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Mădălina Sofia Paşca 1,2,*,† , Olivia Bundău 1,†, Adina Juratoni 1,† and Bogdan Căruntu 1,†
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Abstract: In this paper, least squares homotopy perturbation is presented as a straightforward and
accurate method to compute approximate analytical solutions for systems of ordinary differential
equations. The method is employed to solve a problem related to a laminar flow of a viscous fluid in
a semi-porous channel, which may be used to model the blood flow through a blood vessel, taking
into account the effects of a magnetic field. The numerical computations show that the method is
both easy to use and very accurate compared to the other methods previously used to solve the
given problem.

Keywords: least squares homotopy perturbation method; system of nonlinear differential equations;
approximate analytical solutions; non-Newtonian fluid; magnetohydrodynamics

1. Introduction

The least squares homotopy perturbation method was introduced in 2017 by Bota and
Caruntu in [1], and its main feature is an accelerated convergence compared to the regular
homotopy perturbation method. In the few years since its introduction, the method (or
slightly modified versions of it) was used by several researchers with very good results in
finding approximate solutions for various types of problems, among which, we mention:

• Boundary value problems for ordinary differential equations [2,3].
• Fractional partial differential equations [4–6].
• Fractional order integro-differential equations [7].
• Systems of fractional partial differential equations [8].

In the present paper, we employ the least squares homotopy perturbation method to
compute approximate analytical solutions for boundary problems consisting of systems of
nonlinear ordinary differential equations of the type:

Li(U1(y), U2(y), . . ., Un(y)) +Ni(U1(y), U2(y), . . ., Un(y))− fi(y) = 0, i = 1, n
Bj(Ui(y)) = 0, j = 1, k

(1)

where Ui(y) are the unknown functions, Li are linear operators,Ni are nonlinear operators,
f (t)i are given functions, y denotes the variable, and Bj are boundary operators.

2. The Least Squares Homotopy Perturbation Method

In this section, the least squares homotopy perturbation method (LSHPM) is presented.
Since the numerical application considered in the following section only contains two
equations, we introduce LSHPM for the case of a system consisting of two equations.
Obviously, LSHPM can be easily generalized for systems consisting of as many equations
as needed. We should also note that LSHPM works as well, if instead of Bj(Ui(y)) = 0, we
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have other types of conditions, such as Bj(Ui(y), Vi(y)) = 0, initial-type conditions, or any
combinations of the above.

Thus we consider the system:

L1(U(y), V(y)) +N1(U(y), V(y))− f1(y) = 0,
L2(U(y), V(y)) +N2(U(y), V(y))− f2(y) = 0,

Bi(U(y)) = 0, Bj(V(y)) = 0, i = 1, n1 j = 1, n2
(2)

where U(y) and V(y) are the unknown functions, L1,L1 are linear operators, N1,N2 are
nonlinear operators, and Bi,Bj are boundary operators.

Let Ũ(y) and Ṽ(y) be approximate solutions of the system (2). The error obtained
by replacing the exact solutions U(y), V(y) of the system (2) with the approximate ones
Ũ(y); Ṽ(y) is given by the remainders:

R1(y, Ũ) = L1(Ũ(y)) +N1(Ũ(y))− f1(y), y ∈ R
R2(y, Ṽ) = L2(Ṽ(y)) +N2(Ṽ(y))− f2(y), y ∈ R (3)

Following the homotopy perturbation method [9–11], the first step in applying LSHPM
is to attach to the system (3) the family of equations:

(1− p)[L1(Φ1(y, p))− f1(y)] + p [L1(Φ1(y, p)) +N1(Φ1(y, p))− f1(y)] = 0
(1− p)[L2(Φ2(y, p))− f2(y)] + p [L2(Φ2(y, p)) +N2(Φ2(y, p))− f2(y)] = 0

(4)

where p ∈ [0, 1] is an embedding parameter and Φi(y, p) with i = 1, 2 are unknown functions.
When p increases from 0 to 1, the solutions Φi(y, p) of system (4) vary from Φ1(y, 0) =

U0(y) and Φ2(y, 0) = V0(y) to the solutions Φ1(y, 1) = U(y) and Φ2(y, 1) = V(y) of the
system (2). The functions U0(y) and V0(y) are the solutions of the system:

L1(U0(y))− f1(y) = 0
L2(V0(y))− f2(y) = 0

Bi(U(y)) = 0, Bj(V(y)) = 0, i = 1, n1 j = 1, n2
(5)

We consider the following expansions of Φi(y, p):

Φ1(y, p) = U0(y) + ∑
m≥1

Um(y) pm

Φ2(y, p) = V0(y) + ∑
m≥1

Vm(y) pm (6)

Substituting the relations (6) in (4), collecting the same powers of p and equating the
coefficients of the powers of p, we obtain:

L1(Um(y)) = −Nm−1
1 (U0(y), U1(y), . . ., Um−1(y))

L2(Vm(y)) = −Nm−1
1 (V0(y), V1(y), . . ., Vm−1(y))

Bi(Um(y)) = 0, Bj(Vm(y)) = 0, i = 1, n1 j = 1, n2
(7)

where N j
i , j ≥ 0 are the coefficients of pj in the nonlinear operator Ni:

N1(U(y)) = N 0
1 (U0(y)) + pN 1

1 (U0(y), U1(y)) + p2N 2
1 (U0(y), U1(y), U2(y)) + . . .

N2(V(y)) = N 0
1 (V0(y)) + pN 1

1 (V0(y), V1(y)) + p2N 2
1 (V0(y), V1(y), V2(y)) + . . .

(8)

Now we can denote by

f1m = U0 + U1 + . . . + Um,
f2m = V0 + V1 + . . . + Vm

(9)

where Um, m ≥ 1, and Vm, m ≥ 1, are obtained from the linear Equation (7).
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For m = 0, 1, 2, . . . let us consider the set Sim containing the functions

ϕim0, ϕim1, ϕim2, . . ., ϕimnm , (10)

chosen as linearly independent functions in the vector space of the continuous functions
on the real interval I, such that Sim−1 ⊆ Sim and fim is a real linear combination of these
functions where i = 1, 2.

Using the functions given by (10), we define some types of approximate solutions of
the system (2).

Definition 1. A sequence of functions {sim(y)}m∈N of the form

sim(y) =
nm

∑
k=0

αk
im ϕimk , m ∈ N, αk

m ∈ R, i = 1, 2 (11)

are called HP-sequences of system (2).
Functions of the HP-sequences are called HP-functions of system (2).
The HP-sequences {sim(y)}m∈N with the property

lim
m→∞

Ri(y, s1m(y), s2m(y)) = 0, i = 1, 2

is called convergent to the solution of the system (2).

Definition 2. The HP-functions Ũ and Ṽ satisfying the conditions

|R1(y, Ũ, Ṽ)| < ε, Bi(Ũ) = 0
|R2(y, Ũ, Ṽ)| < ε, Bj(Ṽ) = 0

(12)

are called ε-approximate HP-solutions of the system (2).

Definition 3. HP-function Ũ and Ṽ satisfying the conditions∫
I

R2
1(y, Ũ, Ṽ)dy ≤ δ, Bi(ỹ) = 0 (13)

∫
I

R2
2(y, ṽ)dy ≤ δ, Bj(ỹ) = 0 (14)

are called weak δ-approximate HP-solutions of the system (2) on the real interval I.

Remark 1. It is easy to see that any ε-approximate HP-solution of the system (2) is also a weak
approximate HP-solution. It follows that the set of weak approximate HP-solutions of the system (2)
also contains the approximate HP-solutions of the system.

The following theorem states the existence of weak approximate HP-solutions of the
system (2) and furnishes the way to construct them.

Theorem 1. The system (2) admits a sequence of weak approximate HP-solutions.

Proof. The first step of the proof is to construct the HP-sequences {sim(t)}m∈N, i = 1, 2.
Let us consider the approximate HP-solutions of the type:

Ũ =
nm
∑

k=0
ck

m ϕ1mk, where m = 0, 1, . . . and

Ṽ =
nm
∑

k=0
dk

m ϕ2mk, where m = 0, 1, . . ..

