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Abstract: This paper introduces a new concept called cyclic associative semihypergroup (CA-
semihypergroup). The relationships among CA-semihypergroups, Semihypergroups and LA-
semihypergroups are studied through some interesting examples. The relationships among various
NET-CA-semihypergroups are also studied. The main properties of strong pure neutrosophic ex-
tended triplet CA-semihypergroups (SP-NET-CA-semihypergroups) are obtained. In particular, the
algorithm of a generated CA-semihypergroup of order tm+n by two known CA-semihypergroups
of order m and n is proven, and a CA-semihypergroup of order 19 is obtained by using a Python
program. Moreover, it is proven that five different definitions, which can all be used as the definition
of SP-NET-CA-Semihypergroup, are equivalent.

Keywords: CA-semihypergroup; NET-CA-semihypergroup; SP-NET-CA-semihypergoup; semihy-
pergroup; LA-semihypergroup

1. Introduction

The associative law
(x y) z = x (y z), (1)

is an important operation law of binary operation. If we replace x with y, y with z, z with x
in identity (1), then the identity (1) becomes

(y z) x = y (z x). (2)

Clearly, the identity (2) is also associative. This shows that associative law reflects the
symmetry of binary operation. Similarly, other types of nonassociative laws such as

(x y) z = (z x) y, Left weakly Novikov law,

(x y) z = x (z y), Tarski’s associative law,

(x y) z = (z y) x, Left invertive law,

x (y z) = z (y x), Grassman’s associative law,

and so on also reflect their own symmetries.
Today, nonassociativity is applied to many scientific and technological fields, among

which are physics (see [1]), functional equations (see [2]), nonassociative rings and nonas-
sociative algebras (see [3–7]), image processing (see [8]), networks (see [9]) and so on. This
paper examines a type of nonassociative algebraic structure with cyclic associative law.

More than 70 years ago, L. Byrne took the following two formulas

(x y) z = (y z) x, (3)
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x y′ = z z′� x y = x,

as axioms of Boolean algebra and proved that the Boolean algebra satisfying these axioms
is commutative (see [10]). Later, M. Sholander discussed properties of various semilattices
with identity (3), he called identity (3) cyclic associative law (see [11]). Obviously, if
commutative law holds, the identity (3) is equivalent to

z (x y) = x (y z). (4)

Furthermore, using identity (4), we have

x (y z) = y (z x). (5)

Therefore, in this paper, (4) and (5) are still called cyclic associative law.
Since the concept of cyclic associative law appeared, it has been used in many research

fields. In 1995 M. Kleinfeld discussed rings satisfying cyclic associative law (CA-rings)
(see [12]). After that, A. Behn, I. Correa and I.R. Hentzel studied semiprimality and
nilpotency of CA-rings in 2008 (see [13]). D. Samanta and I.R. Hentzel studied CA-rings
satisfying (a, a, b) = (b, a, a) in 2019 (see [14]). Besides these, cyclic associative law is used
to study other algebraic structures. In 2016 M. Iqbal, I. Ahmad, M. Shah and M.I. Ali
defined AG-groupoids with cyclic associative law (CA-AG-groupoid) and studied their
properties (see [15]). M. Iqbal and I. Ahmad then further studied this algebraic structure,
obtaining some interesting results (see [16,17]). In 2019 Zhang, X.H., Ma, Z.R. and Yuan W.T.
introduced the concepts of CA-Groupoid and CA-NET-Groupoid and showed that each
CA-NET-groupoid can be expressed as the union of disjoint subgroups (see [18]). A year
later, Yuan W.T., and Zhang, X.H. studied CA-NET-Groupoids with Green relations and
proved some important results (see [19]). Shortly afterward, an algebraic structure called
variant CA-Groupoid was defined by Ma, Z.R., Zhang, X.H. and Smarandache F., and the
construction methods were obtained (see [20]).

It is well known that hyperstructure theory is a natural extension of traditional alge-
braic structure and has been applied in many fields such as artificial intelligence, automata,
codes, cryptography, graphs and hypergraphs, geometry, probabilities, binary relations,
relation algebras, median algebras, C-algebras, fuzzy sets and rough sets and lattices.
In recent years, some new hyperstructures have been introduced and studied. In 2018
M. Gulistan, S. Nawaz and N. Hassan introduced the notion of NT-LA-semihypergroup
and gave an interesting application example in [21]. In 2019 X.H. Zhang, F. Smarandache
and Y.C. Ma gave the definitions of an NET-semihypergroup and an NET-hypergroup and
obtained the main properties and characteristics of this kind of algebraic structure in [22].
In 2020 M.H. Hu, F. Smarandache and X.H. Zhang studied the properties and construction
methods of an SP-NET-LA-semihypergroup and found that the symmetry of this algebraic
structure is not perfect (see [23]). In addition, there are some related studies (see [24–31]).

Building on the achievements of our predecessors, in this paper we mainly study a class
of binary hypergroupoids with cyclic associative law, which is called CA-semihypergroup.
The specific content is as follows:

In Section 2 the concept of CA-semihypergroup is introduced and the relationships
of several algebraic structures (including CA-semihypergroups, LA-semihypergroups and
Semihypergroups) are studied. The generation algorithm of higher-order CA-semihypergroup
is proven. A CA-semihypergroup of order 19 is generated by using a Python program.

In Section 3 the concepts of various Net-CA-semihypergroups are given, and the
relationships of these algebraic structures (including LR-Net-CA-semihypergroups, RL-
Net-CA-semihypergroups, RR-Net-CA-semihypergroups, LL-Net-CA-semihypergroups, R-
Regular-CA-semihypergroups, L-Regular-CA-semihypergroups and S-Regular-CA-
semihypergroups) are studied based on some examples.

In Section 4 the concepts of various pure Net-CA-semihypergroups are given. Then
an important theorem is proven step-by-step through an ingenious method. This theorem
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shows that an SP-NET-CA-semihypergroup can be defined in five different ways. Finally,
the main properties of an SP-NET-CA-semihypergroup are obtained.

In Section 5 we list the main conclusions of this paper and what topics we will research
in the future.

2. Cyclic Associative Semihypergroups (CA-Semihypergroups)

Definition 1. A binary pair (V, ?) is called a binary hypergroupoid if V is a nonempty set,

?: V × V→ P * (V)

is a mapping and P * (V) is the set of all nonempty subsets of V.
If v ∈ V, W, K ∈ P * (V), the following notations will be used:

W ? K = ∪
w∈W,k∈K

(w ? k)

W ? {v} = W ? v,

{v} ? K = v ? K.

Definition 2. Suppose (C, ?) is a binary hypergroupoid such that

u ? (v ? w) = w ? (u ? v) (6)

for all u, v, w ∈ C. Under condition (6), (C, ?) is said to be a cyclic associative semihypergroup
(written simply as CA-semihypergroup). Here is a more precise way of stating (6):

∪
s∈(v?w)

(u ? s) = ∪
t∈(u?v)

(w ? t) (7)

By (6) and (7), for all r, u, v, w ∈ C, we have

(r ? u) ? (v ? w) = ∪
s ∈(r?u)

(s ? (v ? w)) = ∪
s ∈(r?u)

(w ? (s ? v)) = ∪
s ∈(r?u)

(v ? (w ? s)) = v ? (w ? (r ? u))

= v ? (u ? (w ? r)) = ∪
t ∈(w ? r)

(v ? (u ? t)) = ∪
t∈(w ? r)

(t ? (v ? u)) = (w ? r) ? (v ? u).

That is,
(r ? u) ? (v ? w) = (w ? r) ? (v ? u). (8)

Similarly, we have

(r ? s) ? ((t ? u) ? (v ? w)) = (u ? r) ? ((t ? s) ? (v ? w)). (9)

Note that the following equations still hold for all U, V, W, R, S, T ∈ P * (C).

U ? (V ? W) = W ? (U ? V), (10)

(R ? U) ? (V ? W) = (W ? R) ? (V ? U), (11)

(R ? S) ? ((T ? U) ? (V ? W)) = (U ? R) ? ((T ? S) ? (V ? W)). (12)

If we replace cyclic associative law with associative law, then (C, ?) is said to be a semihy-
pergroup. If we replace cyclic associative law with left invertive law, then (C, ?) is said to be
an LA-semihypergroup. Since the three algebraic structures are different, we will discuss the
relationships among CA-semihypergroups, LA-semihypergroups and Semihypergroups based on
some examples.

