values of the
first eigenvalue of the input/output, according to Örkcü et al. [25]. He went on to say that
computing the inertia of the two factors with a value near 1 implies an accurate presentation
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of the input and output factors and that it was appropriate, to sum up, the information of
the whole data matrix by the two factors.

In the process of assessment of the airport’s performance, the chosen five factors
are very important since these represent the aspects of operations of each airport. Since
this study focuses on the efficiency of the major international airport that is related to the
ranking of total passengers that each airport caters to, it shows also the comparison of
each model used in this study in which each model has different factors in evaluating
efficiencies. As a result, the input and output parameters were meticulously chosen to
meet the condition of factor isotonicity. The parameters will be re-evaluated or discarded
if this does not happen. The explanation of input and output factors is shown as follows
(Figure 2).
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Figure 2. Inputs and outputs used in the DEA models.

Input factors:

• Number of runways (X1): Total number of runways in each airport.
• Dimension of runways (X2): Length and width of the runway (m2)
• Airport area (X3): Total area of the airport (m2)

Output factors:

• Annual number of flights (Y1): The number of airplanes/aircraft that takeoff and land
(planes)

• Annual number of passengers (Y2): The total number of passengers embarked and
disembarked each year (Persons).

4.2. Collection of Data

The International Civil Aviation Organization (ICAO) provided the top 25 ranks of
airports based on traffic at major airports in the world and ranked by the total passengers
in each airport [35]. After establishing the DMUs, suitable input and output factors must
also be classified which will further be used for the DEA calculations. The factors that will
be considered for this research will be based on the previous studies, in which operations
factors are normally used but, in this study, operational efficiency performance will be
more emphasized. The data that was collected will go through a correlation test using
Pearson’s correlation coefficient and the EBM model to be checked with the diversity and
affinity indexes. Since the function of this test is to consider if it is homogenous and the
relationship is isotonic between input and output factors, the condition must be satisfied in
DEA to be able to provide a decisive calculation of efficiency scores. If a single instance of
negative coefficient appears in the test, the part of the data that causes the negative result
must be identified and some adjustments are made. Once all of the coefficient scores turn
out to be positive, it will proceed to the next step.
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The main scope of the research is to evaluate the performance of major international
airports on the scale of passenger output using a four-year date, from 2016 to 2019 being
studied. Out of over a hundred major international airports, the data was based on the
International Civil Aviation Organization-Air Transport Statistics in the top 25 traffic at
the world’s major airports but due to the insufficient data of the other 4 airports they
were excluded in this study. The chosen major airports represent different continents
wherein seven in North America, six in Europe, and eight in Asia as shown in Table 2. The
descriptive statistics of the collected data during 2016–2019 are presented in Table 3. From
the data in Table 4, it is apparent that North America and Europe have the highest input
and output value compared to Asia though most of the airports in North America and
Europe have a sizable airport than Asia.

Table 2. The top 21 major airports in 2019 listed by ICAO.

No. DMU Name of the Airport Continent

1 ATL Hartsfield Jackson Atlanta International Airport North America
2 DBX Dubai International Airport Asia
3 LAX Los Angeles International Airport North America
4 ORD O’Hare International Airport North America
5 CDG Aéroport de Paris-Charles de Gaulle Europe
6 AMS Amsterdam Airport Schiphol Europe
7 DFW Dallas/Fort Worth International Airport North America
8 DEN Denver International Airport North America
9 BKK Suvarnabhumi International Airport Asia

10 JFK John F. Kennedy International Airport North America
11 KUL KL International Airport Asia
12 MAD Aeropuerto de Adolfo Suárez Madrid-Barajas Europe
13 SFO San Francisco International Airport North America
14 SIN Singapore Changi Airport Asia
15 ICN Incheon International Airport Asia
16 HKG Hong Kong International Airport Asia
17 MUC Munich International Airport Europe
18 LHR London-Heathrow Airport Europe
19 NRT Narita International Airport Asia
20 ZRH Zurich Airport Europe
21 KIX Kansai International Airport Asia

Table 3. The descriptive statistics of the collected data during 2016–2019.