In the following, the unknown constants ck
m and dk

m k ∈ {0, 1, . . . , km}, will be determined.
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Substituting the approximate solutions Ũ and Ṽ in the system (2), one gets the expression:

R1(y, ck
m) := R1(y, Ũ)

R2(y, dk
m) := R2(y, Ṽ).

(15)

Attaching to the system (2) the following real functionals

J1(ck
m) =

∫
I
R2

1(y, ck
m)dy

J2(dk
m) =

∫
I
R2

2(y, dk
m)dy

(16)

and imposing the boundary conditions, we can determine l ∈ N, l ≤ m, such that
cm

0 , cm
1 , . . ., cm

l and dm
0 , dm

1 , . . ., dm
l are computed as functions of cm

l+1, cm
l+2, . . ., cm

n respectively
dm

l+1, dm
l+2, . . ., dm

n .
Replacing cm

0 , cm
1 , . . ., cm

l and dm
0 , dm

1 , . . ., dm
l in (16), the values of c̃m

l+1, c̃m
l+2, . . ., c̃m

n re-
spectively d̃m

l+1, d̃m
l+2, . . ., d̃m

n are computed as the values, which give the minimum of the
functional (16).

Using again the boundary conditions, the values of c̃m
0 , c̃m

1 , . . ., c̃m
l as functions of c̃m

l+1,
c̃m

l+2, . . ., c̃m
n are determined and the values of d̃m

0 , d̃m
1 , . . ., d̃m

l as functions of d̃m
l+1, d̃m

l+2, . . ., d̃m
n

are determined.
Using the constants c̃m

0 , . . ., c̃m
n and d̃m

0 , . . ., d̃m
n thus determined, the following HP-functions

s1m(t) =
nm
∑

k=0
c̃k

m ϕmk

s2m(t) =
nm
∑

k=0
d̃k

m ϕmk

(17)

are constructed.
The second step of the proof is to show that the above HP-functions sim(y) are weak

approximate solutions of the system (2).
Based on the way the HP-functions sim(y) are computed and taking into account that

fim given by (9) are HP-functions for system (2), it follows:

0 ≤
∫
I

R2
i (y, sim(y))dy ≤

∫
I

R2
i (y, fim(y))dy , ∀m ∈ N, i = 1, 2.

Therefore,

0 ≤ lim
m→∞

∫
I

R2
i (y, sim(y))dy ≤ lim

m→∞

∫
I

R2
i (y, fim(y))dy, i = 1, 2.

Since fim are convergent to the solution of the system (2), we obtain:

lim
m→∞

∫
I

R2
i (y, sim(y))dy = 0.

It follows that for all ε > 0 there exists m0 ∈ N such that for all m ∈ N, m > m0, the
sequence sim(y) is a weak ε-approximate HP-solution of the system (2).

Remark 2. The proof of the above theorem give us a way to determine a weak approximate HP-
solution of the system (2), Ũ, Ṽ. Moreover, taking into account the Remark 1, if |R1(y, Ũ)| < ε
and |R(y, Ṽ)| < ε then Ũ and Ṽ are also ε-approximate HP-solutions of the considered system.

3. Numerical Application

The application presented in this section is the one included in the paper by Basiri
Parsa, Rashidi et al. [12], where the authors employed the well-known homotopy analysis
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method and differential transform method to find approximate analytical solutions for the
following boundary value problem:

UV′ −VU′ = 1
Re
(
U′′ − Ha2U

)
V IV = Ha2V′′ + Re(V′V′′ −VV′′′)

U(0) = 1, V(0) = 0, V′(0) = 0, U(1) = 0, V(1) = 1, V′(1) = 0
(18)

These equations model a laminar magnetohydrodynamic flow of a non-Newtonian
viscous fluid in a semi-porous channel under the influence of an axial uniform static
magnetic field. U and V are the mean axial and normal velocity components, respectively,
Ha is the Hartmann number, and Re is the Reynolds number.

In order to find analytical solutions for this type of problems, various approxima-
tion methods were employed over the years, with various rates of success, methods
among which we mention: the homotopy perturbation method [10], the variational iter-
ation method [11], the Adomian decomposition method [13], and the optimal homotopy
asymptotic method [14]. While these methods (and many others) have been successfully
employed, due to the nature of the equations, the computations involved are usually
very difficult.