Example 1. Consider the binary hypergroupoid (C = {0, 1, 2, 3}, ?) whose multiplication table is
exhibited below (see Table 1):
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Table 1. The binary hyperoperation ? on C.

? 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {0} {0} {0}
2 {0} {0} {0} {0}
3 {0} {0} {1} {0,2}

Using a Python program, we know that (C, ?) is not only a CA-semihypergroup but also an
LA-semihypergroup. However, (C, ?) is not a Semihypergroup because

(3 ? 3) ? 3 = {0,2} ? 3 = (0 ? 3)∪(2 ? 3) = {0}∪{0} = {0},

3 ? (3 ? 3) = 3 ? {0,2} = (3 ? 0)∪(3 ? 2) = {0}∪{1} = {0,1},

(3 ? 3) ? 3 6= 3 ? (3 ? 3). Associative law does not hold.

Example 2. Consider the binary hypergroupoid (C = {0, 1, 2, 3}, ?) whose multiplication table is
exhibited below (see Table 2):

Table 2. The binary hyperoperation ? on C.

? 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {0} {0} {0}
2 {0} {0} {0} {0}
3 {0} {0} {1} {0,3}

Using a Python program, we know that (C, ?) is a CA-semihypergroup, but neither an
LA-semihypergroup nor a Semihypergroup because

(2 ? 3) ? 3 = {0} ? 3 = {0},

(3 ? 3) ? 2 = {0,3} ? 2 = (0 ? 2)∪(3 ? 2) = {0}∪{1} = {0,1},

3 ? (3 ? 2) = 3 ? {1} = 3 ? 1 = {0},

(2 ? 3) ? 3 6= (3 ? 3) ? 2, Left invertive law does not hold.

(3 ? 3) ? 2 6= 3 ? (3 ? 2). Associative law does not hold.

Example 3. Consider the binary hypergroupoid (C = {0, 1, 2, 3}, ?) whose multiplication table is
exhibited below (see Table 3):

Table 3. The binary hyperoperation ? on C.

? 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {0} {0} {0}
2 {0} {0} {0} {0}
3 {0} {0} {0,2} {0,3}

Using a Python program, we know that (C, ?) is a Semihypergroup, but neither a CA-
semihypergroup nor an LA-semihypergroup because

3 ? (2 ? 3) = 3 ? {0} = {0},

3 ? (3 ? 2) = 3 ? {0,2} = (3 ? 0)∪(3 ? 2) = {0}∪{0,2} = {0,2},
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3 ? (2 ? 3) 6= 3 ? (3 ? 2). Cyclic associative law does not hold

(2 ? 3) ? 3 = {0} ? 3 = {0},

(3 ? 3) ? 2 = {0,3} ? 2 = (0 ? 2)∪(3 ? 2) = {0}∪{0,2} = {0,2},

(2 ? 3) ? 3 6= (3 ? 3) ? 2. Left invertive law does not hold.

Example 4. Consider the binary hypergroupoid (C = {0, 1, 2, 3}, ?) whose multiplication table is
exhibited below (see Table 4):

Table 4. The binary hyperoperation ? on C.

? 0 1 2 3

0 {0,1,2,3} {0,1,2,3} {0,1,2,3} {0,1,2,3}
1 {0,1,2,3} {0,1,2,3} {0,1,2,3} {0,1,2,3}
2 {0,1,2,3} {0,1,2,3} {0,1,2,3} {1,3}
3 {0,1,2,3} {0,1,3} {2,3} {0,1,3}

Using a Python program, we know that (C, ?) is not only an LA-semihypergroup but also
a Semihypergroup.

However, (C, ?) is not a CA-semihypergroup because

3 ? (2 ? 3) = 3 ? {1,3} = (3 ? 1)∪(3 ? 3) = {0,1,3}∪{0,1,3} = {0,1,3},

3 ? (3 ? 2) = 3 ? {2,3} = (3 ? 2)∪(3 ? 3) = {2,3}∪{0,1,3} = {0,1,2,3},

3 ? (2 ? 3) 6= 3 ? (3 ? 2). Cyclic associative law does not hold.

Example 5. Consider the binary hypergroupoid (C = {0, 1, 2, 3}, ?) whose multiplication table is
exhibited below (see Table 5):

Table 5. The binary hyperoperation ? on C.

? 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {0} {0} {0}
2 {0} {0} {0} {0}
3 {0} {0} {0,2} {1,2}

Using a Python program, we know that (C, ?) is an LA-semihypergroup, but neither a
CA-semihypergroup nor a Semihypergroup because

3 ? (2 ? 3) = 3 ? {0} = 3 ? 0 = {0},

3 ? (3 ? 2) = 3 ? {0,2} = (3 ? 0)∪(3 ? 2) = {0}∪{0,2} = {0,2},

(3 ? 3) ? 2 = {1,2} ? 2 = (1 ? 2)∪(2 ? 2) = {0}∪{0} = {0},

3 ? (2 ? 3) 6= 3 ? (3 ? 2), Cyclic associative law does not hold.

(3 ? 3) ? 2 6= 3 ? (3 ? 2). Associative law does not hold.

Example 6. Let π be a square having sides of length 1 and vertices {A, B, C, D}, draw π in the x-y
plane so that its center is at the origin and its sides are parallel to the axes (see Figure 1).

Assume that M =
{

I, R, R2, R3, L, L2, L3}, each element of which is a plane motion of the
square. Element I represents a rotation of 0◦ around the origin. Elements R, R2 and R3 represent
90◦, 180◦ and 270◦ of counterclockwise rotations around the origin, respectively. Elements L, L2
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and L3 represent 90◦, 180◦ and 270◦ of clockwise rotations around the origin, respectively. The
binary hyperoperation ? is given in Table 6:
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φ(α▴1 β) = φ(α)▴2 φ(β) 
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Table 6. The binary hyperoperation ? on M.

? I R R2 R3 L L2 L3

I {I} {R,L3} {R2,L2} {R3,L} {R3,L} {R2,L2} {R,L3}
R {R,L3} {R2,L2} {R3,L} {I} {I} {R3,L} {R2,L2}
R2 {R2,L2} {R3,L} {I} {R,L3} {R,L3} {I} {R3,L}
R3 {R3,L} {I} {R,L3} {R2,L2} {R2,L2} {R,L3} {I}
L {R3,L} {I} {R,L3} {R2,L2} {R2,L2} {R,L3} {I}
L2 {R2,L2} {R3,L} {I} {R,L3} {R,L3} {I} {R3,L}
L3 {R,L3} {R2,L2} {R3,L} {I} {I} {R3,L} {R2,L2}

Using a Python program, it is quite easy to verify that (M, ?) is a CA-semihypergroup, an
LA-semihypergroup and a Semihypergroup. Moreover, (M, ?) is commutative.

According to Examples 1–6, we can chart the relationships among CA-semihypergroups,
LA-semihypergroups and Semihypergroups (see Figure 2).

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 31 
 

 

represent 90  , 180   and 270   of counterclockwise rotations around the origin, respectively. 
Elements L, 2L  and 3L  represent 90  , 180   and 270   of clockwise rotations around the origin, 
respectively. The binary hyperoperation ⋆ is given in Table 6: 

 

Figure 1. Square π . 

Table 6. The binary hyperoperation ⋆ on M. ⋆ I  R  2R  3R  L  2L  3L  

I  { I } { R , 3L } { 2R , 2L } { 3R , L } { 3R , L } { 2R , 2L } { R , 3L } 

R  { R , 3L } { 2R , 2L } { 3R , L } { I } { I } { 3R , L } { 2R , 2L } 
2R  { 2R , 2L } { 3R , L } { I } { R , 3L } { R , 3L } { I } { 3R , L } 
3R  { 3R , L } { I } { R , 3L } { 2R , 2L } { 2R , 2L } { R , 3L } { I } 

L  { 3R , L } { I } { R , 3L } { 2R , 2L } { 2R , 2L } { R , 3L } { I } 
2L  { 2R , 2L } { 3R , L } { I } { R , 3L } { R , 3L } { I } { 3R , L } 
3L  { R , 3L } { 2R , 2L } { 3R , L } { I } { I } { 3R , L } { 2R , 2L } 

Using a Python program, it is quite easy to verify that (M, ⋆) is a CA-semihypergroup, an 
LA-semihypergroup and a Semihypergroup. Moreover, (M, ⋆) is commutative. 