Factors Sample Minimum Maximum Mean Std. Deviation

Number of runways (X1) 84 2 8 3.67 1.79
Dimension of runways (X2) 84 378,100 1,290,956 690,062.14 255,955.06

Airport area (X3) 84 303,943 134,556,306 26,538,121.24 34,310,986.65
Annual number of flights (Y1) 84 177,109 919,704 473,861.50 180,717.14

Annual number of passengers (Y2) 84 25,236,705 110,531,300 64,179,315.57 18,571,715.68

Table 4. The descriptive statistics of the collected by group of continents.

Continent X1 X2 X3 Y1 Y2

North America 5.43 927,414.71 43,168,867.00 661,401.86 74,409,626.32
Asia 2.25 509,761.50 20,529,925.00 348,049.78 59,685,285.22

Europe 3.50 653,551.67 15,146,512.83 422,813.38 58,235,993.50

5. Results Analysis
5.1. Correlation Results

The outcome of the research is notably influenced by the input and output factors. To
be able to determine that the input and output factors have an isotonic relationship, they



Mathematics 2022, 10, 551 13 of 23

must undergo a Pearson correlation test to determine if the factor is positively correlated.
This will certify if the inputs and outputs are related isotonically. The adequate coefficient
amount must be 0 to 1 to ratify the positive correlation. A perfect negative linear relationship
is represented by a coefficient of −1, whereas a perfect positive linear relationship is
represented by a coefficient of + 1. The coefficient of 0 indicates that there is no linear
relationship between the two factors [15]. The correlation matrix of factors during 2016–
2019 is shown in Table 5. The results show that all correlations are positive (all more than
0.110), and significant at the 0.01 or 0.05 level.

Table 5. The correlation matrix of input and output factors during 2016–2019.

Factors Correlations X1 X2 X3 Y1 Y2

Number of runways
(X1)

Pearson Correlation 1 0.941 ** 0.403 ** 0.749 ** 0.354 **
Sig. (2-tailed) - 0.000 0.000 0.000 0.001

N 84 84 84 84 84

Dimension of runways
(X2)

Pearson Correlation 0.941 ** 1 0.520 ** 0.591 ** 0.229 *
Sig. (2-tailed) 0.000 - 0.000 0.000 0.036

N 84 84 84 84 84

Airport area
(X3)

Pearson Correlation 0.403 ** 0.520 ** 1 0.270 * 0.110
Sig. (2-tailed) 0.000 0.000 - 0.013 0.320

N 84 84 84 84 84

Annual number of flights
(Y1)

Pearson Correlation 0.749 ** 0.591 ** 0.270 * 1 0.779 **
Sig. (2-tailed) 0.000 0.000 0.013 - 0.000

N 84 84 84 84 84

Annual number of passengers
(Y2)

Pearson Correlation 0.354 ** 0.229 * 0.110 0.779 ** 1
Sig. (2-tailed) 0.001 0.036 0.320 0.000 -

N 84 84 84 84 84

Note: ** denotes correlation is significant at the 0.01 level (2-tailed), * denotes correlation is significant at the 0.05
level (2-tailed).

On the other hand, the EBM model does not display the original translation but
introduces an affinity index between the input vector, unlike in Pearson’s correlation test,
and the result converts the full original data [15]. The vectors of the EBM model should
exhibit a positive affinity index of vectors where the values would be appeased with the
condition from 0 to 1. The diversity index as shown in Table 6 shows the diversity is from 0
to 0.264 along with the affinity index also shows the affinity from 0.472 to 1. In addition, the
affinity and diversity approach the maximum eigenvector and eigenvalue, which validates
the affinity index. The input factor was then estimated using the input-oriented model
with constant returns-to-scale. This replaces Pearson’s correlation test in affirming the data
and ensures the rational affinity index is to be determined. As previously mentioned, the
radial and non-radial methods have been implemented via epsilon throughout the years of
2016–2019 with positive results under 0.452, therefore they are significant. The epsilon for
the EBM model in 2016, 2017, 2018, and 2019 are listed respectively.

• Epsilon for EBM of 2016 = 0.460
• Epsilon for EBM of 2017 = 0.469
• Epsilon for EBM of 2018 = 0.460
• Epsilon for EBM of 2019 = 0.452
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Table 6. The diversity and affinity matrixes of input factors during 2016–2019.

