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Abstract: In the present paper, two optimal control problems are studied using Lie geometric methods
and applying the Pontryagin Maximum Principle at the level of a new working space, called Lie
algebroid. It is proved that the framework of a Lie algebroid is more suitable than the cotangent
bundle in order to find the optimal solutions of some driftless control affine systems with holonomic
distributions. Finally, an economic application is given.
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1. Introduction

In the last decades, Lie geometric methods have been applied successfully in different
domains of research such as dynamical systems or optimal control theory. In this paper,
some Lagrangian systems with some external holonomic constraints are studied. These
types of nonlinear systems have many applications in different areas of optimal control
theory, cybernetics or mathematical economics. In [1], an introduction to optimal control
problems in life sciences and economics is presented, while in [2], some applications of
the control theory of economic growth are given. The book [3] presents a modern and
thorough exposition of the fundamental mathematical formalism used to study optimal
control theory, i.e., continuous time dynamic economic processes and to interpret dynamic
economic behavior. In the book [4], the notions of deterministic optimal control systems
governed by ordinary differential equations are studied. These models cover the problems
of economic growth, exploitation of (non)renewable resources, pollution control, behavior
of firms or differential games. The monograph [5] presents some optimal control models
with management science applications. The book [6] covers the main results of optimal
control theory, in particular necessary and sufficient optimality conditions. In the paper [7],
an optimal control problem regarding a production–inventory system with customer
impatience is studied, and optimizing a production–inventory system under a cost target
is investigated in [8]. In addition, a new approach to maximizing the profit in a stock-
dependent demand inventory model is presented in [9]. Otherwise, there are a multitude of
papers that study the optimization of production and storage costs with various restrictions
(see form instance, [10–15]).

The notion of the Lie algebroid was introduced in differential geometry in the early
1950s, but it can also be found in physics or algebra under a wide variety of names. Using
the geometry of Lie algebroids, in [16] a generalized theory of Lagrangian mechanics is
developed and the equations of motions are obtained using the Poisson structure on the
dual of a Lie algebroid and Legendre transformation associated with a regular Lagrangian.
Later, in [17–19], the same equations of motion are obtained using the symplectic formalism
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for Lagrangians and Hamiltonians, similarly with the J. Klein formalism for the classical
Lagrangian mechanics. The first step in studying the mechanical control systems on
Lie algebroids seems to be performed in [20], where the problems of accessibility and
controllability are also approached. The Pontryagin Maximum Principle on Lie algebroids
is presented in [21] and later extended on almost Lie algebroids in [22]. Some aspects
regarding the abnormality problem in control theory on Lie algebroids are presented
in [23]. The link between optimal control and connection theory on Lie algebroids can
be found in [24–26]. Lie geometric methods in control theory have been applied in many
papers. In [27], the connection between Lie theory and control is presented. The book [28]
deals with the issue of being able to steer the system from any point of departure to
any desired destination and also studies the optimal control problems and the question
of finding the best possible trajectory. In addition, some facts and methods of control
theory treated from the geometric point of view are presented in [29]. The geometry of Lie
algebroids is used in the study of distributional systems (driftless control afine system) in
the papers [12,14,30–36].

One of the most well-known and useful methods in the geometric approach is the
analysis of the solution for the optimal control problem, as given by Pontryagin’s Maximum
Principle. It is known that a curve given by c(t) = (x(t), u(t)) is an optimal trajectory if
there exists a lifting of x(t) to the dual space (x(t), p(t)), which satisfies the Hamilton–
Jacobi–Bellman equations. On the other hand, finding the optimal solution to the control
system remains an extremely difficult problem for several reasons. Firstly, we need to
integrate a Hamiltonian system, which is generally difficult to achieve, depending on the
shape of the dynamic equations and the Hamiltonian function. Thus, if the Lagrangian
has a complicated expression, we cannot guarantee that the Hamiltonian can be calculated
without any dependence on the control. The best situation happens for systems with
quadratic cost, or the so called linear quadratic problems. Secondly, there are some more
special solutions, the so-called abnormal ones, which should be studied and which do not
depend on the shape of the Hamiltonian function. Finally, even if all the solutions are
found, the problem of selecting the optimal solutions from them remains extremely difficult.
For these reasons, we believe that it is important to find new methods and workspaces
that could simplify the study. The optimal trajectories of a driftless control affine system
with holonomic distribution can be regarded as the geodesics in the geometry of Lie
algebroids [37]. In fact, sub-Riemannian problems are distributional systems with quadratic
cost and nonholonomic distribution (bracket generating), see [38,39]. If the distribution is
holonomic, then the system is not controllable, and the distribution determines a foliation
with the property that any curve is contained in a single leaf of the foliation and the
restriction to each leaf of the foliation is bracket-generating. In many cases, it is not possible
to find the exact solution to the optimal control problem. Thus, using the geometry of
the space, we can find information about their local or global behavior. Moreover, if the
geodesic curves belong to a manifold with a constant positive curvature, then the geodesics
focus, and contrarily, the negative curvature spreads the geodesics.