According to Examples 1–6, we can chart the relationships among CA-semihypergroups, LA-
semihypergroups and Semihypergroups (see Figure 2). 

 
Figure 2. The relationships among some algebraic systems. 

Definition 3. When (M, ▴1) and (C, ▴2) are CA-semihypergroups, the mapping φ: M → C is said 
to be a good homomorphism if 

φ(α▴1 β) = φ(α)▴2 φ(β) 

Figure 2. The relationships among some algebraic systems.

Definition 3. When (M, N1) and (C, N2) are CA-semihypergroups, the mapping ϕ: M→ C is said
to be a good homomorphism if

ϕ(αN1 β) = ϕ(α)N2 ϕ(β)

for all α, β ∈ M. A bijective good homomorphism is an isomorphism. When f: M → C is an
isomorphism, we write f: (M, N1) ≈ (C, N2) and say that (M, N1) and (C, N2) are isomorphic.

Theorem 1. Let (C1, N1) be a CA-semihypergroup of order m, (C2, N2) be a CA-semihypergroup of
order n.

Denote C = C1∪C2 (C1∩C2 = Φ) and define the binary hyperoperation N in C as follows:

(a) if u, v ∈ C1, then uNv = uN1 v;
(b) if u, v ∈ C2, then uNv = uN2 v;
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(c) if u ∈ C1, v ∈ C2, then uNv = u;
(d) if u ∈ C2, v ∈ C1, then uNv = v;
(e) if u ∈ C2, v ∈ C1, w ∈ C1, then uN(vNw) = wN(uNv);

Then (C, N) is a CA-semihypergroup of order m + n.

Proof. To prove that (C, N) is a CA-semihypergroup, we have to show that it satisfies cyclic
associative law. That is,

uN(vNw) = wN(uNv)

for all u, v, w ∈ C. We shall discuss several cases.
Case 1. u, v, w ∈ C1 or u, v, w ∈ C2. Since C1, C2 are CA-semihypergroups, uN(vNw) =

wN(uNv).
Case 2. u ∈ C2, v ∈ C2, w ∈ C1.

wN(uNv) = ∪
r∈uNv⊂C2

(wNr) = w = uNw = uN(vNw).

Case 3. u ∈ C1, v ∈ C2, w ∈ C2. By (c) and (d), we have

wN(uNv) = wNu = u = vNu = vN(wNu).

By the conclusion of Case 2, we obtain

vN(wNu) = uN(vNw).

Thus uN(vNw) = wN(uNv).
Case 4. u ∈ C1, v ∈ C1, w ∈ C2. By (d) and (c), we have

wN(uNv) = ∪
r∈uNv⊂C1

(wNr)= ∪
r∈uNv⊂C1

r = uNv = uN(vNw).

Case 5. u ∈ C2, v ∈ C1, w ∈ C2. By (c) and (d), we have

uN(vNw) = uNv = v = vN(uNw).

By the conclusion of Case 3, (c) and (d), we obtain

vN(uNw) = wN(vNu) = wNv = wN(uNv).

Thus uN(vNw) = wN(uNv).
Case 6. u ∈ C2, v ∈ C1, w ∈ C1. By (e), we have uN(vNw) = wN(uNv).
Case 7. u ∈ C1, v ∈ C2, w ∈ C1. By (e), we have

vN(wNu) = uN(vNw).

By the conclusion of Case 4, we obtain

wN(uNv) = vN(wNu).

Thus uN(vNw) = wN(uNv). In conclusion, (C, N) is a CA-semihypergroup of order
m + n. �

Theorem 2. Let (C1, N1) be a commutative CA-semihypergroup of order m, (C2, N2) be a CA-
semihypergroup of order n, and C1∩C2 = Φ.

(1) Denote C = C1∪C2, and define the binary hyperoperation N in C as follows:

(a) if u, v ∈ C1, then uNv = uN1 v;
(b) if u, v ∈ C2, then uNv = uN2 v;
(c) if u ∈ C1, v ∈ C2, then uNv = u;



Mathematics 2022, 10, 535 8 of 30

(d) if u ∈ C2, v ∈ C1, then uNv = v;

Then (C, N) is a CA-semihypergroup of order m + n.

(2) Suppose (M, ?) and (C, N) are isomorphic. Denote P = C1∪M, and define the binary hyperop-
eration � in P as follows:

(e) if u, v ∈ C1, then u�v = uN1 v;
(f) if u, v ∈M, then u�v = u?v;
(g) if u ∈ C1, v ∈M, then u�v = u;
(h) if u ∈M, v∈ C1, then u�v = v;

Then (P, �) is a CA-semihypergroup of order m + (m + n).

Proof. (1) By the proof of Theorem 1, we just need to prove Cases 6–7.
Case 6. u ∈ C2, v ∈ C1, w ∈ C1. Since (C1, N1) is a commutative CA-semihypergroup,

we have
wNv = vNw.

Thus wN(uNv) = wNv = vNw = vN(wNu). By the proof of Case 4 in Theorem 1, we get

vN(wNu) = uN(vNw).

Thus uN(vNw) = wN(uNv).
Case 7. u ∈ C1, v ∈ C2, w ∈ C1. By the proof of Case 6, we have

vN(wNu) = uN(vNw).

By the proof of Case 4 in Theorem 1, we get

wN(uNv) = vN(wNu).

Thus uN(vNw) = wN(uNv). In conclusion, (C, N) is a CA-semihypergroup of order m + n.
(2) By Theorem 2 (1), we can get Theorem 2 (2). �

Remark 1. We can easily prove that the following two conditions are equivalent.

Condition 1:

(a) if u, v ∈ C1, then uNv = uN1 v;
(b) if u, v ∈ C2, then uNv = uN2 v;
(c) if u ∈ C1, v ∈ C2, then uNv = u;
(d) if u ∈ C2, v ∈ C1, then uNv = v;
(e) if u ∈ C2, v ∈ C1, w ∈ C1, then uN(vNw) = wN(uNv).

Condition 2:

(f) if u, v ∈ C1, then uNv = uN1 v;
(g) if u, v ∈ C2, then uNv = uN2 v;
(h) if u ∈ C1, v ∈ C2, then uNv = u;
(i) if u ∈ C2, v ∈ C1, then uNv = v;
(j) C1 is a commutative CA-semihypergroup.

Remark 2. Applying Theorem 2 (1) once and then Theorem 2 (2) t − 1 (t ≥ 2) times, we can get a
CA-semihypergroup of order tm + n.

Example 7. Let C1 = {0, 1, 2} and C2 = {3, 4, 5, 6} define the binary hypergroupoid (C1, N1) and
(C2, N2) as shown in Tables 7 and 8.
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Table 7. The binary hypergroupoid (C1, N1).

N1 0 1 2

0 {0} {0,1} {0,1,2}
1 {0,1} {1} {0,1,2}
2 {0,1,2} {0,1,2} {0,1,2}

Table 8. The binary hypergroupoid (C2, N2).

N2 3 4 5 6

3 {4} {3,4,5,6} {4} {3,4}
4 {4} {3,4,5,6} {4} {4}
5 {4} {3,4,5,6} {4,5} {3,4,6}
6 {3,4} {3,4,5,6} {3,4,6} {3,4,6}

Using a Python program, it is quite easy to verify that (C1, N1) is a commutative CA-
semihypergroup of order 3, (C2, N2) is a noncommutative CA-semihypergroup of order 4, and
C1∩C2 = Φ. By Theorem 2 (1), we know that the binary hypergroupoid (C, N) = (C1∪C2, N) = ({0, 1,
2, 3, 4, 5, 6}, N) (see Table 9) is a CA-semihypergroup of order 3 + 4. We continue to apply Theorem 2
(2) to (C1, N1) and (M, ?), where (M, ?)≈ (C, N) and C1∩M = Φ (see Tables 7, 9 and 10). Then the
binary hypergroupoid (P, �) = (C1∪M, �) = ({0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, �) (see Tables 7, 10 and 11)
is a CA-semihypergroup of order 3 + (3 + 4).

Table 9. The binary hypergroupoid (C, N).