Input Factors Years
Diversity Index Affinity Index

X1 X2 X3 X1 X2 X3

Number of runways (X1)
2016

0 0.199 0.233 1 0.601 0.534
Dimension of runways (X2) 0.199 0 0.259 0.601 1 0.482

Airport area (X3) 0.233 0.259 0 0.534 0.482 1

Number of runways (X1)
2017

0 0.203 0.237 1 0.594 0.525
Dimension of runways (X2) 0.203 0 0.264 0.594 1 0.472

Airport area (X3) 0.237 0.264 0 0.525 0.472 1

Number of runways (X1)
2018

0 0.199 0.233 1 0.602 0.534
Dimension of runways (X2) 0.199 0 0.259 0.602 1 0.481

Airport area (X3) 0.233 0.259 0 0.534 0.481 1

Number of runways (X1)
2019

0 0.197 0.229 1 0.607 0.543
Dimension of runways (X2) 0.197 0 0.254 0.607 1 0.491

Airport area (X3) 0.229 0.254 0 0.543 0.491 1

5.2. Efficiency Score Calculation of DEA Models

In this paper, four DEA models (CCR, BCC, SBM, EBM) were used to analyze and
calculate the efficiency scores for the 21 major airports. We may assume that inputs have
a greater impact than outputs because both of these are heavily impacted by worldwide
macroeconomic indicators and airline planning arrangements that are beyond their con-
trol [36]. Likewise, airport management tries to implement various approaches to cater to
the various airline aircraft’s takeoffs and landings.

The efficiency scores of the CCR, BCC, SBM, EBM models are shown in Table 7. The
results reveal that during the research period, the BCC efficiency scores of the international
airport mostly achieved strong efficiency. It is apparent results of efficiency scores that
Munich International Airport (MUC) and London Heathrow Airport (LHR) achieved a
strong efficiency during both years and the four models used.

Table 7. The efficiency score of DEA models during 2016–2019.

DMU
CCR BCC SBM EBM

2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019 2016 2017 2018 2019

ATL 1 1 1 1 1 1 1 1 1 1 1 1 0.847 0.825 0.843 0.854
DBX 1 1 1 1 1 1 1 1 1 1 1 1 0.903 0.921 0.919 0.890
LAX 0.824 0.833 0.837 0.814 0.894 0.916 0.915 0.877 0.547 0.548 0.555 0.541 0.706 0.705 0.716 0.700
ORD 0.593 0.603 0.618 0.624 0.610 0.634 1 1 0.370 0.369 0.385 0.391 0.502 0.499 0.522 0.533
CDG 0.539 0.545 0.541 0.559 0.542 0.546 0.544 0.561 0.356 0.358 0.357 0.369 0.460 0.461 0.461 0.478
AMS 0.416 0.436 0.419 0.415 0.423 0.438 0.424 0.422 0.266 0.275 0.267 0.266 0.353 0.364 0.355 0.354
DFW 0.414 0.402 0.366 0.388 0.486 0.475 0.408 0.442 0.278 0.270 0.246 0.260 0.354 0.343 0.313 0.333
DEN 0.397 0.403 0.423 0.448 0.441 0.456 0.485 0.525 0.266 0.270 0.284 0.300 0.339 0.343 0.361 0.384
BKK 0.729 0.761 0.784 0.805 1 1 1 1 0.453 0.478 0.485 0.496 0.611 0.643 0.655 0.671
JFK 0.476 0.469 0.479 0.479 0.500 0.500 0.500 0.500 0.313 0.308 0.315 0.315 0.404 0.396 0.406 0.407
KUL 0.752 0.937 0.838 0.856 1 1 1 1 0.449 0.560 0.501 0.511 0.617 0.766 0.688 0.704
MAD 0.398 0.408 0.431 0.448 0.500 0.500 0.500 0.500 0.256 0.262 0.277 0.288 0.335 0.342 0.362 0.378
SFO 0.486 0.497 0.507 0.493 0.514 0.514 0.514 0.514 0.331 0.337 0.345 0.336 0.418 0.425 0.436 0.425
SIN 0.517 0.531 0.546 0.562 0.667 0.667 0.667 0.667 0.461 0.474 0.487 0.501 0.492 0.505 0.520 0.535
ICN 0.509 0.531 0.568 0.586 0.667 0.667 0.667 0.667 0.471 0.491 0.525 0.542 0.492 0.512 0.548 0.566
HKG 0.928 0.931 0.928 0.882 1 1 1 1 0.859 0.862 0.859 0.816 0.897 0.899 0.897 0.852
MUC 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LHR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NRT 0.516 0.529 0.536 0.555 1 1 1 1 0.478 0.490 0.497 0.514 0.499 0.511 0.519 0.537
ZRH 0.357 0.358 0.390 0.386 0.667 0.667 0.667 0.667 0.320 0.320 0.349 0.345 0.340 0.341 0.372 0.368
KIX 0.772 0.816 0.833 0.819 1 1 1 1 0.504 0.525 0.539 0.556 0.650 0.679 0.695 0.698
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Most of the runway configurations of each airport in this study are designed to have
a parallel runway. Having a parallel runway catering to the flights coming in and out is
the most efficient configuration. Although airports such as Amsterdam Airport Schiphol
(AMS) and Zurich Airport (ZRH) possess intersecting runways it was found that it can
increase flight efficiency. However, it is linked to intersecting runways that can cause
serious inherent risk with simultaneous operation [37]. In contrast to other airports, they
designed their airport runway to parallel runway for the reason that it increases aerodrome
flexibility and runway capacity with concurrent operations [38].