In this paper, we solve two optimal control problems and prove that the framework
of a Lie algebroid is more suitable than the cotangent space in the study of some driftless
control affine systems with holonomic distributions. The paper is organized as follows.
In the second section, the known results about Lie geometric methods in optimal control
theory for control affine systems are presented, including the controllability issues in
the case of holonomic and nonholonomic distributions. In addition, only the necessary
notions about Lie algebroids and their prolongation over the vector bundle projection
are given, and the geometric viewpoint of the optimal control systems on this space is
presented. Moreover, the relation between the HamiltonianH on dual the Lie algebroid E∗

and the Hamiltonian H on the cotangent space T∗M is given. Our strategy is to apply the
Pontryagin Maximum Principle at the level of a Lie algebroid built in the case of control
affine systems with holonomic distribution. The last two sections contain the novelty of the
paper. In the third section, we give an application of driftless control affine system with
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positive homogeneous cost, which is more general than the quadratic cost and show that the
Hamilton–Jacobi–Bellman equations, provided by the Pontryagin Maximum Principle in
the cotangent bundle, lead to a very complicated system of differential equations. Moreover,
it is very difficult to find the Hamiltonian function without dependence on control variables.
For these reasons, we will use a different approach considering the framework of a Lie
algebroid, which simplifies the study. We also prove that the distribution generated by the
vector fields is holonomic, and it determines a foliation in three-dimensional space. Using
the Lie algebra of the vectors of distribution we study the controllability of the system and
find the surfaces that generate the foliation. These aspects are not investigated in other
previous papers of the authors. In the last part of the third section, we find the complete
solution of the problem using the framework of Lie algebroids. The fourth section deals
with the study of an economic problem of inventory and production using the mathematical
model of optimal control and Lie geometric methods for controllability issues. We prove
that the system is not controllable, meaning that we cannot produce any final quantity of
products. The problem has a solution (it is controllable) if and only if there is a certain
relationship between the final quantities of products. The mathematical models and final
results are completely new and different from other previous works. The optimal solution
is obtained using the Pontryagin Maximum Principle on a Lie algebroid. This approach
simplifies the study and shows the connection between the geometry of Lie algebroids and
optimal control for distributional systems.

2. Lie Geometric Methods in Optimal Control

Let M be a smooth n-dimensional manifold and a continuous-time control system
given by differential equations, in the following form:

dxi

dt
= f i(x, u),

where x ∈ M are the state of the system, and u ∈ U ⊂ Rm represents the controls. Let x0 and
x1 be two points of M. We consider an optimal control problem, which consists of finding
the optimal trajectories of the control system that connects x0 and x1 and minimizing the
functional costs:

min
∫ T

0
L(x(t), u(t))dt, x(0) = x0, x(T) = x1,

where L is the Lagrangian function (energy, cost, time, distance, etc.). We have to remark
that the time T can be fixed or free. Fixing the initial point x0 and letting the final point x1
vary in some domain, we obtain a family of optimal control problems. Similarly, we can fix
x1 and let x0 vary. The theory of control deals with some systems whose evolution can be
influenced by some external agents. It is known that one of the most important methods
for studying the optimal solutions in control theory is Pontryagin’s Maximum Principle. It
generates the differential equations of first order, which are only necessary for the optimal
solutions. For each optimal trajectory, c(t) = (x(t), u(t)), it generates a lift on the cotangent
space (x(t), p(t)), satisfying the Hamilton–Jacobi–Bellman equations. The Hamiltonian
function is given by the relation:

H(x, p, u) = 〈p, f (x, u)〉 − L(x, u), p ∈ T∗M,

and the maximization condition with respect to the control variables u, given by:

H(x(t), p(t), u(t)) = max
v

H(x(t), p(t), v),
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which leads to ∂H
∂u = 0, and the extreme trajectories satisfy the equations:

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

. (1)

2.1. Control Affine Systems

Let us consider a control affine system in the following form [40]:

ẋ = X0(x) +
m

∑
i=1

uiXi(x), (2)

where x = (x1, ..., xn) are local coordinates on a smooth n-dimensional manifold M, u(t) =
(u1(t), ..., um(t)) ∈ U ⊂ Rm, m ≤ n are control variables, and X0, X1...Xm are smooth vector
fields on M. In addition, X0 is usually called the drift vector field, describing the dynamics
of the system in the absence of controls, and the vector fields Xi, i = 1, m are called the
input vector fields.

Definition 1. A control system is named controllable if for any two points x0 and x1 on M there
exists a finite time T and an admissible control u : [0, T]→ U, such that for x satisfying x(0) = x0,
we have x(T) = x1.

In other words, the control system is controllable if for any two points x0, x1 there
exists a trajectory of the system (2) that connects x0 to x1. Controllability is the ability to
steer a system from a given initial state to any final state, in finite time, using the available
controls. The reachable set R of a point x0 ∈ M characterizes the states x ∈ M that can
be reached from a given initial state x0 in positive time, by choosing various controls and
switching from one to another from time to time. A system is controllable if R(x) = M,
∀x ∈ M. Controllability does not depend on the quality of the trajectory between two states
of the system and neither the amount nor the effort made for this.

Definition 2. A distribution ∆ on the smooth manifold M is a map which assigns to each point in
M a subspace of the tangent bundle at this point:

x → ∆(x) ⊂ Tx M.

The distribution ∆ is named locally finitely generated if there is a set of vector fields
{Xi}i=1,m, called local generators, which spans ∆, that is ∆(x) = span{X1(x), ..., Xm(x)}.
In addition, the distribution ∆ has dimension k if dim ∆(x) = k, for all points x in M. We
recall that the Lie bracket of two vector fields is given by the relation:

[ f , g](x) =
∂g
∂x

(x) f (x)− ∂ f
∂x

(x)g(x),

( ∂g
∂x is the Jacobian matrix of g). A distribution ∆ on M is called involutive if ∀ x ∈ M, then:

f (x), g(x) ∈ ∆(x)⇒ [ f , g](x) ∈ ∆(x).

Moreover, if the involutive distribution is generated by the vector fields {Xi}i=1,m,
then we have: [

Xi, Xj
]
(x) =

m

∑
k=1

Lk
ij(x)Xk(x).

In other words, every Lie bracket can be expressed as a linear combination of the
vector fields from distribution, and therefore, it already belongs to ∆. A foliation {Sα}α∈A
of manifold M is a partition of M = ∪Sα into disjoint connected (immersed) submanifolds
Sα, called leaves.
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Definition 3. A distribution ∆ of constant dimension on M is called integrable (or holonomic) if
there exists a foliation {Sα}α∈A on M whose tangent space is just ∆, i.e., TxS = ∆(x), where S is
the leaf passing through x.