N 0 1 2 3 4 5 6

0 {0} {0,1} {0,1,2} {0} {0} {0} {0}
1 {0,1} {1} {0,1,2} {1} {1} {1} {1}
2 {0,1,2} {0,1,2} {0,1,2} {2} {2} {2} {2}
3 {0} {1} {2} {4} {3,4,5,6} {4} {3,4}
4 {0} {1} {2} {4} {3,4,5,6} {4} {4}
5 {0} {1} {2} {4} {3,4,5,6} {4,5} {3,4,6}
6 {0} {1} {2} {3,4} {3,4,5,6} {3,4,6} {3,4,6}

Table 10. The binary hypergroupoid (M, ?).

? 3 4 5 6 7 8 9

3 {3} {3,4} {3,4,5} {3} {3} {3} {3}
4 {3,4} {4} {3,4,5} {4} {4} {4} {4}
5 {3,4,5} {3,4,5} {3,4,5} {5} {5} {5} {5}
6 {3} {4} {5} {7} {6,7,8,9} {7} {6,7}
7 {3} {4} {5} {7} {6,7,8,9} {7} {7}
8 {3} {4} {5} {7} {6,7,8,9} {7 8} {6,7,9}
9 {3} {4} {5} {6,7} {6,7,8,9} {6,7,9} {6,7,9}

Table 11. The binary hypergroupoid (P, �).

� 0 1 2 3 4 5 6 7 8 9

0 {0} {0,1} {0,1,2} {0} {0} {0} {0} {0} {0} {0}
1 {0,1} {1} {0,1,2} {1} {1} {1} {1} {1} {1} {1}
2 {0,1,2} {0,1,2} {0,1,2} {2} {2} {2} {2} {2} {2} {2}
3 {0} {1} {2} {3} {3,4} {3,4,5} {3} {3} {3} {3}
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Table 11. Cont.

� 0 1 2 3 4 5 6 7 8 9

4 {0} {1} {2} {3,4} {4} {3,4,5} {4} {4} {4} {4}
5 {0} {1} {2} {3,4,5} {3,4,5} {3,4,5} {5} {5} {5} {5}
6 {0} {1} {2} {3} {4} {5} {7} {6,7,8,9} {7} {6,7}
7 {0} {1} {2} {3} {4} {5} {7} {6,7,8,9} {7} {7}
8 {0} {1} {2} {3} {4} {5} {7} {6,7,8,9} {7,8} {6,7,9}
9 {0} {1} {2} {3} {4} {5} {6,7} {6,7,8,9} {6,7,9} {6,7,9}

These results are obtained by using a Python program. Here, we introduce the main function
(see Python function concat_CA) in this Python program. Python function concat_CA has
three variables. The first variable, CA1, represents a symmetric CA-semihypergroup. The second
variable, CA2, represents another asymmetric CA-semihypergroup. The third variable, n minus
1, represents the number of iterations. When CA1 = (C1, N1), CA2 = (C2, N2), n = 2, by steps
2–3 of function conca_CA, we have p = 3, q = 4; By step 4 of function concat_CA, we can get a
dataframe as follows(see Figure 3):
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In the same way, we can get the following CA-semihypergroups (see Tables 12–14). When
CA1 = C1, CA2 = C2, n = 3, we get a CA-semihypergroup of order 13 (see Table 12). When CA1 =
C1, CA2 = C2, n = 4, we get a CA-semihypergroup of order 16 (see Table 13). When CA1 = C1,
CA2 = C2, n = 5, we get a CA-semihypergroup of order 19 (see Table 14).

Table 12. CA-semihypergroup of order 13.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 {0} {0,1} {0,1,2} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
1 {0,1} {1} {0,1,2} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1}
2 {0,1,2} {0,1,2} {0,1,2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
3 {0} {1} {2} {3} {3,4} {3,4,5} {3} {3} {3} {3} {3} {3} {3}
4 {0} {1} {2} {3,4} {4} {3,4,5} {4} {4} {4} {4} {4} {4} {4}
5 {0} {1} {2} {3,4,5} {3,4,5} {3,4,5} {5} {5} {5} {5} {5} {5} {5}
6 {0} {1} {2} {3} {4} {5} {6} {6,7} {6,7,8} {6} {6} {6} {6}
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Table 12. Cont.

0 1 2 3 4 5 6 7 8 9 10 11 12

7 {0} {1} {2} {3} {4} {5} {6,7} {7} {6,7,8} {7} {7} {7} {7}
8 {0} {1} {2} {3} {4} {5} {6,7,8} {6,7,8} {6,7,8} {8} {8} {8} {8}
9 {0} {1} {2} {3} {4} {5} {6} {7} {8} {10} {9,10,11,12} {10} {9,10}
10 {0} {1} {2} {3} {4} {5} {6} {7} {8} {10} {9,10,11,12} {10} {10}
11 {0} {1} {2} {3} {4} {5} {6} {7} {8} {10} {9,10,11,12} {10,11} {9,10,12}
12 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9,10} {9,10,11,12} {9,10,12} {9,10,12}

Python function concat_CA

1: def concat_CA(CA1,CA2,n):
2: p = CA1.shape [1] # Obtain the order of the first CA-semihypergroup
3: q = CA2.shape [1] # Obtain the order of the second CA-semihypergroup
4: df1 = pd.dataframe.from_records(CA1, columns = list(rang(p))) # top left
5: arr1 = np.zeros((p,q),int)
6: list1 = np.array(arr1).tolist()
7: k = −1
8: for item in list1:
9: k += 1
10: for i in range(len(item)):
11: item[i] = [k]
12: arr2 = np.array(list1)
13: df2 = pd.dataframe.from_records(arr2, columns = list(range(p,p + q))) # top right
14: df3 = pd.concat([df1,df2], axis = 1) # upper half
15: arr3 = arr2.swpaxes(1,0) # transpose
16: df4 = pd.dataframe.from_records(arr3, list(range(p,p + q))) # lower left
17: df5 = pd.dataframe(CA2, index = list(range(p,p + q)), columns = list(range(p,p + q)))
18: df6 = pd.concat([df4,df5], axis = 1, ignore_index = True) # lower half
19: global df_lastCA
20: df_lastCA = pd.concat([df3,df6], axis = 0) # generating CA
21: CA2 = np.array(df_lastCA)
22: CA1_copy = copy.deepcopy(CA1)
23: global isgo
24: isgo = True
25: while isgo:
26: CA1 = CA1_copy # new top left
27: CA2 = chang_list(CA2)
28: CA2_copy = copy.deepcopy(CA2)
29: df_lastCA = pd.Dataframe(CA2_copy) # save the final CA-semihypergroup
30: CA2 = change2(CA2,CA1.shape [1]) # generating isomorphic CA2 (new lower right)
31: if CA2.shape [1] < int(3*n + 4): # recursive condition
32: concat_CA(CA1,CA2,n) # recursive
33: elif CA2.shape [1] = = int(3*n + 4): # the ending condition of recursiveisgo
34: isgo = False # break out of the while loop
35: return df_lastCA # return the final CA-semihypergroup
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Table 13. CA-semihypergroup of order 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 {0} {0,1} {0,1,2} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
1 {0,1} {1} {0,1,2} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1}
2 {0,1,2} {0,1,2} {0,1,2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
3 {0} {1} {2} {3} {3,4} {3,4,5} {3} {3} {3} {3} {3} {3} {3} {3} {3} {3}
4 {0} {1} {2} {3,4} {4} {3,4,5} {4} {4} {4} {4} {4} {4} {4} {4} {4} {4}
5 {0} {1} {2} {3,4,5} {3,4,5} {3,4,5} {5} {5} {5} {5} {5} {5} {5} {5} {5} {5}
6 {0} {1} {2} {3} {4} {5} {6} {6,7} {6,7,8} {6} {6} {6} {6} {6} {6} {6}
7 {0} {1} {2} {3} {4} {5} {6,7} {7} {6,7,8} {7} {7} {7} {7} {7} {7} {7}
8 {0} {1} {2} {3} {4} {5} {6,7,8} {6,7,8} {6,7,8} {8} {8} {8} {8} {8} {8} {8}
9 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {9,10} {9,10,11} {9} {9} {9} {9}
10 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9,10} {10} {9,10,11} {10} {10} {10} {10}
11 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9,10,11} {9,10,11} {9,10,11} {11} {11} {11} {11}
12 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {13} {12,13,14,15} {13} {12,13}
13 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {13} {12,13,14,15} {13} {13}
14 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {13} {12,13,14,15} {13,14} {12,13,15}
15 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12,13} {12,13,14,15} {12,13,15} {12,13,15}
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Table 14. CA-semihypergroup of order 19.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 {0} {0,1} {0,1,2} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
1 {0,1} {1} {0,1,2} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1} {1}
2 {0,1,2} {0,1,2} {0,1,2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2} {2}
3 {0} {1} {2} {3} {3,4} {3,4,5} {3} {3} {3} {3} {3} {3} {3} {3} {3} {3} {3} {3} {3}
4 {0} {1} {2} {3,4} {4} {3,4,5} {4} {4} {4} {4} {4} {4} {4} {4} {4} {4} {4} {4} {4}
5 {0} {1} {2} {3,4,5} {3,4,5} {3,4,5} {5} {5} {5} {5} {5} {5} {5} {5} {5} {5} {5} {5} {5}
6 {0} {1} {2} {3} {4} {5} {6} {6,7} {6,7,8} {6} {6} {6} {6} {6} {6} {6} {6} {6} {6}
7 {0} {1} {2} {3} {4} {5} {6,7} {7} {6,7,8} {7} {7} {7} {7} {7} {7} {7} {7} {7} {7}
8 {0} {1} {2} {3} {4} {5} {6,7,8} {6,7,8} {6,7,8} {8} {8} {8} {8} {8} {8} {8} {8} {8} {8}
9 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {9,10} {9,10,11} {9} {9} {9} {9} {9} {9} {9}