As can be seen from the CCR, BCC, and SBM models, DMU’s ATL, DBX, MUC, and
LHR shows excellent managing operational efficiency. The commonality that they possess
is the parallel runway configuration. Meanwhile, for the lowest operational efficiency
Amsterdam Airport Schiphol (AMS) and Dallas/Fort Worth International Airport (DFW)
with the four models used were the two airports found with the lowest efficiency score.
The differences they have from the other airports are that AMS consists of six runways
with a mix of a configuration of intersecting and single runway while DFW consists of
seven runways with also a mix configuration of parallel and a single runway. Although
DFW scored with an average of 0.361 of the four models and has the configuration of the
parallel runway, as mentioned before this configuration has been found more efficient
than an intersecting runway. In the comparison of AMS and DFW with LHR and MUC,
despite being the most efficient in this study they have only two runways with parallel
runway configurations in which they can operate simultaneously. One of the downsides of
having the intersecting runway is dealing with the wind because it has a great impact on
the direction of the wind.

For example, DMU AMS (Amsterdam Airport Schiphol) is located near the sea so
the strongest wind comes from the North Sea which means the strong wind may come
from the western/southwestern direction, so only one runway can be used for takeoffs and
one for landings and having one runway could lessen the operation, causing long delays
for the aircraft to land or takeoff, especially during peak hours. To improve the operation
an additional runway from the northeast to the northwest has been created, because
crosswinds that surpass the safety point on runways cannot be used for takeoff and landing.
DMU ZRH (Zurich International Airport) also shares the same case, but they only have
three runways which is a combination of two runways that are intersecting and one single
runway with an average result of 0.432 efficiency score. The most intriguing correlation is
with San Francisco International Airport (SFO) possessing two pairs of parallel runways
but intersecting each other and it is located near the sea. SFO airport utilizes the runway
configuration efficiently as one pair of the parallel runway is used for landings/arrival of
the aircraft, while the other pair is primarily for departure/take-off of the aircraft. This
way the aircraft can land side by side with sufficient space as well as for take-off. SFO
scored with an average of 0.443 on four models. Aside from airports from each continent,
it is evident that most of the airports in Asia show an increase in operational efficiency
each year.

Interestingly, there were also differences in the coefficient scores—regarding the CCR,
BCC, and SBM that DMU ATL (Hartsfield Jackson Atlanta International Airport) and DBX
(Dubai International Airport), for the three models they were efficient but when it comes
to the EBM model it shows the result for ATL slightly increased both years while DBX
decreased from 0.919 to 0.890 in 2018–2019.