Theorem 1. (Frobenius) If ∆ is a distribution with a constant dimension, then ∆ is integrable if
and only if ∆ is involutive.

Definition 4. The distribution ∆ = span{X1, ..., Xm} of the manifold M is called bracket-
generating if the iterated Lie brackets

Xi, [Xi, Xj], [Xi, [Xj, Xk]], · · ·, 1 ≤ i, j, k ≤ m,

span the tangent space TM of M at every point.

Using the Lie brackets of vector fields, we construct the flag of subsheaves:

∆ ⊂ ∆2 ⊂ · · · ⊂ ∆r ⊂ · · · ⊂ TM

∆2 = ∆ + [∆, ∆], ..., ∆r+1 = ∆r + [∆, ∆r]

where
[∆, ∆r] = span{[X, Y] : X ∈ ∆, Y ∈ ∆r}.

If there exists an r ≥ 2 such that ∆r = TM, we say that ∆ is a bracket-generating
distribution, and r is called the step of the distribution ∆. In this case, the distribution
∆ is not integrable and is called nonholonomic. This condition is also known as a strong
Hörmander condition or a Lie algebra rank condition. If r = 2, the distribution is called a strong
bracket-generating distribution. Next, we consider the driftless control affine system (X0 = 0)
or distributional systems in the following form:

ẋ =
m

∑
i=1

uiXi(x). (3)

The vector fields Xi, i = 1, m, generate a distribution ∆ on the manifold M (assumed to
be connected) such that the rank of ∆ is assumed to be constant. For x0 and x1, two points
on M, we consider an optimal control problem that consists of finding those trajectories of
the distributional system which connect x0 and x1 and minimizing the cost:

min
u(·)

∫ T

0
F (u(t))dt, (4)

where F is a positive homogeneous function of ∆. We will characterize the controllability
using the properties of vector fields, which generate the distribution ∆.

Theorem 2. (Chow–Rashevsky) If the distribution ∆ = span{X1, ..., Xm} is bracket-generating
(nonholonomic), then the driftless control affine system is controllable.

If ∆ is not bracket-generating and is integrable (holonomic), then the system (3) is
not controllable, and ∆ determines a foliation on M, with the property that any curve is
contained in a single leaf of the foliation, and the restriction of ∆ to each leaf of the foliation
is bracket-generating. We will study in this paper the case of holonomic distributions.

If we assume that the distribution ∆ = span{X1, X2, ..., Xm} is holonomic with constant
rank, which means that [Xi, Xj] ∈ ∆ for every i, j = 1, m, i 6= j, then from the Frobenius
theorem, it results that the distribution ∆ is integrable, it determines a foliation on M and
two points can be joined if and only if they are situated on the same leaf.

Next, we will present some notions about Lie algebroids, which are useful in the study
of driftless control affine systems.
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2.2. Lie Algebroids

Let M be a real, C∞-differentiable, n-dimensional manifold and Tx M its tangent space
at x ∈ M. The tangent bundle of M is denoted (TM, πM, M), where TM = ∪Tx M and πM
is the canonical projection map πM : TM→ M taking a tangent vector X(x) ∈ Tx M ⊂ TM
to the base point x ∈ M. A vector bundle is a triple (E, π, M) where E and M are manifolds,
called the total space and the base space and the map π : E→ M is a surjective submersion.
Using [41], we have:

Definition 5. A Lie algebroid over a manifold M is given by a triple (E, [·, ·]E, σ), where (E, π, M)
is a vector bundle of rank m over M, which satisfies the following conditions:
a) C∞(M)-module of sections Γ(E) is equipped with a Lie algebra structure [·, ·]E;
b) σ : E→ TM is a bundle map, called the anchor, which induces a Lie algebra homomorphism from
the Lie algebra of sections (Γ(E), [·, ·]E) to the Lie algebra of vector fields (X (M), [·, ·]), satisfying
the Leibniz rule:

[s1, f s2]E = f [s1, s2]E + (σ(s1) f )s2, ∀s1, s2 ∈ Γ(E), f ∈ C∞(M).

In addition, we have the following relations:
1◦ [·, ·]E is a R-bilinear operation,
2◦ [·, ·]E is skew-symmetric, i.e., [s1, s2]E = −[s2, s1]E, ∀s1, s2 ∈ Γ(E),

3◦ [·, ·]E verifies the Jacobi identity:

[s1, [s2, s3]E]E + [s2, [s3, s1]E]E + [s3, [s1, s2]E]E = 0,

and σ, being a Lie algebra homomorphism, then satisfies the relation:

σ[s1, s2]E = [σ(s1), σ(s2)].

For a function f on M, then d f (x) ∈ E∗x is given by 〈d f (x), a〉 = σ(a) f for ∀a ∈ Ex.
If ω ∈ ∧k(E∗), then the exterior derivative dEω ∈ ∧k+1(E∗) is given by the formula:

dEω(s1, ..., sk+1) =
k+1

∑
i=1

(−1)i+1σ(si)ω(s1, ...,
ˆ
si, ..., sk+1)

+ ∑
1≤i<j≤k+1

(−1)i+jω([si,sj]E, s1, ...,
ˆ
si, ...,

ˆ
sj, ...sk+1),

where si ∈ Γ(E), i = 1, k + 1, and the hat over an argument means the absence of the
argument. In addition, it results that (dE)2 = 0. If we consider the local coordinates (xi)
on U ⊂ M and a local basis {sα} of the sections of the bundle π−1(U) → U, then these
generate local coordinates (xi, yα) on E. The local functions σi

α(x), Lγ
αβ(x) on M are given

by the following relations:

σ(sα) = σi
α

∂

∂xi , [sα, sβ]E = Lγ
αβsγ, i = 1, n, α, β, γ = 1, m,

and are called the structure functions of Lie algebroids. Some examples of Lie algebroids
are as follows:

Example 1. The tangent bundle E = TM itself, with identity mapping as anchor. With respect to
the usual coordinates (x,

·
x), the structure functions are Li

jk = 0, σi
j = δi

j, but if we were to change
to another basis for the vector fields, the structure functions would become nonzero.

