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Abstract: Let M be a commutative cancellative monoid with an element of infinite order. The
binary operation can be extended to all finite subsets of M by the pointwise definition. So, we
can consider the theory of finite subsets of M. Earlier, we have proved the following result: in the
theory of finite subsets of M elementary arithmetic can be interpreted. In particular, this theory is
undecidable. For example, the free monoid (the sets of all words with concatenation) has this property,
the corresponding algebra of finite subsets is the theory of all finite languages with concatenation.
Another example is an arbitrary Abelian group that is not a torsion group. But the method of
proof significantly used an element of infinite order, hence, it can’t be immediately generalized to
torsion groups. In this paper we prove the given theorem for Abelian torsion groups that have
elements of unbounded order: for such group, the theory of finite subsets allows interpreting the
elementary arithmetic.

Keywords: Abelian torsion group; finite subsets theory; undecidability; elementary arithmetic

1. Introduction

Among the central subjects of mathematical logic, there are formal theories investi-
gations. There are theoretical and practical reasons for this interest. For example, such
investigations have a value for database query languages. These ideas were proposed by
E. F. Codd in [1]. In his papers E. F. Codd introduced the concept of relational databases
and query languages. The relational model of a database is a relational finite structure.
E. F. Codd proposed to use relational algebra as a query language. Relational algebra is
equivalent to the language of first-order logic. To encode database items, various mathe-
matical objects (numbers, words, and so on) are used. Usually, some “natural” operations
(or relations) on such objects can be performed. For example, we can perform arithmetical
or bitwise operations on natural numbers, concatenation on words, various comparisons,
and so on. So, we have a complex structure: a finite relational structure (a database itself)
that is embedded into an infinite universe (see [2]). Therefore, a database management
system must operate with some logic language on a given universe. But, this possibility can
imply the undecidability of many tasks because corresponding problems are undecidable
for universes (see, for example [3]). Usually, in such cases, the elementary arithmetic is
interpretable as in [4].

Another feature of modern systems is the construction of aggregate types. For example,
arrays, maps, or sets (of numbers, words, Boolean values, etc.) can be declared as new
data types and can be used in databases. These constructions are finite due to “natural”
restrictions of storage capacity. So, we have a structure, which can contain not only atomic
objects but aggregates, for example, finite sets of such objects.

The same problem appears in the formal automata theory in the determinization
process (see [5]). A finite non-deterministic automaton can be presented by some semigroup
(see [6]). So, the deterministic automata corresponds to the semigroup of subsets.
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Our investigations began in [7] where algebras of languages are considered. In our
papers [8,9] we consider new algebras expA those are constructed as finite subsets of some
source algebra A. Source algebra operations can be naturally extended to finite subsets, so
this is a universal method to construct new structures.

Subsets of algebras, in particular, Abelian groups and commutative semigroups, are
actively investigated in algebra and in number theory (for example, see [10] or [11]). Many
classic problems can be formulated in the language of subset algebra. For example, the
binary Goldbach’s conjecture is the claim that P + P = E where P is the set of primes and E
is the set of even naturals. Also, the subset sum problem is a classic NP-complete problem
(see [12]).

Let us note that this construction of the finite subsets’ algebra is not equivalent to the
weak monadic second-order logic for the original algebra. The language of the second-order
logic allows using first-order variables (see [13]). Hence, the second-order language always
includes the first-order language. But in the first-order theory of the finite subset algebra,
there is no explicit way to denote first-order objects. This lack is significant because there
exist examples, where the first-order theory of the finite subset algebra is algorithmically
simpler than the theory of the original algebra. For the weak monadic second-order logic,
it is impossible.

The algorithmic properties of finite subsets algebras and their theories are very dif-
ferent. This new theory can be decidable even in the case when the theory of the original
algebra is undecidable. And vice versa, for an original structure with decidable theory, the
new theory can allow interpreting the elementary arithmetic (see [8]).

The problem for unoids was solved in [14]. In that paper, an infinite set of parameters
was found for unoids, and these parameters describe the subsets theory completely.

The typical example of this concept is the formal language theory [5,15]. Words
form the free monoid (with concatenation), and every language is a set of words. So,
the concatenation of entire languages can be considered as an extension of the word
concatenation onto sets of words.

Our previous result, which is proved in [8], is the following. Let A be a commutative
cancellative monoid with an element of infinite order, then the theory of finite subsets of A
allows to interpret elementary arithmetic, hence, this theory is undecidable. Examples of
such monoids are well-known: numbers with addition or multiplication, polynomials and
spaces over a field of characteristic zero, and so on. In particular, every Abelian group that
is not a torsion group is such a monoid. So, the natural question appears: does this result
hold for the Abelian torsion group?

In this article, we consider Abelian torsion groups with elements of unbounded order.
By compactness, every such group is elementary equivalent to some Abelian group with
an element of infinite order. But the compactness concept is not applicable here because
elementary equivalent source algebras can generate finite subsets algebras that are not
elementary equivalent. A corresponding example is given below. Thus, we need to consider
Abelian torsion groups themselves.

Example 1. Let Ci be the cyclic additive group of order i. We can suppose that the different groups
Ci have no common element. Then, the monoid A is a union of all Ci. An operation + in A is defined
the next way: x + y = x +i y when x, y ∈ Ci, x + y = 01 otherwise. Here +i is the operation in
Ci, 01 is the neutral element of C1.

Thus, expA has the following property: for each finite set X 6= {01} there is Y 6= {01},
Y 6= ∅ such that X + Y = Y. This Y is the union of C1 and all Ci those intersect with X.

By compactness, there is an elementary equivalent monoid A′ ≡ A that includes the infinite
cyclic group Z. But the given property doesn’t hold in expA′ if X has elements from Z.