We remark that the system (18) may be used to study the influence of a magnetic field
on the blood flow through a blood vessel.Numerous models have been established for
the study of the hydrodynamic blood flow through the vessels, for example in [15]. Here,
the authors analyze the flow of blood in tubes with reduced diameters, while in [16], the
authors engage themselves in the study of the blood flow in small arched tubes, which are
modeled. Blood flow has been analyzed trough the effect of the magnetic field as an great
electrically conductive fluid. Knowing that blood is a ferrofluid, it can be concluded that
there is the possibility of controlling the blood pressure and its flow behavior by using a
fitting magnetic field. In [17], the authors came up with a mathematical representation of
the blood flow in a blood vessel of reduced dimensions, in the presence of a magnetic field.
Moreover, in [18], the authors investigated the apparatus of interaction between the red
blood cells and an external magnetic field. The results will show the capacity of a magnetic
field to modulate the blood flow. Other research on the magnetic properties of the blood
are based on [12,19–27].

Many mathematical models show parts of the human circulatory system (for exam-
ple [28–31]), most of the time, the blood flow is modeled by using differential equations,
mostly nonlinear ones. However, it is usually nearly impossible to find exact solutions for
these types of equations. Such cases require approximation methods for calculating almost
exact solutions, because these approximated solutions may provide important information
about the phenomenon.

In the following, we apply the least squares homotopy perturbation method to com-
pute approximate polynomial solutions for the system (18) for two cases with particular
significant values of the Hartmann number Ha and of the Reynolds number Re, and we
compare our solutions with previous ones obtained in the literature.

3.1. The Case Re = 1 and Ha = 0

The case Re = 1 and Ha = 0 corresponds to a non-conducting blood flow. In [12],
Basiri Parsa et al. computed approximate solutions of the system (18) by using the homo-
topy analysis method (HAM) and the differential transform method (DTM), and in [32],
Caruntu et al. computed approximate solutions by using the polynomial least squares
method (PLSM).

In this case, employing LSHPM for the system (18), we compute the approximate
solutions as follows:

The linear operators are:

L1(Φ1(y, p)) = − 1
Re

U′′

L2(Φ2(y, p)) = V IV
(19)
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and the nonlinear operators are:

N1(Φ1(t, p)) =
Ha2

Re
U + UV′ −U′V

N2(Φ2(t, p)) = −Ha2V′′ − Re(V′V′′ −VV′′′).
(20)

We obtain the HPM approximations:

• First-term approximations:
U0(y) = 1− y

V0(y) = 3y2 − y3 (21)

• Second-term approximations:

U1(y) =
y5

5
− 3y4

4
+ y3 − 29y

20
+ 1

V1(y) =
2y7

35
− y6

5
+

3y5

10
− 167y3

70
+

113y2

35

(22)

• Third-term approximations:

U2(y) =
2y9

315
− 19y8

560
+

y7

20
− y6

20
+

23y5

70
− 1643y4

1680
+

113y3

105
− 1763y

1260
+ 1

V2(y) =
4y11

5775
− 2y10

525
+

y9

210
− 3y8

560
+

97y7

1225
− 533y6

2100
+

121y5

350
− 774469y3

323400
+

2087479y2

646800

(23)

For the second-term approximation U0 + U1, the set S1m consist of the functions
{y, y3, y4, y5} and for V0 + V1 the set is S2m = {y2, y3, y5, y6, y7}.

We will compute the approximate solutions Ũ(y) = c0 + c1y + c2y3 + c3y4 + c4y5 and
Ṽ(y) = d0y2 + d1y3 + d2y5 + d3y6 + d4y7.

From the initial conditions: Ũ(0) = 1, Ũ(1) = 0 and Ṽ(0) = 0, Ṽ(1) = 1, Ṽ′(0) =
0, Ṽ′(1) = 0 we obtain: c0 = 1 and c1 = −1− c2 − c3 − c4 respectively −d0 = 2d2 + 3d3 +
4d4 + 3 and d1 = −3d2 − 4d3 − 5d4 − 2.