Example 2. Any integrable subbundle of tangent bundle TM is a Lie algebroid with the inclusion
as anchor and the induced Lie bracket.
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2.3. The Prolongation of a Lie Algebroid

Let us consider τ : E∗ → M as the dual bundle of π : E → M and (E, [·, ·]E, σ) a Lie
algebroid structure over M. A Lie algebroid structure over E∗ can be constructed by taking
the prolongation of (E, [·, ·]E, σ) over τ : E∗ → M (see [42–44]). This structure is given by:

(i) The associated vector bundle is (T E∗, τ1, E∗), where T E∗ = ∪Tu∗E∗, u∗ ∈ E∗,

Tu∗E∗ = {(ux, vu∗) ∈ Ex × Tu∗E∗|σ(ux) = Tu∗τ(vu∗), τ(u∗) = x ∈ M},

and the projection τ1 : T E∗ → E∗, τ1(ux, vu∗) = u∗.
(ii) The Lie algebra structure [·, ·]T E∗ on Γ(T E∗) is defined as follows: If ρ1, ρ2 ∈

Γ(T E∗) are such that ρi(u∗) = (Xi(τ(u∗)), Ui(u∗)), where Xi ∈ Γ(E), Ui ∈ χ(E∗) and
σ(Xi(τ(u∗)) = Tu∗τ(Ui(u∗)), i = 1, 2, then

[ρ1, ρ2]T E∗(u∗) = ([X1, X2]T E∗(τ(u∗)), [U1, U2]T E∗(u∗)).

(iii) The anchor map is the projection σ1 : T E∗ → TE∗, σ1(u, v) = v.
We remark that if T τ : T E∗ → E, T τ(u, v) = u then (VT E∗, τ1|VT E∗ , E∗) with

VT E∗ = KerT τ is a sub-bundle of (T E∗, τ1, E∗), called the vertical sub-bundle. If (xi, µα)
are local coordinates on E∗ at u∗ and sα is a local basis of sections of π : E → M, then a
local basis of Γ(T E∗) is {Xα,Pα}, where:

Xα(u∗) =
(

sα(τ(u∗)), σi
α

∂

∂xi |u∗
)

, Pα(u∗) =
(

0,
∂

∂µα
|u∗
)

.

The structure functions of T E∗ are given by the following formulas:

σ1(Xα) = σi
α

∂

∂xi , σ1(Pα) =
∂

∂µα
,

[Xα,Xβ]T E∗ = Lγ
αβXγ, [Xα,Pα]T E∗ = 0, [Pα,P β]T E∗ = 0,

and therefore:

dExi = σi
αX α, dEµα = Pα, dEX γ = −1

2
Lγ

αβX
α ∧ X β, dEPα = 0,

where {X α,Pα} is the dual basis of {Xα,Pα}. In local coordinates, the Liouville section is
given by:

θE = µαX α.

The canonical symplectic section ωE is defined by:

ωE = −dEθE,

and it results in a nondegenerate 2-section and dEωE = 0. We obtain:

ωE = X α ∧ Pα +
1
2

µαLα
βγX β ∧ X γ.

By a control system on the Lie algebroid (E, [·, ·]E, σ) (see [21]) with the control space
given by τ : A → M, we understand a section ρ of E along τ. A trajectory of the system
ρ is an integral curve of the vector field σ(ρ). Considering the cost function L ∈ C∞(A),
we must to minimize the integral of L over the family of those system trajectories which
satisfy certain constraints. The Hamiltonian functionH ∈ C∞(E∗ ×M A) is given by:

H(µ, u) = 〈µ, ρ(u)〉 − L(u),
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and the associated Hamiltonian control system ρH is given by the symplectic equation on
Lie algebroid:

iρH ωE = dEH.

In local coordinates, the solution of the previous equation reads as:

ρH =
∂H
∂µα
Xα −

(
σi

α
∂H
∂xi + µγLγ

αβ

∂H
∂µβ

)
Pα,

on the subset where
∂H
∂uA = 0.

The critical trajectories are given by [21]:

∂H
∂uA = 0,

dxi

dt
= σi

α
∂H
∂µα

,
dµα

dt
= −σi

α
∂H
∂xi − µγLγ

αβ

∂H
∂µβ

. (5)

We have to remark that it can be associated to any positive homogeneous cost L : E→
R on Lie algebroids E. A cost L on Imσ ⊂ TM is defined in the following form:

L(v) = {L(u)|u ∈ Ex, σ(u) = v},

where v ∈ (Imσ)x ⊂ Tx M, x ∈ M. From [35], we have:

Theorem 3. The relation between the Hamiltonian function H on the cotangent bundle T∗M and
the Hamiltonian functionH on the dual Lie algebroid E∗ has the form:

H(p) = H(σ?(p)), µ = σ?(p), p ∈ T∗x M, µ ∈ E∗x . (6)

Proof. From the Fenchel–Legendre dual of Lagrangian L, we obtain the Hamiltonian H
given by:

H(p) = sup
v
{〈p, v〉 − L(v)} = sup

v
{〈p, v〉 − L(u); σ(u) = v}

= sup
u
{〈p, σ(u)〉 − L(u)} = sup

u
{〈σ?(p), u〉 − L(u)} = H(σ?(p)),

Furthermore, it results in the following:

H(p) = H(µ), µ = σ?(p), p ∈ T∗x M, µ ∈ E∗x ,

or in local coordinates:

µα = σ∗iα pi, (7)

where the Hamiltonian H(p) is degenerate on Kerσ? ⊂ T∗M.