10 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9,10} {10} {9,10,11} {10} {10} {10} {10} {10} {10} {10}
11 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9,10,11} {9,10,11} {9,10,11} {11} {11} {11} {11} {11} {11} {11}
12 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {12,13} {12,13,14} {12} {12} {12} {12}
13 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12,13} {13} {12,13,14} {13} {13} {13} {13}
14 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12,13,14} {12,13,14} {12,13,14} {14} {14} {14} {14}
15 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {16} {15,16,17,18} {16} {15,16}
16 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {16} {15,16,17,18} {16} {16}
17 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {16} {15,16,17,18} {16,17} {15,16,18}
18 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15,16} {15,16,17,18} {15,16,18} {15,16,18}
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3. Neutrosophic Extended Triplet CA-Semihypergroups (NET-CA-Semihypergroups)

Definition 4. A CA-semihypergroup (C, ?) is called:

(1) an RL-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w,
such that

u ∈ u ? v, and v ∈ w ? u.

We call v, w, (u, v, w) a right neutral of element u, a left opposite of element u corresponding
to v, and an RL-NET-hyper-neutrosophic-triplet.

(2) an LR-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w,
such that

u ∈ v ? u, and v ∈ u ? w.

(3) an RR-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w,
such that

u ∈ u ? v, and v ∈ u ? w.

(4) an LL-NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w,
such that

u ∈ v ? u, and v ∈ w ? u.

(5) an NET-CA-semihypergroup, if for any u ∈ C, there exist in C two elements v and w, such that

u ∈ (v ? u)∩(u ? v), and v ∈ (w ? u)∩(u ? w).

In addition, similar to Definition 4 (1), we can give the corresponding definitions of neutral,
opposite, and hyper-neutrosophic-triplet in Definition 4 (2), (3), (4) and (5).

Definition 5. A CA-semihypergroup (C, ?) is said to be

(1) an R-Regular-CA-semihypergroup, if for any a ∈ C, there exists in C element t, such that

a ∈ a ? (t ? a).

(2) an L-Regular-CA-semihypergroup, if for any a ∈ C, there exists in C element s, such that

a ∈ (a ? s ) ? a.

(3) an S-Regular-CA-semihypergroup, if for any a ∈ C, there exists in C element r, such that

a ∈ a?(r? a) and a ∈ (a? r) ?a.

Remark 3. Every RR-NET-CA-semihypergroup is a CA-semihypergroup.

Remark 4. Every S-Regular-NET-CA-semihypergroup is an L-Regular-NET-CA-semihypergroup.

Example 8. Consider the binary hypergroupoid (C = {0, 1, 2}, ?), whose multiplication table is
exhibited below (see Table 15).

Table 15. The binary hypergroupoid (C, ?).

? 0 1 2

0 {0} {0} {1}
1 {0} {0} {0}
2 {0} {0} {0,1}
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Using the Python program, we know (C, ?) is a CA-semihypergroup. However, (C, ?) is not
an RR-NET-CA-semihypergroup, because for each x ∈ C, 2 /∈ (2 ? x).

Proposition 1. Every RL-NET-CA-semihypergroup is an RR-NET-CA-semihypergroup; the
converse is also true.

Proof. Let (C, ?) be an RL-NET-CA-semihypergroup, then for any u ∈ C, there exist v,
w ∈ C, such that

u ∈ u ? v, and v ∈ w ? u,

hence,
u ∈ u ? v ⊆ u ? (w ? u) = u ? (u ? w) = ∪

r∈(u ? w)
(u ? r)

that is, there exists r ∈ u ? w, such that

u ∈ u ? r.

In other words, for any u ∈ C, there exist r, w ∈ C, such that

u ∈ u ? r, and r ∈ u ? w.

Hence, (C, ?) is an RR-NET-CA-semihypergroup.
Conversely, if (C, ?) is an RR-NET-CA-semihypergroup, then for any u ∈ C, there exist

v, w ∈ C, such that
u ∈ u ? v, and v ∈ u ? w,

hence,

u ∈ u ? v ⊆ u ? (u ? w) = w ? (u ? u) = u ? (w ? u) = ∪
r∈(w?u)

(u ? r),

that is, there exists r ∈ w ? u, such that

u ∈ u ? r.

In other words, for any u ∈ C, there exist r, w ∈ C, such that

u ∈ u ? r, and r ∈ w ? u.

Hence, (C, ?) is an RL-NET-CA-semihypergroup. �

Proposition 2. Every R-Regular-CA-semihypergroup is an RL-NET-CA-semihypergroup; the
converse is also true.

Proof. Let (C, ?) be an RL-NET-CA-semihypergroup, then for any u ∈ C, there exist v, w ∈
C, such that

u ∈ u ? v, and v ∈ w ? u,

hence,
u ∈ u ? v ⊆ u ? (w ? u),

that is, for any u ∈ C, there exists w ∈ C, such that

u ∈ u ? (w ? u).

By Definition 5 (1), (C, ?) is an R-Regular-CA-semihypergroup.



Mathematics 2022, 10, 535 18 of 30

On the other hand, if (C, ?) is an R-Regular-CA-semihypergroup, then for any u ∈ C,
there exists w ∈ C, such that

u ∈ u ? (w ? u) = ∪
r∈(w?u)

(u ? r),

that is, there exists r ∈ w ? u, such that

u ∈ u ? r.

In other words, for any u ∈ C, there exist r, w ∈ C, such that

u ∈ u ? r, and r ∈ w ? u.

Hence, (C, ?) is an RL-NET-CA-semihypergroup. �

Proposition 3. Every LR-NET-CA-semihypergroup is an RR-NET-CA-semihypergroup, but the
converse is not true.

Proof. Suppose that (C, ?) is an LR-NET-CA-semihypergroup, for any u ∈ C, there exist v,
w ∈ C, such that

u ∈ v ? u, and v ∈ u ? w,

by cyclic associative law, we get

u ∈ v ? u ⊆ (u ? w) ? (v ? u) = u ? [(u ? w) ? v] = ∪
r∈(u?w)?v

(u ? r),

that is, there exists r ∈ (u ? w) ? v, such that

u ∈ u ? r.

Furthermore, by Equation (10), we have

r ∈ (u ? w) ? v ⊆ (u ? w) ? (u ? w) = w ? [(u ? w) ? u] = u ? [w ? (u ? w)] =
∪

t∈w?(u?w)
(u ? t),

that is, there exists t ∈ w ? (u ? w), such that

r ∈ u ? t.

In other words, for any u ∈ C, there exist r, t ∈ C, such that

u ∈ u ? r, and r ∈ u ? t.