If we now turn to Figures 3–6 we see differences between the different DEA models. As
shown in Figure 3 (CCR model) and 5 (SBM model), Hartsfield Jackson Atlanta International
Airport (ATL), Dubai International Airport (DBX), Munich International Airport (MUC),
and London Heathrow Airport (LHR) achieved strong efficiency but the least efficient
airports were Dallas/Fort Worth International Airport (DFW) and Zurich Airport (ZRH),
unlike in SBM where the least efficient airports were Amsterdam Airport Schiphol (AMS)
and Dallas/Fort Worth International Airport (DFW). Moreover, some airports in the study
period show an increase of efficiencies such as Suvarnabhumi International Airport (BKK),
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Singapore Changi Airport (SIN), Incheon International Airport (ICN), Narita International
Airport (NRT), and Kansai International Airport (KIX).
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As mentioned before, the SBM model is an adjusted CCR model so we can see the
similarity of the result of both models. On the other hand, the BBC model is known for
determining the pure technical efficiency of DMUs—in Figure 4 airports Hartsfield Jackson
Atlanta International Airport (ATL), Dubai International Airport (DBX), Suvarnabhumi
International Airport (BKK), KL International Airport (KUL), Hong Kong International
Airport (HKG), Munich International Airport (MUC), London Heathrow Airport (LHR),
Narita International Airport (NRT), and Kansai International Airport (KIX) achieved the
strongest efficiency, and O’Hare International Airport (ORD) achieved the strongest effi-
ciency during 2018 and 2019 only, while the least efficient airports were Amsterdam Airport
Schiphol (AMS) and Dallas/Fort Worth International Airport (DFW).

Lastly, in Figure 6 the Epsilon Based Measure model considers the slacks and the
weight of the input, where only airports Munich International Airport (MUC) and London
Heathrow Airport (LHR) achieved the strong efficiency. The results showed that airports
Suvarnabhumi International Airport (BKK), Aeropuerto de Adolfo Suárez Madrid-Barajas
(MAD), Singapore Changi Airport (SIN), Incheon International Airport (ICN), Narita
International Airport (NRT), and Kansai International Airport (KIX) continuously improved
their efficiency every year. Overall, these results indicate that London Heathrow Airport
(LHR) and Munich International Airport (MUC) can be benchmarked airports in terms of
the runway configuration, the number of runways, and ability to withstand the volume of
air traffic.

Together these results provide important insights into the differences between airports
with single, parallel, and intersecting runway configurations. For most airports in this
study parallel runway is the common configuration and it also shows that the airport
operations are efficient. Meanwhile, for the airports with an intersecting runway, there are
downsides in regards to operation—the weather condition is one of the factors that can
cause poor visibility, strong winds, or crosswinds that affect the operation of the runway
and can cause delays. Sometimes only one runway can also be used, which will lead to a
decrease of operation efficiency—however this also serves as a safety measure for aircraft
landing and takeoff.

6. Discussions

Overall, these results indicate that using different DEA models showed shortcomings
of each model. Every model considers different weights to measure the efficiency of each
DMU, as mentioned above the CCR model measures total effectiveness while the BBC
model determines the technical effectiveness. On the other hand, the SBM model considers
the slacks that CCR and BCC do not take into consideration in determining the data.
The EBM model takes into consideration the input and output data with corresponding
relevance in computing the technical efficiency. Moreover, the study reveals that applying
various DEA models provides a varying impact assessment of the efficiency. Utilizing the
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different DEA models, there was a difference that each model has its impact in assessing
the efficiency. Figure 7 illustrates the average efficiency of all major international airports
from 2016 to 2019 using DEA models.

Mathematics 2022, 10, 551 18 of 24 
 

 

strongest efficiency during 2018 and 2019 only, while the least efficient airports were Am-
sterdam Airport Schiphol (AMS) and Dallas/Fort Worth International Airport (DFW).  