3. Application to Optimal Control

Let us consider the following driftless control affine system (distributional system)
with positive homogeneous cost (Randers type metric):

ẋ1 = u2
ẋ2 = u1 + u2x2

ẋ3 = u1 + u2x3
(8)



Mathematics 2022, 10, 545 9 of 19

min
u(·)

∫ T

0

(√
u2

1 + u2
2 + εu1

)
dt, 0 ≤ ε < 1.

We are looking for the optimal trajectories of the system, starting from the initial

point (0, 1, 0)t, which are parameterized by constant speed, that is,
√

u2
1 + u2

2 + εu1 = const.
(minimum time problem), and have free endpoints. The control system can be written in
the following form:

ẋ = u1X1 + u2X2, x =

 x1

x2

x3

 ∈ R3, X1 =

 0
1
1

, X2 =

 1
x2

x3

 (9)

min
u(·)

∫ T

0
F (u(t))dt, F (u) =

√
u2

1 + u2
2 + εu1, 0 ≤ ε < 1.

The vector fields of distributional system are given by:

X1 =
∂

∂x2 +
∂

∂x3 , X2 =
∂

∂x1 + x2 ∂

∂x2 + x3 ∂

∂x3 .

The Lie bracket of the vector fields is:

[X1, X2] =

[
∂

∂x2 +
∂

∂x3 ,
∂

∂x1 + x2 ∂

∂x2 + x3 ∂

∂x3

]
= X1,

and it results that the associated distribution ∆ = span{X1, X2} is holonomic and has the
constant rank 2. Moreover, from the system (8), we obtain:

ẋ2 − ẋ3 = ẋ1(x2 − x3),

which yields the following by integration:

ln
∣∣∣x2 − x3

∣∣∣ = x1 + c, (10)

where c is a constant, and it results that ∆ determines a foliation on R3, given by the surfaces
(10). Furthermore, the coordinate point (0, 1, 0)t is on the surface given by ln

∣∣x2 − x3
∣∣ = x1,

and the optimal trajectories of the system belong to the same surface. In order to solve
this optimal control problem, the Pontryagin Maximum Principle in the cotangent bundle
can be used. The Lagrangian has the form L = 1

2F 2 (every minimizer parametrized
by arclength, or constant speed F = 1, is also a minimizer of the so-called energy cost
L = 1

2F 2; see [34] for more details), and we obtain the Hamiltonian as follows:

H(u, x, p) = pi ẋi −L = p1u2 + p2(u1 + u2x2) + p3(u1 + u2x3)− 1
2

(√
u2

1 + u2
2 + εu1

)2
.

The Hamilton–Jacobi–Bellman equations on the cotangent bundle given by ∂H
∂ui

= 0,
dxi

dt = ∂H
∂pi

, dpi
dt = − ∂H

∂xi lead to the following system:


p2 + p3 −

(√
u2

1 + u2
2 + εu1

)(
ε + u1√

u2
1+u2

2

)
= 0

p1 + p2x2 + p3x3 −
(√

u2
1 + u2

2 + εu1

)
u2√

u2
1+u2

2
= 0

(11)

and a very complicated system of implicit differential equations. From (11), it is difficult
to find the Hamiltonian H without dependence on the control variables. For this reason,
a different approach will be used, involving the framework of a Lie algebroid.
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In order to use the Pontryagin Maximum Principle in the framework of Lie algebroids,
we will consider E = ∆ (holonomic distribution with constant rank). The anchor σ : E→
TM is the inclusion, and [·, ·]E the induced Lie bracket. In the case of the previous control
system (9), the anchor σ has the local components given by:

σi
α =

 0 1
1 x2

1 x3

,

and we consider the Lagrangian function given by:

L =
1
2

(√
u2

1 + u2
2 + εu1

)2
.

Using [45], we can find the Hamiltonian on E∗ in the following form:

H(µ) =
1
2

(√
(µ1)2

(1− ε2)2 +
(µ2)2

1− ε2 −
εµ1

1− ε2

)2

. (12)

Using the relations (6) and (7), we can calculate the Hamiltonian H on T∗M given by
H(x, p) = H(µ), µ = σ?(p), where:

(
µ 1
µ2

)
=

(
0 1 1
1 x2 x3

) p1
p2
p3

.

We obtain that µ1 = p2 + p3, µ2 = p1 + p2x2 + p3x3, and it results in the Hamiltonian
in the cotangent bundle:

H(x, p) =
1
2

(√
(p2 + p3)2

(1− ε2)
2 +

(p1 + p2x2 + p3x3)2

1− ε2 − ε(p2 + p3)

1− ε2

)2

. (13)

Unfortunately, the Equations (1) on T∗M with H(x, p) from (13) lead to a complicated
system of implicit differential equations. We will use the framework of a Lie algebroid.
From the relation [Xα, Xβ] = Lγ

αβXγ, we obtain the non-zero components L1
12 = 1, L1

21 = −1,
while from (5), we deduce the following:

ẋ1 =
∂H
∂µ2

, ẋ2 =
∂H
∂µ1

+ x2 ∂H
∂µ2

, ẋ3 =
∂H
∂µ1

+ x3 ∂H
∂µ2

,

µ̇1 = −µ1
∂H
∂µ2

, µ̇2 = µ1
∂H
∂µ1

,

where

∂H
∂µ1

=

(
1 + ε2)µ1

(1− ε2)2 −
ε

√
(µ1)2

(1−ε2)2 +
(µ2)2

1−ε2

1− ε2 −
εµ2

1

(1− ε2)3

√
(µ1)2

(1−ε2)2 +
(µ2)2

1−ε2

,

∂H
∂µ2

=
µ2

1− ε2 −
εµ1µ2

(1− ε2)2

√
(µ1)2

(1−ε2)2 +
(µ2)2

1−ε2

.