Hence, (C, ?) is an RR-NET-CA-semihypergroup. �

Example 9. Consider the binary hypergroupoid (C = {0, 1, 2}, ?), whose multiplication table is
exhibited below (see Table 16).

Table 16. The binary hypergroupoid (C, ?).

? 0 1 2

0 {0} {0} {0}
1 {0} {0,1,2} {1}
2 {0} {0,1,2} {0,1}
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Using the Python program, we know that (C, ?) is an RR-NET-CA-semihypergroup, and

0 ∈ (0 ? 0), 0 ∈ (0 ? 0); 0 ∈ (0 ? 0), 0 ∈ (0 ? 1);

0 ∈ (0 ? 0), 0 ∈ (0 ? 2); 1 ∈ (1 ? 1), 1 ∈ (1 ? 1);

1 ∈ (1 ? 1), 1 ∈ (1 ? 2); 1 ∈ (1 ? 2), 2 ∈ (1 ? 1);

2 ∈ (2 ? 1), 1 ∈ (2 ? 1); 2 ∈ (2 ? 1), 1 ∈ (2 ? 2).

Hence, (0, 0, 0), (0, 0, 1),(0, 0, 2) (1, 1, 1), (1, 1, 2),(1,2,1),(2,1,1),(2,1,2) are all RR-NET-hyper-
neutrosophic-triplets. Moreover, (C, ?) is an RR-NET-CA-semihypergroup. However, for any x ∈
C, 2 /∈ (x ? 2). This implies (C, ?) is not an LR-NET-CA-semihypergroup.

Proposition 4. Let (C, ?) be a CA-semihypergroup, then (C, ?) is an LR-NET-CA-semihypergroup,
if and only if, (C, ?) is an L-Regular-CA-semihypergroup.

Proof. By a method similar to Proposition 2, we can prove Proposition 4. �

Proposition 5. Every LL-NET-CA-semihypergroup is an LR-NET-CA-semihypergroup, but the
converse is not true.

Proof. Suppose that (C, ?) is an LL-NET-CA-semihypergroup, for any u ∈ C, there exist v,
w ∈ C, such that

u ∈ v ? u, and v ∈ w ? u,

thus,
v ∈ w ? u ⊆ w ? (v ? u) = u ? (w ? v) = ∪

r∈w?v
(u ? r),

that is, there exists r ∈ w ? v, such that

v ∈ u ? r.

In other words, for any u ∈ C, there exist v, r ∈ C, such that

u ∈ v ? u, and v ∈ u ? r.

Hence, (C, ?) is an LR-NET-CA-semihypergroup. �

Example 10. Consider the binary hypergroupoid (C = {0, 1, 2}, ?), whose multiplication table is
exhibited below (see Table 17).

Table 17. The binary hypergroupoid (C, ?).

? 0 1 2

0 {1} {0,1,2} {1}
1 {1} {0,1,2} {1}
2 {0,1} {0,1,2} {1, 2}

Using the Python program, we know that (C, ?) is a CA-semihypergroup, and

0 ∈ (2 ? 0), 2 ∈ (0 ? 1); 1 ∈ (0 ? 1), 0 ∈ (1 ? 1);

1 ∈ (1 ? 1), 1 ∈ (1 ? 0); 1 ∈ (1 ? 1), 1 ∈ (1 ? 1);

1 ∈ (1 ? 1), 1 ∈ (1 ? 2); 1 ∈ (2 ? 1), 2 ∈ (1 ? 1);

2 ∈ (2 ? 2), 2 ∈ (2 ? 1); 2 ∈ (2 ? 2), 2 ∈ (2 ? 2).
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Hence, (0, 2, 1), (1, 0, 1), (1, 1, 0) (1, 1, 1), (1, 1, 2), (1,2,1), (2,2,1), (2,2,2) are all LR-NET-hyper-
neutrosophic- triplets. Moreover, (C, ?) is an LR-NET-CA-semihypergroup. However, 0 /∈ (0 ? 0),
0 /∈ (1 ? 0), and when 0 ∈ (2 ? 0), there is not x in C, such that 2 ∈ (x ? 0). It implies (C, ?) is not
an LL-NET-CA-semihypergroup.

Example 11. Consider the binary hypergroupoid (C = {0, 1, 2}, ?), whose multiplication table is
exhibited below (see Table 18).

Table 18. The binary hypergroupoid (C, ?).

? 0 1 2

0 {0} {1,2} {0,1,2}
1 {0,1,2} {2} {0,1,2}
2 {0,1,2} {2} {0,1,2}

Using the Python program, we know that (C, ?) is a CA-semihypergroup, and

0 ∈ 0 ? (0 ? 0), 0 ∈ (0 ? 0) ? 0;

1 ∈ 1 ? (0 ? 1), 1 ∈ (1 ? 0) ? 1;

2 ∈ 2 ? (0 ? 2), 2 ∈ (2 ? 0) ? 2;

hence, (C, ?) is an S-Regular-CA-semihypergroup. Furthermore, we know that (C, ?) is not an
LL-NET-CA-semihypergroup. Because, 1 /∈ (1 ? 1), 1 /∈ (2 ? 1), and when 1 ∈ (0 ? 1), there is not
x in C, such that 0 ∈ (x ? 1).

Proposition 6. Each NET-CA-semihypergroup is an LL-NET-CA-semihypergroup.

Proof. Assume that (C, ?) is a NET-CA-semihypergroup. Then, for any u ∈ C, there exist v,
w ∈ C, such that

u ∈(v ? u)∩(u ? v), and v ∈(w ? u)∩(u ? w).

Hence,
u ∈ v ? u, and v ∈ w ? u.

Thus, (C, ?) is an LL-NET-CA-semihypergroup. �

Proposition 7. Each NET-CA-semihypergroup is an S-Regular-CA-semihypergroup.

Proof. Let (C ?) be a NET-CA-semihypergroup. By Definition 4 (5), there exist v, w ∈ C,
such that

u ∈ (v ? u)∩(u ? v), and v ∈ (w ? u)∩(u ? w);

for any u ∈ C. Hence,
u ∈ u ? v, and v ∈ w ? u

u ∈ v ? u, and v ∈ u ? w

that is,
u ∈ u ? (w ? u), u ∈(u ? w) ? u,

hence, (C, ?) is an S-Regular-NET-CA-semihypergroup. �

Figure 13 shows the relationships among various Net-CA-semihypergroups discussed
in this section.
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4. Strong Pure Neutrosophic Extended Triplet CA-Semihypergroups
(SP-NET-CA-Semihypergroups)

Definition 6. A CA-semihypergroup (C, ?) is called:

(1) PRL-NET-CA-semihypergroup, if for any u∈ C, there exist v∈ C and w∈C, such that

u = u ? v, and v = w ? u.

Furthermore, we call v, w, and (u, v, w) a right neutral of element u, a left opposite of element
u corresponding to v, and a PRL-NET-hyper-neutrosophic-triplet. The notation { }rn(u) represents
the set of all right neutrals of element u. The notation { }la(u)v represents the set of all left opposites
of element u corresponding to a certain v, where v is a right neutral of element u.

(2) PLR-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that

u = v ? u, and v = u ? w;

(3) PRR-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that

u = u ? v, and v = u ? w;

(4) PLL-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that

u = v ? u, and v = w ? u;

(5) P-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that

u = (v ? u)∩(u ? v), and v = (w ? u)∩(u ? w);

(6) SP-NET-CA-semihypergroup, if for any u ∈ C, there exist v ∈ C and w ∈ C, such that

u = v ? u = u ? v, and v = w ? u = u ? w.

In addition, similar to Definition 6 (1), we can give the corresponding definitions of neutral,
opposite, hyper-neutrosophic-triplet, the set of all neutrals of an element and the set of all opposites
of the element corresponding to a certain neutral in Definition 6 (2), (3), (4), (5), (6).

Remark 5. Every SP-NET-CA-semihypergroup is a P-NET-CA-semihypergroup. Every P-NET-
CA-semihypergroup is an NET-CA-semihypergroup.

Remark 6. Every SP-NET-CA-semihypergroup must be a PRL-NET-CA-semihypergroup, a PLR-
NET-CA-semihypergroup, a PRR-NET-CA-semihypergroup, and a PLL-NET-CA-semihypergroup.
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Theorem 3. Let (C, ?) be a PRL-NET-CA-semihypergroup, then for any u ∈ C,

(1) if (u, v, w) is a PRL-NET-hyper-neutrosophic-triplet, then

v ? v = v,

and v is unique.