Lastly, in Figure 6 the Epsilon Based Measure model considers the slacks and the 
weight of the input, where only airports Munich International Airport (MUC) and London 
Heathrow Airport (LHR) achieved the strong efficiency. The results showed that airports 
Suvarnabhumi International Airport (BKK), Aeropuerto de Adolfo Suárez Madrid-Bara-
jas (MAD), Singapore Changi Airport (SIN), Incheon International Airport (ICN), Narita 
International Airport (NRT), and Kansai International Airport (KIX) continuously im-
proved their efficiency every year. Overall, these results indicate that London Heathrow 
Airport (LHR) and Munich International Airport (MUC) can be benchmarked airports in 
terms of the runway configuration, the number of runways, and ability to withstand the 
volume of air traffic. 

Together these results provide important insights into the differences between air-
ports with single, parallel, and intersecting runway configurations. For most airports in 
this study parallel runway is the common configuration and it also shows that the airport 
operations are efficient. Meanwhile, for the airports with an intersecting runway, there 
are downsides in regards to operation—the weather condition is one of the factors that 
can cause poor visibility, strong winds, or crosswinds that affect the operation of the run-
way and can cause delays. Sometimes only one runway can also be used, which will lead 
to a decrease of operation efficiency—however this also serves as a safety measure for 
aircraft landing and takeoff. 

6. Discussions 
Overall, these results indicate that using different DEA models showed shortcomings 

of each model. Every model considers different weights to measure the efficiency of each 
DMU, as mentioned above the CCR model measures total effectiveness while the BBC 
model determines the technical effectiveness. On the other hand, the SBM model consid-
ers the slacks that CCR and BCC do not take into consideration in determining the data. 
The EBM model takes into consideration the input and output data with corresponding 
relevance in computing the technical efficiency. Moreover, the study reveals that applying 
various DEA models provides a varying impact assessment of the efficiency. Utilizing the 
different DEA models, there was a difference that each model has its impact in assessing 
the efficiency. Figure 7 illustrates the average efficiency of all major international airports 
from 2016 to 2019 using DEA models. 

 
Figure 7. Comparative chart of methods. 

Figure 7. Comparative chart of methods.

In 2017, ICAO air transport statistics recorded the highest increase of annual passen-
gers by 7.1. As shown in Figure 8, in comparison with the three continents. Asia has the
higher efficiency score in the four DEA models. In the CCR Model, Asia appears with the
highest average efficiency with 0.746, then North America with 0.603, and Europe with
0.627. It also can be compared in the BCC model, where Asia showed a higher efficiency
score of 0.917 greater than the two continents. We can conclude that Asian international
airports with parallel runway configurations display a greater efficiency compared to the
size of the airports, different runway configurations, and the number of runways in North
America and Europe. The findings also indicate the general overview of the aviation
industry from a worldwide perspective based on the performance, existence of the airport
hub, location of the airport, and the design of the 21 major airports.
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The average efficiency score of DEA models is presented in Table 8. The International
Civil Aviation Organization (ICAO) annually released their report of air transport statistics
which contains the world’s major airport traffic ranking of the top 25 airports by total
passengers. The ranking is based on millions of passengers going through each airport. It
shows that DMU ATL (Hartsfield Jackson Atlanta International Airport) ranks 1st with
the highest total passengers embarked and disembarked and also ranked 2nd in aircraft
movements in ICAO air transport statistics from 2016 to 2019. That corresponds also to
ATL airport as one of the most efficient airports in 4th place in this study.

Table 8. The average efficiency score of DEA models.

DMU CCR BCC SBM EBM Average Rank Continent

ATL 1 1 1 0.842 0.961 4 North America
DBX 1 1 1 0.908 0.977 3 Asia
LAX 0.827 0.900 0.548 0.707 0.745 8 North America
ORD 0.609 0.811 0.379 0.514 0.578 11 North America
CDG 0.546 0.548 0.360 0.465 0.480 14 Europe
AMS 0.422 0.427 0.269 0.356 0.368 20 Europe
DFW 0.393 0.453 0.263 0.336 0.361 21 North America
DEN 0.418 0.477 0.280 0.357 0.383 19 North America
BKK 0.770 1 0.478 0.645 0.723 9 Asia
JFK 0.476 0.500 0.313 0.403 0.423 17 North America