We consider the following change of variables:

µ1(t) = (1− ε2)r(t) sechθ(t), µ2(t) =
√

1− ε2r(t) tanh θ(t). (14)
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where

sinh θ =
eθ − e−θ

2
, cosh θ =

eθ + e−θ

2
, tanh θ =

sinh θ

cosh θ
, sechθ =

1
cosh θ

.

In these conditions, we have:√
(µ1)2

(1− ε2)2 +
(µ2)2

1− ε2 = |r|,

and the differential equations:

µ̇1 = −µ1
∂H
∂µ2

,

with the relation (14) yielding:

√
1− ε2

(
ṙ
r
− θ̇ tanh θ

)
= r(− tanh θ + εsechθ tanh θ). (15)

In addition, from the equation

µ̇2 = µ1
∂H
∂µ1

,

and (14), we obtain:√
1− ε2

(
ṙ
r

tanh θ + θ̇ sech2θ

)
= r((1 + ε)2sech2θ − εsechθ − εsech3θ). (16)

Now, reducing θ̇ and ṙ
r from the Equations (15) and (16), we obtain:√

1− ε2ṙ = r2εsechθ tanh θ(εsechθ − 1),

and √
1− ε2θ̇ = r(εsechθ − 1)2.

The last two equations lead to:

ṙ
θ̇
=

rεsechθ tanh θ

εsechθ − 1
,

and to:

dr
r

=
εsechθ tanh θ

εsechθ − 1
dθ,

respectively, with the solution given by:

ln|r| = − ln(εsechθ − 1)− ln c.

which leads to:

|r| = 1
c(εsechθ − 1)

.

Since the optimal trajectories are parameterized by arclength, the conclusion corre-
sponds to the 1/2 level of the Hamiltonian, and we obtain:

H =
r2

2
(1− εsechθ)2 =

1
2c2 .
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Now, c = ±1 and

r = ± 1
εsechθ − 1

.

The equation
µ̇1 = −µ1 ẋ1,

implies the following:

x1(θ) = ln
c1(1− εsechθ)

(1− ε2)sechθ
, c1 ∈ R.

Since we are looking for the optimal trajectories starting from the initial point (0, 1, 0)t,
we have x1(0) = 0 and:

ln
c1

1 + ε
= 0⇒ c1 = 1 + ε,

which leads to:

x1(θ) = ln
1− εsechθ

(1− ε)sechθ
= ln

cosh θ − ε

1− ε
.

We also obtain the following:

µ̇2 = µ1

(
ẋ2 − x2 ∂H

∂µ2

)
= µ1 ẋ2 + x2µ̇1,

and, consequently, µ2 = µ1x2 + c2. Furthermore:

x2(θ) =
sinh θ√
1− ε2

± c2(1− εsechθ)

(1− ε2) sechθ
.

From x2(0) = 1, we obtain that c2 = 1 + ε, and this yields:

x2(θ) =
sinh θ√
1− ε2

+
cosh θ − ε

1− ε
.

In the same way, we obtain:

x3(θ) =
sinh θ√
1− ε2

± c3(1− εsechθ)

(1− ε2) sechθ
.

From x3(0) = 0, we obtain that c3 = 0 and it results in the following:

x3(θ) =
sinh θ√
1− ε2

.

The solution is optimal because the Hamiltonian is a convex function. Using (8), we
have u2 = ẋ1, u1 = ẋ3 − u2x3 = ẋ2 − u2x2, and by direct computation, we obtain the
control variables:

u2(θ) =
sinh θ

cosh θ − ε
, u1(θ) =

1√
1− ε2

1− ε cosh θ

cosh θ − ε
.

We have to remark that if ε = 0, then we obtain the case of driftless control affine
systems with quadratic cost with the solution:

x1(t) = ln cosh t, x2(t) = sinh t + cosh t, x3(t) = sinh t,



Mathematics 2022, 10, 545 13 of 19

and control variables
u2(t) = tanh t, u1(t) = secht.

4. Economic Application

Let us consider that in a fixed period of time T, three types of products, P1, P2, P3,
must be manufactured in certain fixed quantities. It is assumed that the production rate
of the product P3 depends on production rates of P1 and P2 by a given law. We assume
that the unit production costs for the first two products increase linearly with the level
of production and the production operations costs for the third product are considered
negligible (for example, being obtained by combining the first two products together with
other external products). We have storage costs of holding inventory given by constants
(β1, β2, β3) for each type of product, and there are no restrictions on production capacity.
The goal is to find an optimal production plan such as to ensure the required quantities of
each type of product on a fixed date but with minimal costs of production and storage.

We will consider the following notations: Pi are the products, i = 1, 2, 3; T is the fixed
period of time to ensure the quantities of products; xi(t) are the accumulated quantities by
time t; si are the final quantities required; pi(t) are the rates of production at time t; and ci
are the unit production costs.