Replacing these expressions of c0, c1, d0, and d1 in the corresponding remainders (15) are:

R1(y, Ũ) = R(y, c2, c3, c4)
R2(y, Ṽ) = R(y, d2, d3, d4)

(24)

Next, we compute the corresponding functionals (16) (too long to be included here):

J1(c2, c3, c4) =
1∫

0
R2

1(y, c2, c3, c4)dy

J2(d2, d3, d4) =
1∫

0
R2

2(y, d2, d3, d4)dy
(25)

and we compute the minimum of this functionals, determining the coefficients cj and dj,
j = 2, 4, thus finding the approximate solutions of the system (18) by LSHPM.

In a similar way, we compute the third-term approximations by LSHPM, and the
solutions are:

• Second-term approximations:
Ũ(y) = 0.25139431098009168490y5 − 0.89052033909540654567y4

+ 1.0440071928069991650y3 − 1.4048811646916843042y + 1
Ṽ(y) = 0.058317127462336779863y7 − 0.21889392791262717538y6

+ 0.32522212582352969927y5 − 2.3916763031317642956y3 + 3.2270309777585249919y2

• Third-term approximations:
Ũ(y) = −0.012783174216369037776y9 + 0.079312017411340841618y8

− 0.21264602372589301173y7 + 0.26096763633169609359y6
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+ 0.13236850157788926145y5 − 0.90665763559833919190y4 + 1.0653323749944480412y3

− 1.4058936967747729964y + 1
Ṽ(y) = 0.00077252197269867863129y11 − 0.0033512835587865196224y10

+ 0.0028365610269174046158y9 − 0.0031087019658224288029y8

+ 0.079915383004597381009y7 − 0.25695066296630124619y6

+ 0.34706280997410686745y5 − 2.3943088377575857329y3 + 3.2271322102701755958y2

The comparison of these LSHPM solutions with the previous approximate solu-
tions computed in [12] using HAM and DTM, and in [32] using PLSM, is presented in
Figures 1 and 2. Since no exact solutions are available, the comparison is done by means of
computing the error relative to a fourth-order Runge–Kutta method numerical solution
(i.e., the absolute errors are computed as the difference between our approximate solutions
and the numerical solutions).

Figure 1. Comparison of absolute errors corresponding to the approximation from [12] UDTM (red
curve), [10] UHPM 3 terms (blue curve), [32] UPLSM (orange curve), and our LSHPM approximation
ULSHPM (green curve).

Figure 2. Comparison of absolute errors corresponding to the approximation from [12] VDTM (red
curve), [10] VHPM 3 terms (blue curve), [32] VPLSM (orange curve), and our LSHPM approximation
VLSHPM (green curve).

The comparison is further illustrated by Tables 1 and 2, which includes the results
obtained in [12], by means of the HAM and DTM, the results obtained in [32] by PLSM,
and the results computed by classical HPM and by LSHPM. The comparison lead to the
same conclusion: the approximate solutions obtained by LSHPM are more precise.
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Table 1. Comparison of the absolute errors of the approximate solutions U in case Re = 1 and Ha = 0.

y UH AM UDT M UPLSM UHPM2term. UHPM3t. ULSHPM2t. ULSHPM3t.

0.1 9.04× 10−3 1.08× 10−2 8.06× 10−4 4.45× 10−3 6.77× 10−4 8.61× 10−5 3.68× 10−6

0.2 1.77× 10−2 1.77× 10−2 1.90× 10−3 9.08× 10−3 1.35× 10−3 8.00× 10−5 1.56× 10−6

0.3 2.71× 10−2 1.98× 10−2 2.14× 10−3 1.37× 10−2 2.01× 10−3 4.18× 10−6 3.41× 10−6

0.4 3.45× 10−2 1.79× 10−2 1.34× 10−3 1.78× 10−2 2.64× 10−3 9.71× 10−5 9.99× 10−8

0.5 3.73× 10−2 1.39× 10−2 8.14× 10−5 2.10× 10−2 3.16× 10−3 1.29× 10−4 2.42× 10−6

0.6 3.46× 10−2 9.33× 10−3 1.43× 10−3 2.24× 10−2 3.50× 10−3 7.69× 10−5 1.22× 10−6

0.7 2.77× 10−2 5.39× 10−3 2.09× 10−3 2.15× 10−2 3.54× 10−3 2.59× 10−5 9.10× 10−7

0.8 1.87× 10−2 2.63× 10−3 1.74× 10−3 1.78× 10−2 3.12× 10−3 9.63× 10−5 7.61× 10−7

0.9 9.27× 10−3 9.33× 10−4 6.99× 10−4 1.07× 10−2 2.02× 10−3 6.71× 10−5 4.05× 10−7

Table 2. Comparison of the absolute errors of the approximate solutions V in case Re = 1 and Ha = 0.