KUL 0.846 1 0.505 0.694 0.761 6 Asia
MAD 0.421 0.500 0.270 0.354 0.386 18 Europe
SFO 0.496 0.514 0.337 0.426 0.443 15 North America
SIN 0.539 0.667 0.481 0.513 0.550 13 Asia
ICN 0.549 0.667 0.507 0.530 0.563 12 Asia
HKG 0.917 1 0.849 0.886 0.913 5 Asia
MUC 1 1 1 1 1 1 Europe
LHR 1 1 1 1 1 1 Europe
NRT 0.534 1 0.495 0.516 0.636 10 Asia
ZRH 0.373 0.667 0.334 0.355 0.432 16 Europe
KIX 0.810 1 0.531 0.681 0.755 7 Asia

For the most efficient airports in this study, LHR (London Heathrow Airport) airport
ranked 7th while MUC (Munich International Airport) airport ranked 16th in the top
25 airports in ICAO statistics [39]. Although both airports did not reach the highest-ranked
in ICAO statistics they still managed to maintain and continue to improve their services to
be efficient airports, which can be seen from the DEA results in being consistent in having
strong efficiency. Even though Singapore Changi Airport was voted for the Skytrax World’s
Best Airport 2019 by international air travelers for the seventh consecutive year [4], ICAO
ranked SIN (Singapore Changi Airport) airport 18th place and for the efficiency score with
an average of four DEA models of 0.550, ranked 13th place in this study.

Unexpectedly, the airports DFW (Dallas/Fort Worth International Airport) and AMS
(Amsterdam Airport Schiphol) were ranked 10th and 12th place in the ICAO annual
report but conversely, they were the least efficient airports in this study. While observing
the efficiency score of both airports there were slight increases and decreases in their
efficiency score. Meanwhile, SFO (San Francisco International Airport) airport has a similar
intersecting runway configuration with AMS in comparison and four DEA models scored
and ranked higher than AMS and DFW. Besides, LAX had an average score of 0.745 and
ranked 8th, and ICAO ranked SFO 23rd out of 25 for traffic at the world’s major airports
in 2019.

For DMU HKG (Hong Kong International Airport), the comparison of the four model’s
results, reveals that the BCC model is an indicator of efficient airports. During 2016–2018 it
shows slight increments and reduction in their score then in 2019 there was a significant
drop in their efficiency score. As HKG is ranked 13th with the ICAO annual statistics
and 5th in Skytrax in 2019 it corresponds as well with the result of the efficiency where
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it ranked 5th with the mean average of 0.913 among other airports in this study but also
shows strong operational efficiency compared to other airports. As mentioned before, in
comparison of each airport in this study, for most of the airports with a parallel runway
design in the continent of Asia surprisingly the efficiency score is higher than 0.480, which
also correlates with Asian airports having the highest percentage of world traffic by an
average of 34.87% while Europe has only 25.23% and North America has only 23.63% based
on ICAO air transport statistics [39].

7. Conclusions
7.1. Concluding Remarks

This study aims to determine the operational efficiency of airports with the runway
configuration of parallel and intersecting. In the aviation industry, ensuring efficiency is a
very important factor in evaluating the operational efficiency of each airport runway design.
Each airport is designed suitable to one’s country and location. The study used various
DEA models where each has different weights in assessing efficiency. The CCR, BCC, SBM,
and EBM models were applied in this study. With these methods, there were two airports
with strong efficient scores which were MUC (Munich International Airport) and LHR
(London-Heathrow Airport) which exhibit strong efficiency in all four DEA models and
achieved the score of 1, which is the highest score among other DMUs that are based in
Europe. These two airports are designed with parallel runway configuration similar to most
airports, which increases the aerodrome flexibility and runway capacity with concurrent
operations.