(2) (C, ?) is a PLR-NET-CA-semihypergroup.

Proof. (1) Let (C, ?) be a PRL-NET-CA-semihypergroup. Thus, there exist v ∈ { }rn(u), and w
∈ { }la(u)v , such that

u = u ? v, and v = w ? u,

for any u∈ C. Hence,

v = w ? u

= w ? (u ? v) Using cyclic associative law

= v ? (w ? u) By v = w ? u

= v ? v.

This shows that v is idempotent. On the other hand, by u = u ? v, we have

v ? u = v ? (u ? v) Using cyclic associative law

= v ? (v ? u) Using cyclic associative law

= u ? (v ? v) By v = v ? v

= u ? v = u By u = u ? v.

That is, if (C, ?) is a PRL-NET-CA-semihypergroup, then for any u ∈ C, there exist v ∈ C,
and w ∈ C, such that

u = u ? v = v ? u, and v = w ? u.

To show that v is unique, suppose that there exist two elements q ∈ { }rn(u), and t ∈ { }la(u)q ,
such that

u = u ? q, and q = t ? u,

then
u = u ? q = q ? u, and q = t ? u.

By q = t ? u, we have

v ? q = v ? (t ? u) Using cyclic associative law

= u ? (v ? t) Using cyclic associative law

= t ? (u ? v) By u = u ? v

= t ? u = q By q = t ? u.

Both sides of v = w ? u multiply by q,

q ? v = q ? (w ? u) Using cyclic associative law

= u ? (q ? w) Using cyclic associative law

= w ? (u ? q) By u = u ? q

= w ? u = v By v = w ? u
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By v = v ? v, we get

q ? v = q ? (v ? v) Using cyclic associative law

= v ? (q ? v) Using cyclic associative law

= v ? (v ? q) By v ? q = q

= v ? q.

Hence v = q ? v = v ? q = q, we have proven Theorem 3 (1).
(2) Let (u, v, w) be an RL-NET-hyper-neutrosophic-triplet of (C, ?). According to the

proof of (1), there exist v, and w, such that

u = u ? v = v ? u, and v = w ? u.

Then, we have

v = w ? u . . . . . . .By u = v ? u

= w ? (v ? u) Using cyclic associative law

= u ? (w ? v) = ∪
r∈w?v

(u ? r).

Obviously, u ? r is a nonempty set, and v is unique. Hence for each r ∈ w ? v, equation u ? r
= v holds. That is, for any u ∈ C, there exist v ∈ { }ln(u), and r ∈ { }ra(u)v , such that

u = v ? u, and v = u ? r.

It implies that (u, v, r) is a PLR-NET-hyper-neutrosophic-triplet of (C, ?). Hence (C, ?) is a
PLR-NET-CA-semihypergroup. �

Theorem 4. Every PLR-NET-CA-semihypergroup is an SP-NET-CA-semihypergroup.

Proof. Let (C, ?) be a PLR-NET-CA-semihypergroup. Then for any u ∈ C, there exist
v ∈ { }ln(u), and w ∈ { }ra(u)v , such that

u = v ? u, and u ? w = v.

By v = u ? w, we have

v ? v = v ? (u ? w) Using cyclic associative law

= w ? (v ? u) By u = v ? u

= w ? u.

Both sides of u ? w = v multiply by u, we get

u ? v = u ? (u ? w) . . . . . . . . . . . . . . . Using cyclic associative law

= w ? (u ? u) . . . . . . . . . . . . . . . Using cyclic associative law

= u ? (w ? u) . . . . . . . . . . . . . . . By v ? v = w ? u

= u ? (v ? v) . . . . . . . . . . . . . . . Using cyclic associative law

= v ? (u ? v) . . . . . . . . . . . . . . . Using cyclic associative law

= v ? (v ? u) = v ? u = u . . . By v ? u = u.
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That is, if (C, ?) is a PLR-NET-CA-semihypergroup, then for any u ∈ C, there exist v ∈ C,
and w ∈ C, such that

u = u ? v = v ? u, and u ? w = v.

Hence, for this v, there exist x ∈ { }ln(v), y ∈ { }ra(v)x , such that

v = x ? v = v ? x, and v ? y = x.

Both sides of u ? w = v multiply by x, we have

x ? (u ? w) = x ? v = v.

Furthermore, we get

x ? (u ? w) = w ? (x ? u), Using cyclic associative law.

Thus w ? (x ? u) = v. On the other hand,

u = u ? v by x ? v = v

= u ? (x ? v) . . . . . . . . . Using cyclic associative law

= v ? (u ? x) . . . . . . . . . Using cyclic associative law

= x ? (v ? u) = x ? u, By v ? u = u.

Hence
w ? u = w ? (x ? u) = v. By u = x ? u, w ? (x ? u) = v.

It implies that for any u ∈ C, there exist v, w ∈ C, such that

u = v ? u = u ? v, u ? w = w ? u = v.

In other words, (C, ?) is an SP-NET-CA-semihypergroup. �

Theorem 5. Every PRR-NET-CA-semihypergroup is a PLR-NET-CA-semihypergroup.

Proof. Suppose that (C, ?) is a PRR-NET-CA-semihypergroup. Thus, there exist v ∈ { }rn(u),
w ∈ { }ra(u)v , such that

u = u ? v, and u ? w = v

for any u ∈ C. Hence, for this v, there exist x ∈ { }rn(v), y ∈ { }ra(v)x , such that

v = v ? x, and v ? y = x.

Both sides of v ? x = v multiply by u,

u ? (v ? x) = u ? v = u.

Furthermore, we have
u ? (v ? x) = x ? (u ? v) = x ? u.

Thus x ? u = u. On the other hand,

v ? u = v ? (x ? u) = u ? (v ? x) = u ? v = u.

That is, for any u ∈ C, there exist v, w ∈ C, such that

u = v ? u, and u ? w = v.

Thus, (C, ?) is a PLR-NET-CA-semihypergroup. �
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Theorem 6. Every PLL-NET-CA-semihypergroup is a PRL-NET-CA-semihypergroup.

Proof. Let (C, ?) be a PLL-NET-CA-semihypergroup. Then for any u ∈ C, there exist v ∈ { }ln(u),
w ∈ { }la(u)v , such that

u = v ? u, and w ? u = v.

Furthermore, we have

u = v ? u = v ? (v ? u) = u ? (v ? v) = v ? (u ? v).

By u = v ? (u ? v), and w ? u = v, we get

u ? v = (v ? (u ? v)) ? (w ? u) Using Equation (11)

= (u ? v) ? (w ? (u ? v)) Using cyclic associative law

= (u ? v) ? (v ? (w ? u)) By w ? u = v

= (u ? v) ? (v ? v) . . . . . . Using Equation (8)

= (v ? u) ? (v ? v) . . . . . . By v ? u = u

= u ? (v ? v) . . . . . . . . . . . . Using cyclic associative law

= v ? (u ? v) = u . . . . . . . . . Using u = v ? (u ? v).

That is, for any u ∈ C, there exist v, w ∈ C, such that

u = u ? v, and w ? u = v.

Thus, (C, ?) is a PRL-NET-CA-semihypergroup. �

In fact, we have proven the following theorem.

Theorem 7. Definition 6 (1), (2), (3), (4), (6) are equivalent.

Proof. see Figure 14. �
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Figure 14. How we proved Theorem 7: Where (1) = Remark 6; (2) = Theorem 3; (3) = Theorem 4;
(4) = Theorem 5; (5) = Theorem 6.

Finally, we discuss the properties of SP-NET-CA-semihypergroup.