y VH AM VDT M VPLSM VHPM2term. VHPM3t. VLSHPM2t. VLSHPM3t.

0.1 2.21× 10−4 1.19× 10−6 1.48× 10−7 2.25× 10−5 2.13× 10−6 1.41× 10−6 2.20× 10−8

0.2 5.75× 10−4 4.10× 10−6 7.17× 10−7 1.14× 10−4 6.55× 10−6 1.21× 10−5 9.78× 10−9

0.3 6.47× 10−2 7.91× 10−6 1.34× 10−6 2.83× 10−4 9.89× 10−6 3.20× 10−5 4.69× 10−9

0.4 3.03× 10−4 1.17× 10−5 1.26× 10−6 4.95× 10−4 9.25× 10−6 5.07× 10−5 1.40× 10−8

0.5 2.63× 10−4 1.49× 10−5 4.45× 10−7 6.84× 10−4 3.56× 10−6 5.66× 10−5 1.53× 10−8

0.6 7.02× 10−4 1.65× 10−5 3.80× 10−7 7.75× 10−4 5.54× 10−6 4.58× 10−5 1.84× 10−8

0.7 7.62× 10−4 1.59× 10−5 5.63× 10−7 7.12× 10−4 1.37× 10−5 2.53× 10−5 1.67× 10−8

0.8 4.73× 10−4 1.23× 10−5 2.24× 10−7 4.87× 10−4 1.54× 10−5 7.48× 10−6 1.46× 10−8

0.9 1.25× 10−4 5.88× 10−6 2.11× 10−8 1.80× 10−4 8.05× 10−6 2.77× 10−7 1.41× 10−8

3.2. The Case Re = 1 and Ha = 1

In the case Re = 1 and Ha = 1, the influence of the magnetic field on the blood flow is
non-negligible and the flow is weakly magnetic. The computations by LSHPM are similar
to the ones in the previous case.

The approximations terms by HPM are:

• First-term approximations:
U0(y) = 1− y

V0(y) = 3y2 − 2y3 (26)

• Second-term approximations:

U1(y) =
y5

5
− 3y4

4
+

5y3

6
+

y2

2
− 107y

60
+ 1

V1(y) =
2y7

35
− y6

5
+

y5

5
+

y4

4
− 181y3

70
+

459y2

140

(27)

• Third-term approximations:

U2(y) =
2y9

315
− 19y8

560
+

9y7

140
− 2y6

15
+

2129y5

4200
− 451y4

420
+

401y3

504
+

y2

2
− 41129y

25200
+ 1

V2(y) =
4y11

5775
− 2y10

525
+

y9

140
− 9y8

560
+

1507y7

14700
− 1129y6

4200
+

317y5

1400
+

153y4

560

−838379y3

323400
+

352623y2

107800

(28)

The corresponding solutions obtained by using LSHPM are:

• Second-term approximations:
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Ũ(y) = 0.24252310472551437387y5 − 0.79607170987751279666y4

+ 0.70039529434560076978y3 + 0.51680281524640722276y2

− 1.6636495044400095698y + 1
Ṽ(y) = 0.058199385875154810585y7 − 0.20176414373359385855y6

+ 0.17947791112252870094y5 + 0.28462933749944678084y4 − 2.5916327628078782832y3

+ 3.2710902720443418494y2

• Third-term approximations:
Ũ(y) = −0.039570918805227895983y9 + 0.18039801278862870509y8

− 0.33738809541609613996y7 + 0.25556139173308396128y6 + 0.28898499486097221037y5

− 0.98687905924276726841y4 + 0.80192640217575596712y3 + 0.50063075107844706510y2

− 1.6636634791727966046y + 1
Ṽ(y) = 0.00070249628967946626576y11 − 0.0034005002946346048030y10

+ 0.0063398061612668565765y9 − 0.017261143110682215908y8

+ 0.10727677845680360313y7− 0.27266199870132195652y6 + 0.22694957760601929024y5

+ 0.27260900187074289280y4 − 2.5917328827530869045y3 + 3.2711788644752135727y2

Again, the comparisons included in Tables 3 and 4 allow us the reach the same
conclusion as in the previous case, namely that the approximations obtained by LSHPM
are more accurate than the previous ones by other methods.