We assume that the initial quantity of products is zero. If, however, there is a certain
quantity of products, then it is deducted from the final quantities required, that is, xi(0) = 0
and xi(T) = si. The production costs increase linearly with the production level and are
given by ci = αi pi, α1, α2 > 0, i = 1, 2. The production rate for the last product is assumed
to be given by the law ẋ3 = u1x2 + u2x1, where u1, u2 ≥ 0 are control variables with
ẋ1 = u1, ẋ2 = u2. It is known that the inventory level is the accumulated past production
pi = pi(t). Considering xi(0) = 0, we obtain:

xi(t) =
∫ t

0
pi(s)ds

and the rate of change of inventory level ẋi is the production rate and we have ẋi(t) = pi(t).
The unit production costs ci increase linearly with the production level, ci = αi pi, where
α1, α2 > 0 are positive constants, and it results that the total cost of production is given
by c1 p1 + c2 p2 = α1(p1)2 + α2(p2)2 = α1(ẋ1)2 + α2(ẋ2)2 = α1u2

1 + α2u2
2. It results that the

total cost of production and storage is α1u2
1 + α2u2

2 + β1x1 + β2x2 + β3x3. Finally, we obtain
the following optimal control problem:

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2 + u2x1 (17)

xi(0) = 0, xi(T) = si

u1, u2 ≥ 0, α1, α2 > 0, β1, β2, β3 ≥ 0.

We are looking for a plan of production with the minimum total cost:

min
u

∫ T

0
(α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3)dt.

From the conditions u1, u2 ≥ 0, it results that ẋ1 ≥ 0 and ẋ2 ≥ 0 and x1(t), x2(t)
are increasing functions, which together with the initial conditions xi(0) = 0 ensures the
economic conditions of positivity xi(t) ≥ 0, i = 1, 2. In addition, ẋ3 = u1x2 + u2x1 ≥ 0,
and using x3(0) = 0, we obtain x3(t) ≥ 0. Some different mathematical models can be
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found in the papers [10,12–15]. It results that the system (17) is a driftless control affine
system on R3

+, written in the following form:

ẋ = u1X1 + u2X2, x = (x1, x2, x3)t ∈ R3
+

min
u

∫ T

0
F(u(t), x(t))dt,

where we have denoted the vector fields and the total cost:

X1 =

 1
0
x2

, X2 =

 0
1
x1


F(u(t), x(t)) = α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3.

In the next, we are looking for the optimal trajectories of the dynamical system starting
from the initial point (0, 0, 0) and endpoint (s1, s2, s3). In addition, the distribution ∆ =
span{X1, X2} generated by the vector fields X1, X2 has constant dimension, dim ∆(x) = 2,
for all x ∈ R3. Moreover, in a natural basis

{
∂

∂x1 , ∂
∂x2 , ∂

∂x3

}
of R3, the vector fields have the

following expressions:

X1 =
∂

∂x1 + x2 ∂

∂x3 , X2 =
∂

∂x2 + x1 ∂

∂x3 .

Using the Lie bracket formula [ f X, gY] = f g[X, Y] + f X(g)Y− gY( f )X, it results in
the following:

[X1, X2] =

[
∂

∂x1 + x2 ∂

∂x3 ,
∂

∂x2 + x1 ∂

∂x3

]
=

∂

∂x3 −
∂

∂x3 = 0,

and we obtain that the distribution ∆ is involutive. From the Frobenius theorem, it results
that the distribution is integrable (holonomic), and it determines a foliation on R3

+. Two
points can be joined by an optimal trajectory if and only if they are situated on the same
leaf. In fact, the economical system is not controllable in the sense that we cannot reach any
final stock quantity. Indeed, from the system (17), we obtain:

ẋ3 = ẋ1x2 + ẋ2x1,

and it results, through integration, that x3 = x1x2 + c, c ∈ R, which are the surfaces in R3
+,

which determine a foliation. Moreover, using xi(0) = 0, we obtain the relation x3 = x1x2.
From xi(T) = si, it results that the problem has a solution (the system is controllable)
if and only if the final product amounts satisfy the condition s3 = s1s2. In order to use
the Pontryagin Maximum Principle in the framework of Lie algebroids, we will consider
E = ∆ (holonomic distribution with constant rank), where the anchor σ : E→ TM is the
inclusion and [·, ·]E is the induced Lie bracket. In the case of the previous control system
(17), the anchor σ has the local components given by:

σi
α =

 1 0
0 1
x2 x1

,

and we consider the Lagrangian function given by:

L = F(u(t), x(t)) = α1(u1(t))2 + α2(u2(t))2 + β1x1 + β2x2 + β3x3.
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Using the Legendre transformation associated to the regular Lagrangian L, we can
find the HamiltonianH on E∗ in the form:

H(µ) =
(µ1)

2

4α1
+

(µ2)
2

4α2
− β1x1 − β2x2 − β3x3. (18)

Using the relations (6) and (7), we can calculate the Hamiltonian H on T∗M given by
H(x, p) = H(µ), µ = σ?(p), where

(
µ 1
µ2

)
=

(
1 0 x2

0 1 x1

) p1
p2
p3

.

We find that µ1 = p1 + p3x2, µ2 = p2 + p3x1, and it results in the Hamiltonian function
in the cotangent bundle:

H(x, p) =
(p1 + p3x2)2

4α1
+

(p2 + p3x1)2

4α2
− β1x1 − β2x2 − β3x3. (19)

However, the Equations (1) on T∗M with H(x, p) from (19) lead to a complicated
system of implicit differential equations. We will use the framework of a Lie algebroid. We
will consider two cases:

4.1. The Case β1 = β2 = β3 = 0

From an economic point of view, this means that we have no storage costs, for example,
the products are delivered immediately after manufacture.

Theorem 4. The optimal solution of the control system (17) in the case of zero storage costs has the
following form for 0 ≤ t ≤ T:

x1(t) =
s1t
T

, x2(t) =
s2t
T

, x3(t) =
s1s2t2

T2 , (20)

where the production rates (control variables) are positive constants:

u1(t) =
s1

T
, u2(t) =

s2

T
. (21)

Proof. The Hamiltonian function (18) has, in this case, the formH(µ) = (µ1)
2

4α1
+ (µ2)

2

4α2
. From

the relation [Xα, Xβ] = 0 and Equation (5), we deduce the following:

ẋ1 =
µ1

2α1
, ẋ2 =

µ2

2α2
, ẋ3 =

µ1x2

2α1
+

µ2x1

2α2
, µ̇1 = 0, µ̇2 = 0,

which leads to µ1 = a1, µ2 = a2, where a1, a2 ∈ R. It results in ẋ1 = a1
2α1

, ẋ2 = a2
2α2

.