With these results as well, they also showed that Amsterdam Airport Schiphol (AMS)
and Dallas/Fort Worth International Airport (DFW) scored lowest with an average under
0.370. Due to the location and the runway configuration of AMS, it is recommended to
have an additional runway to increase capacity, mitigate the delays during the peak hours,
and improve the direction of the runway. Moreover, the Air Traffic Control System should
be improved to lessen the air traffic. In addition, from 2018 to 2019 at the airport DFW, it
attains 8.6% in annual passengers and 7.9% in-flight movement despite scoring the average
lowest efficiency score of 0.361. On the other hand, airport AMS during the period 2016
to 2017 attains the highest 7.7% in annual passengers and 3.6% in-flight movement but
during the years of 2018 to 2019, it reaches the lowest increase of annual passengers by 0.9%
and −0.4% in annual flights that affected the efficiency which resulted with 0.361. Further,
airports that have intersecting runway configuration were found to have increased flight
efficiency but this may cause major risks in simultaneous operations. The airports with the
lowest efficiency scores were AMS (Amsterdam Airport Schiphol) with intersecting runway
configuration and DFW (Dallas/Fort Worth International Airport) with a mix of parallel
and single runway configurations. Although SFO (San Francisco International Airport)
possesses a mixed configuration of parallel and intersecting runway configuration, it
maximizes the runway by utilizing one pair for landing and the other pair for takeoff [5,40].

Finally, the study is based on DEA models that allow multiple inputs and outputs
when calculating relative efficiencies. The results also show that most of the airports in Asia
are above average in the efficiency of 0.500 than North America. The period of the study also
reveals that 2017 has the highest annual increase of passengers by 7.1% but unfortunately
2019 has the lowest increase of 3.6% based on ICAO air transport statistics [41].

The study contributes to research by providing initial findings on airport service oper-
ations and identifies the attributes that may reveal the differences in airport operational
efficiency. The results indicate that airports with similar characteristics must be evaluated
and benchmarked for performance by operation managers. This study is useful in deter-
mining how well airports are maintained and how they can improve their operational
efficiencies. Operational performance can be also determined by the existence of the hub
airport and the location of the airport. It demonstrates that the number of passengers has
a greater impact on operational success than the yearly number of flights. The primary
goal for inefficient airports should be to improve the quality of service. Furthermore, these
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airports should implement best practices that have been proven to work in the operation
of high-efficiency airports. This paper also makes an analytical contribution by using a
wide range of DEA methods to provide additional data for industry analysis. To conclude,
the main contributions of this paper can be summarized (1) This study aims to present an
overview comparative analysis for measuring the runway utilization of airports using the
CCR, BCC, SBM, EBM models. (2) A case study of the top 21 major international airports is
used to illustrate the applicability of the proposed models. (3) The findings also indicate the
general overview of the aviation industry from a worldwide perspective. (4) The current
study provides holistic insights for operation managers in evaluating and benchmarking
the airport’s performance with different runway configurations.

7.2. Limitations and Future Studies

However, the current study has some limitations. First, the existence of the outliers
has a significant impact on the DEA approach which can be resolved for future studies by
evaluating using the DEA Super-SBM, which would consider the undesirable outputs to
assess and rank the DMUs effectively [42]. Secondly, DEA is widely known for evaluating
the efficiency of airports, in some previous cases, the bootstrapping approach is also used
to take into account the measurement errors in estimates. By repeatedly sampling the
original data, bootstrapping allows sensitivity assessments on efficiency scores and scaling
indicators to be done [43]. Thirdly, for the data, we only calculated the general data
based on the ICAO airport transport statistics in which the data only specified the ranking
on number of many passengers (embarked and disembarked) and airplane movements
(takeoff and landing). Therefore, for future studies, the DMUs should be separated by
continents to enhance the accuracy of the results.

Further research in this field would be of great help in improving the operational
efficiency toward sustainability development. Decision-makers, investors, stakeholders,
politicians, and governments or private organizations all over the world may find this
to be a valuable tool. Researchers should assess more input and output elements such
as the number of employees, operational income, operational expenditures, air freight
movements, distance from the city center, transport to the airport, terminal capacity, cargo,
or environmental factors (i.e., climate) in future studies to provide more precise and better
findings. According to the study of Inamete [1], several elements can also affect operations
including privatization causing changes in the public ownership system; contracting out
various functions of airports to private companies; combining government and private con-
trol of airports; increasing the autonomy of airports that are operated by the government;
establishing government holding companies; commercializing airport organizations’ opera-
tions, and having two or more public airport agencies which creates competitive dynamics.
Moreover, the possibility of using other methods in assessing operational efficiencies such
as MCDM models in assessing efficiency may also be considered.
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