We mention the fact that we computed approximations for a wide range of values
of the parameters Re and Ha, and the above conclusions remained valid for all of the
computed solutions.

Table 3. Comparison of the absolute errors of the approximate solutions for U for the case Re = 1
and Ha = 1.

y UH AM UDT M UPLSM UHPM2term. UHPM3t. ULSHPM2t. ULSHPM3t.

0.1 1.19× 10−2 3.18× 10−2 8.22× 10−5 1.19× 10−2 3.13× 10−3 8.03× 10−5 4.19× 10−7

0.2 1.59× 10−2 5.15× 10−2 1.17× 10−4 2.33× 10−2 6.14× 10−3 1.14× 10−4 1.14× 10−6

0.3 1.25× 10−2 5.95× 10−2 3.15× 10−5 3.35× 10−2 8.85× 10−3 2.72× 10−5 1.41× 10−7

0.4 5.92× 10−3 5.84× 10−2 9.22× 10−5 4.14× 10−2 1.10× 10−2 9.64× 10−5 1.32× 10−6

0.5 1.62× 10−4 5.14× 10−2 1.48× 10−4 4.60× 10−2 1.25× 10−2 1.52× 10−4 3.46× 10−7

0.6 2.79× 10−3 4.11× 10−2 9.29× 10−5 4.65× 10−2 1.29× 10−2 9.57× 10−5 1.10× 10−6

0.7 3.20× 10−3 2.99× 10−2 3.03× 10−5 4.24× 10−2 1.22× 10−2 2.86× 10−5 3.63× 10−7

0.8 2.34× 10−3 1.92× 10−2 1.16× 10−4 3.33× 10−2 9.21× 10−3 1.15× 10−4 7.95× 10−7

0.9 1.21× 10−3 9.05× 10−3 8.04× 10−5 1.92× 10−2 5.92× 10−3 8.01× 10−5 1.05× 10−7

Table 4. Comparison of the absolute errors of the approximate solutions for V for the case Re = 1
and Ha = 1.

y VH AM VDT M VPLSM VHPM2term. VHPM3t. VLSHPM2t. VLSHPM3t.

0.1 4.90× 10−4 2.70× 10−4 3.06× 10−8 7.74× 10−5 1.53× 10−6 1.14× 10−8 1.91× 10−8

0.2 1.15× 10−3 5.83× 10−4 8.27× 10−8 3.03× 10−4 8.01× 10−6 5.24× 10−6 7.27× 10−9

0.3 1.19× 10−3 5.51× 10−4 1.37× 10−7 6.22× 10−4 2.06× 10−6 1.87× 10−5 4.18× 10−10

0.4 4.36× 10−4 1.45× 10−4 1.04× 10−7 9.38× 10−4 3.79× 10−6 3.38× 10−5 3.16× 10−9

0.5 7.25× 10−4 4.47× 10−4 1.51× 10−8 1.14× 10−3 5.51× 10−6 4.05× 10−5 1.35× 10−9

0.6 1.66× 10−3 9.52× 10−4 9.11× 10−8 1.16× 10−3 6.56× 10−6 3.41× 10−5 3.91× 10−10

0.7 1.90× 10−3 1.12× 10−3 6.89× 10−8 9.70× 10−4 6.30× 10−5 1.91× 10−5 1.24× 10−9

0.8 1.35× 10−3 8.72× 10−4 1.55× 10−8 6.05× 10−4 4.48× 10−5 5.55× 10−6 7.28× 10−10

0.9 4.73× 10−4 3.42× 10−4 6.71× 10−10 2.04× 10−4 1.71× 10−6 1.06× 10−7 3.35× 10−9

4. Discussion of the Results

As we mention in the previous section, we computed approximations for a wide
range of values of the parameters Re and Ha, and the conclusions of our study are in very
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good agreement with previous ones included in [12,33–35] and other studies. This is to be
expected because, even though our approximations are much more precise than the ones
included in the previous studies, the overall phenomena described by the solutions are
obviously the same. In the following, we will briefly summarize the results of the study.