Moreover, x1 = a1t
2α1

+ b1, x2 = a2t
2α2

+ b2. By using xi(0) = 0, we obtain x1(t) = a1t
2α1

,

x2(t) = a2t
2α2

and x3(t) = a1a2t2

4α1α2
. From xi(T) = si, we obtain s1 = a1T

2α1
, s2 = a2T

2α2
, which leads

to a1 = 2α1s1
T , a2 = 2α2s2

T , and we finally obtain, for 0 ≤ t ≤ T, the results (20) and (21). The
solution is optimal because the Hamiltonian is a convex function, which ends the proof.

4.2. The Case β1, β2, β3 > 0

From an economic point of view, this means that the products are stored and delivered
at the end of the fixed period.
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Theorem 5. The optimal solution of the control system (17) is given by:

x1(t) = c1eαt + c2e−αt + c3 cos αt + c4 sin αt− β2

β3
, (22)

x2(t) =
√

α1

α2

(
c1eαt + c2e−αt − c3 cos αt− c4 sin αt

)
− β1

β3
, (23)

x3(t) = x1(t)x2(t),

with control variables:

u1(t) =
√

β3√
2
√

α1α2

(
c1eαt − c2e−αt − c3 sin αt + c4 cos αt

)
, (24)

u2(t) =
√

β3
√

α1√
2α2

(
c1eαt − c2e−αt + c3 sin αt− c4 cos αt

)
, (25)

where α =

√
β3√

2
√

α1α2
, β = αT and constant coefficients

c1 =
1

eβ − e−β

(
s1

2
+

s2
√

α2

2
√

α1
+

(
β2

2β3
+

β1
√

α2

2β3
√

α1

)(
1− eβ

))
, (26)

c2 =
1

e−β − eβ

(
s1

2
+

s2
√

α2

2
√

α1
+

(
β2

2β3
+

β1
√

α2

2β3
√

α1

)(
1− e−β

))
, (27)

c3 =
β2

2β3
−

β1
√

α2

2β3
√

α1
, (28)

c4 =
1

2 sin β

(
s1 +

β2

β3
−
√

α2√
α1

(
s2 +

β1

β3

)
−
(

β2

β3
− β1

β3

√
α2√
α1

)
cos β

)
. (29)

Proof. The necessary conditions for optimality (5) and the Hamiltonian function (18) lead
to the following differential equations:

ẋ1 =
µ1

2α1
, ẋ2 =

µ2

2α2
, ẋ3 = x2 µ1

2α1
+ x1 µ2

2α2
, (30)

µ̇1 = β1 + x2β3, µ̇2 = β2 + x1β3. (31)

From (30) and (31) by derivation, it results in the following:

ẍ1 =
µ̇1

2α1
=

β1

2α1
+ x2 β3

2α1
, ẍ2 =

µ̇2

2α2
=

β2

2α2
+ x1 β3

2α2
, (32)

which leads, by twice derivation, to:

....
x 1 = ẍ2 β3

2α1
,

....
x 2 = ẍ1 β3

2α2
, (33)

and together with (32) yields the nonhomogeneous differential equations of order 4,
given by:

....
x 1 = x1 β2

3
4α1α2

+
β2β3

4α1α2
, (34)

....
x 2 = x2 β2

3
4α1α2

+
β1β3

4α1α2
. (35)
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Considering the homogeneous differential equation from (34)

....
x 1 = x1 β2

3
4α1α2

, (36)

with characteristic equation

λ4 −
β2

3
4α1α2

= 0,

we obtain the following solutions:

λ1,2 = ±
√

β3√
2
√

α1α2
, λ3,4 = ±

i
√

β3√
2
√

α1α2
.

Then, we obtain the general solution of the homogeneous differential Equation (36) in
the following form:

x1(t) = c1eαt + c2e−αt + c3 cos αt + c4 sin αt + d1,

and the solution of the nonhomogeneous differential Equation (34) is given by (22).
In the same way, considering Equations (32) and (35), obtain (23). Using u1 = ẋ1,

u2 = ẋ2, we obtain (24) and (25). The initial and final conditions xi(0) = 0, xi(T) = si,
i = 1, 2 lead to the following linear system:

c1 + c2 + c3 = β2
β3

c1 + c2 − c3 =
β1
√

α2
β3
√

α1

c1eβ + c2e−β + c3 cos β + c4 sin β = s1 +
β2
β3

c1eβ + c2e−β − c3 cos β− c4 sin β =
√

α2√
α1

(
s2 +

β1
β3

)
By direct computation, we obtain the solution (26)–(29). The solution is optimal

because the Hamiltonian is convex.

5. Conclusions

In this paper, some topics of dynamical systems (distributional systems) using Lie
geometric methods are studied. In the case of two driftless control affine systems with
holonomic distributions, we proved that the framework of Lie algebroids is more sustain-
able than cotangent bundles in order to apply the Pontryagin Maximum Principle and find
the optimal solutions. This approach significantly simplifies the study and shows once
again the intrinsic link between geometry and the optimal control, in particular between
Lie algebroids and distributional systems with holonomic distributions. In addition, an eco-
nomical application is given. As further developments, we will try to use the framework
of Lie algebroids in the case of nonholonomic distribution (in particular, strong bracket-
generating distributions) and characterize the abnormal solutions using the geometry of
Lie algebroids.
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