Proposition 8. Suppose (C, ?) is an SP-NET-CA-semihypergroup,

(1) if (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then

v* v = v, and v is unique;

(2) if (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then (v, v, v) is an SP-NET-CA-
hyper-neutrosophic-triplet;
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(3) if (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then for any t ∈ v ? w, (u, v, t) is an
SP-NET-CA-hyper-neutrosophic-triplet;

(4) if (u, v, w), (v, v, r) are two SP-NET-CA-hyper-neutrosophic-triplets, then

for any t ∈ r ? w, (u, v, t)

is an SP-NET-CA-hyper-neutrosophic-triplet;

(5) if (u, v, w), (r, s, t) are two SP-NET-CA-hyper-neutrosophic-triplets, then

v ? s = s ? v;

(6) if (u, v, w), (r, s, t) are two SP-NET-CA-hyper-neutrosophic-triplets, and |u ? r|= |v ?
s| = 1, then

for any q ∈ t ? w, (u ? r, v ? s, q)

is an SP-NET-CA-hyper-neutrosophic-triplet;

(7) if (u, v, w), (r, v, t) are two SP-NET-CA-hyper-neutrosophic-triplets, and |u ? r| = 1, then

for any q ∈ t ? w, (u ? r, v, q)

is an SP-NET-CA-hyper-neutrosophic-triplet;

(8) if (u, v, w), (w, s, t) are two SP-NET-CA-hyper-neutrosophic-triplets, then

v = s ? v = v ? s, and

(v, v, s) is an SP-NET-CA-hyper-neutrosophic-triplet.

Proof. (1) Let (u, v, w) be an SP-NET-CA-hyper-neutrosophic-triplet, then (u, v, w) is a
PRL-NET-CA-hyper-neutrosophic-triplet. By Theorem 3 (1), we have

v ? v = v,

and v is unique.
(2) By Proposition 8 (1), if v is neutral of element u, then v ? v = v ? v = v. It implies

that v is neutral of element v, and v ∈ { }anti(v)v . Thus, (v, v, v) is an SP-NET-CA-hyper-
neutrosophic-triplet.

(3) Suppose that (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then

u = u ? v = v ? u, v = u ? w = w ? u.

In addition,
∪

t∈v?w
(u ? t) = u ? (v ? w) = w ? (u ? v) = w ? u = v.

Obviously, u ? t is a nonempty set, and there is only one element in ∪
t∈v?w

(u ? t). Thus, for

any t ∈ v ? w, u ? t = v. That is, (u, v, t) is a PRR-NET-CA-hyper-neutrosophic-triplet, so (u,
v, t) is an SP-NET-CA-hyper-neutrosophic-triplet.

(4) Suppose that (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then for any
u ∈ C,

u = v ? u = u ? v, v = u ? w = w ? u.

(v, v, r) is an SP-NET-CA-hyper-neutrosophic-triplet, we have

v ? v = v ? v = v, v = r ? v = v ? r.

In addition,

∪
t∈r?w

(u ? t) = u ? (r ? w) = w ? (u ? r) = r ? (w ? u) = r ? v = v.
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Obviously, u ? t is a nonempty set, and there is only one element v in ∪
t∈r?w

(u ? t). Thus, for

any t ∈ r ? w, u ? t = v. That is, (u, v, t) is a PRR-NET-CA-hyper-neutrosophic-triplet, so
(u, v, t) is an SP-NET-CA-hyper-neutrosophic-triplet.

(5) Since (u, v, w), (r, s, t) are SP-NET-CA-hyper-neutrosophic-triplets, then

v ? v = v, s ? s = s.

For this s, there is n ∈ C, which is neutral of s, such that

s = n ? s = s ? n, n ? n = n.

Furthermore, we get

v ? s = (v ? v) ? [(n ? s) ? (s ? n)] Using Equation (9)

= (s ? v) ? [(n ? v) ? (s ? n)] Using Equation (8)

= (s ? v) ? [(n ? n) ? (s ? v)] By n ? n = n

= (s ? v) ? [n ? (s ? v)] Using cyclic associative law

= (s ? v) ? [v ? (n ? s)] By n ? s = s

= (s ? v) ? (v ? s) Using Equation (8)

= (s ? s) ? (v ? v) = s ? v By s ? s = s, v ? v = v.

(6) Since (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then

u = u ? v = v ? u, v = u ? w = w ? u.

(r, s, t) is an SP-NET-CA-hyper-neutrosophic-triplet, we have

r = s ? r = r ? s, s = r ? t = t ? r.

By Proposition 8 (5), we get

(u ? r) ? (v ? s) = (u ? r) ? (s ? v) Using Equation (8)

= (v ? u) ? (s ? r) By u = v ? u, r = s ? r

= u ? r.

On the other hand,

∪
q∈t?w

((u ? r) ? q) = (u ? r) ? (t ? w) = (w ? u) ? (t ? r) = v ? s,

|u ? r|=|v ? s|= 1.

That is, for any q ∈ t ? w, (u ? r) ? q is a nonempty set, and there is only one element v ? s in
∪

q ∈t?w
((u ? r) ? q). It implies that for any q ∈ t ? w, (u ? r) ? q = v ? s. So far, we have proven

that there exist v ? s, and q ∈ t ? w, such that

(u ? r) ? (v ? s) = u ? r, and (u ? r) ? q = v ? s.

Thus, (u ? r, v ? s, q) is a PRR-NET-CA-hyper-neutrosophic-triplet. Moreover, (u ? r,
v ? s, q) is an SP-NET-CA-hyper-neutrosophic-triplet.

(7) Let v = s in Proposition 8 (6), we can get the conclusion.
(8) Since (u, v, w) is an SP-NET-CA-hyper-neutrosophic-triplet, then

u = u ? v = v ? u, v = u ? w = w ? u.
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Since (w, s, t) is an SP-NET-CA-hyper-neutrosophic-triplet, we have

w = w ? s = s ? w.

By Proposition 8 (5), we have

v ? s = s ? v By v = w ? u

= s ? (w ? u) Using cyclic associative law

= u ? (s ? w) By w = s ? w

= u ? w = v.

On the other hand, by Proposition 8 (1), we have

v* v = v* v = v.

That is, for this v, there exist v, s, such that

v* v = v* v = v,

v ? s = s ? v = v.

Thus, (v, v, s) is an SP-NET-CA-hyper-neutrosophic-triplet. �

5. Conclusions

The concepts of various CA-semihypergroups are introduced for the first time in this
paper. By comparing with other algebraic structures, we found that CA-semihypergroup,
which is different from Semihypergroup and AG-semihypergroup, is a special kind of
nonassociative algebra. However, if the commutative law is satisfied, these three kinds of
algebraic structures are all commutative semihypergroups. We also found that R-Regular-
CA-semihypergroup and L-Regular-CA-semihypergroup are two different algebraic struc-
tures, because association law does not hold. This is different from semihypergroups.
For semihypergroups, R-Regular and L-Regular are equivalent. Through studying the
relationships and characteristic of various CA-semihypergroups, we discovered that one
kind of CA-semihypergroups, SP-NET-CA-semihypergroups, has very good symmetry and
can be defined by relatively weak conditions. Most importantly, we designed a recursive
algorithm to construct high-order asymmetric CA-semihypergroups and implemented it
with a Python program. The main results of this paper are listed below:

(1) Let (C1, N1), (C2, N2) be two CA-semihypergroups, and (C = C1 ∪ C2 (C1 ∩ C2 =
Φ), N) satisfy the conditions in Theorem 1 Then (C, N) is a CA-semihypergroup
(see Theorem 1).

(2) Let (C1, N1) be a commutative CA-semihypergroup, (C2, N2) be a CA-semihypergroup,
(C = C1 ∪ C2 (C1 ∩ C2 = Φ), N) satisfy the conditions in Theorem 2. Then (C, N) is a
CA-semihypergroup (see Theorem 2, Example 7, and Python function concat_CA)

(3) RL-NET-CA-semihypergroups, RR-NET-CA-semihypergroups and R-Regular-CA-
semihypergroups are three fully equivalent algebraic structures (see Proposition 1
and Proposition 2)

(4) LR-NET-CA-semihypergroups and L-Regular-CA-semihypergroups are two fully
equivalent algebraic structures (see Proposition 4).

(5) Every PRL-NET-CA-semihypergroup is a PLR-NET-CA-semihypergroup (see Theorem 3).
(6) Every PLR-NET-CA-semihypergroup is an SP-NET-CA-semihypergroup (see Theorem 4).
(7) Every PRR-NET-CA-semihypergroup is a PLR-NET-CA-semihypergroup (see Theorem 5).
(8) Every PLL-NET-CA-semihypergroup is a PRL-NET-CA-semihypergroup (see Theorem 6).
(9) The relations among various P-NET-CA-semihypergroups (see Theorem 7 and Figure 15).
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