The first results are related to the influence of the Reynolds number on the velocities
U and V, when the value of the Hartmann number is fixed. We were able to draw similar
conclusions for both cases studied in [12] (the non-conducting case Ha = 0 and the weakly
magnetic flow case Ha = 1). The consequences of any increase of the Reynolds number
are a modest increase to the V(y) component of the velocity of the blood flow, and a major
decrease of the U(y) component. The effect of this phenomenon is a major deceleration of
the blood velocity in the x-direction. For the case Ha = 0, these conclusions are illustrated
by the Figures 3 and 4, while for the case Ha = 1 (and, actually, for any other value of Ha
on its nominal interval [0, 2]), the figures look very similar.

Figure 3. The effect of the increase of Re on U for the case Ha = 0—three dimensional plot.

Figure 4. The effect of the increase of Re on V for the case Ha = 0—three dimensional plot.

The next study item is the influence of the Hartmann number on the velocities U and
V for fixed values of the Reynolds number. Because the magnetic field is applied in the
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y-direction only, there is no visible influence of the increase of the Ha V(y) component of
the blood velocity while there is a decrease of the U(y) component, as expected. These
conclusions are illustrated for Re = 1 in Figures 5 and 6 (again, we mention that for any
values of the Reynolds number on its nominal interval [1, 20], the figures are similar).

Figure 5. The effect of the increase of Ha on U for the case Re = 1—three dimensional plot.

Figure 6. The effect of the increase of Ha on V for the case Re = 1—three dimensional plot.

In the last part of the study, we investigated the merged impact of Re and Ha on U(y)
and V(y), impact highlighted in the Figures 7 and 8 for y = 0.2 (red surface), y = 0.4 (blue
surface), y = 0.6 (yellow surface) and y = 0.8 (green surface).

Figure 7 is a good synthesis of the research done on the impact of Re and Ha on a
replicated blood flow in a semi-porous channel, as it is obvious that the increase in both
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Re and Ha conduct to the reduction of U(y). At the same time, Figure 8 gives new insight
regarding the interplay between the impact of Re and Ha on the blood flow velocity in the
y-direction, particularly the fact that the decelerative consequence of the increase of Ha
greatly depends on Re. This effect is greater for reduced values of Re and, as a result, in
situations where, due to practical discussions, a strong suction at the upper wall ( defined
by a large value of Re) cannot be achieved, a decrease of blood flow velocity can be achieved
by boosting the intensity of the magnetic field applied. Even if it is practically possible, an
increase of the suction at the upper wall is apparently the preferable method for reducing
the flow, since the effect of the increase of Re seems to be considerably greater than the
effect of the increase of Ha. Furthermore, if the value of the Reynolds number is large, the
consequences of the increase of the Hartmann number is small.

h=0.2

h=0.4

h=0.6

h=0.8

Figure 7. The combined influence of Re and Ha on U. The red surface corresponds to y = 0.2, the
blue surface to y = 0.4, the yellow surface to y = 0.6 and the green one to y = 0.8.

h=0.2

h=0.4

h=0.6

h=0.8

Figure 8. The combined influence of Re and Ha on V. The red surface corresponds to y = 0.2, the
blue surface to y = 0.4, the yellow surface to y = 0.6, and the green one to y = 0.8.

5. Conclusions

The least squares homotopy perturbation method is introduced as a straightforward
and very accurate method to compute analytically approximate solutions for systems of
ordinary differential equations.
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The method was employed for a system of equations modeling the blood flow through
a blood vessel under the action of a magnetic field. The comparison with approximate
solutions computed by using well-known methods, such as the homotopy analysis method,
the differential transform method and the homotopy perturbation method, clearly illustrate
the precision of our method.
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