In [9] we have shown how to interpret elementary arithmetic in the finite subsets
algebra for the multiplicative group of all roots of unity. But that proof can’t be applied
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to an arbitrary Abelian torsion group because specific properties of the unity roots group
are used.

In this paper, we generalize the result from [9] to all Abelian torsion groups with ele-
ments of unbounded order. For example, the result holds for any direct sums of unbounded
cyclic groups and infinite subgroups of the unity roots group.

2. Basic Definitions and Notation

We consider an arbitrary additively written Abelian torsion group G = (G,+, 0,−).
An Abelian group is an algebra such that the following equalities is satisfied: a + (b +

c) = (a + b) + c, a + b = b + a, a + 0 = a, a + (−a) = 0. The notion a− b means a + (−b).
The notion na means n-times sum: a + · · ·+ a where n is a natural number; or (−n)(−a)
for negative n. The order ord a of a ∈ G is the least positive n (if it exists) such that na = 0.
In the last case, a has finite order. If all elements of the Abelian group G have finite order,
then G is a torsion group. We consider only torsion groups.

The group operation + induces the corresponding operation on subsets:

x + y = {a + b : a ∈ x, b ∈ y}.

In particular, x + ∅ = ∅, x + {0} = x. So, {0} is a neutral element. As the source operation,
+ is commutative and associative, so the induced operation is the same. If sets x and y are
finite, then the set x + y is finite also.

Therefore, all finite subsets of G form the commutative monoid (semigroup with a
unity) expG = (Pf (G),+, {0}). For convenience, later we denote elements of the source
group G with the initial letters of the alphabet a, . . . , h, and finite subsets with the last letters
of the alphabet u, . . . , z. Also, we write x + a and x− a instead of x + {a} and x + {−a}
correspondingly.

A subgroup of the Abelian group G is a subset H ⊆ G that is an Abelian group also
with the same operations. If x ⊆ G, then the subgroup generated by x is the least subgroup
〈x〉 that includes x. In the Abelian group G, a coset is a subset of the form H+ a where
H ⊆ G is a subgroup and a ∈ G.

3. Finite Subsets of G

In this section, we investigate some basic definabilities in the algebra expG of finite
subsets. The main notion introduced here is the kernel of a subset.

The empty set is definable by

x = ∅ ≡ (∀y)x + y = x.

In the following, we consider nonempty sets only.

Lemma 1. If x contains 0, then y ⊆ x + y.

Proof. If x = {0} ∪ x′, then y = y + 0 ⊆ (y + 0) ∪ (y + x′) = y + x.

Lemma 2. Let x be a subgroup of G. Then, y + x = x if and only if y ⊆ x.

Proof. As x contains 0, so x + y = x implies y ⊆ x + y = x by Lemma 1. The converse is
trivial.

Lemma 3. In the monoid expG invertible elements are one-element sets exactly.

Proof. Evidently, {a}+ {−a} = {0}. If x contains two elements, then x + y contains at
least two elements also, so, x + y 6= {0}.

Corollary 1. One-element sets are definable in expG with a formula K1(x) ≡ (∃y)x + y = {0}.
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Let the relation x ≈ y mean that x = y + a for some a ∈ G. This relation is definable:

x ≈ y ≡ (∃z)(K1(z) ∧ x + z = y).

The relation ≈ is a congruence because x = x′ + a and y = y′ + b imply x + y = x′ +
y′ + (a + b). Any set {a, b, . . . } is congruent to a set of the form {0, c, . . . }: {a, b} =
a + {0, b− a, . . . , } ≈ {0, b− a, . . . }.

Lemma 4. The equality x+ x = x is true in expG if and only if x is a subgroup of G. In particular,
x + x = x implies 0 ∈ x.

Proof. Let x + x = x, a, b are any elements of x, so a + b ∈ x + x = x. Hence, 2a = a + a ∈
x + x = x, 3a = 2a + a ∈ x + x = x, and so on. Therefore, na ∈ x for all natural n. In
particular, if n = ord a, then 0 = na ∈ x and −a = (n− 1)a ∈ x.

The converse is trivial.

Lemma 5. Let x contain 0. Then, there is a natural number n such that nx = (n + 1)x.

Proof. If x = {0}, then 1x = {0} = 2x.
In the other case, x contains 0 and some non-zero elements a1, . . . , ak. Let ord ai = li

for i = 1, . . . , k. Thus, the set mx contains sums of the form j1a1 + · · ·+ jkak exactly, where
j1 + · · · + jk ≤ m. Each jiai has li possible values, so, there are at most l1 . . . lk sums of
the given kind. Hence, mx has finitely many possible values. By Lemma 1, we have
mx ⊆ mx + x = (m + 1)x, so, the sequence of sets mx is growing. Therefore, nx = (n + 1)x
for some n.

Corollary 2. The set nx = (n + 1)x in the previous lemma is the subgroup generated by x.

Proof. From nx + x = nx we obtain nx + nx = nx by induction. By Lemma 4, the set nx is
a subgroup.

If a subgroup z includes x, then z includes mx for all natural m. Hence, nx ⊆ z.

For any set x the notion 〈x〉means the subgroup generated by x.

Lemma 6. The subgroup 〈x〉 is the least set y such that x + y = y + y = y.

Proof. The equations x + 〈x〉 = 〈x〉+ 〈x〉 = 〈x〉 follow from the definition of a generated
subgroup.

By Lemma 4, the equality y + y = y implies that y is a subgroup. As 0 ∈ y, so
x ⊆ x + y = y. Hence, 〈x〉 ⊆ y, the least of such y is the subgroup 〈x〉.

Corollary 3. The subgroup generated by x is first order definable in expG.

Proof. The definition is

y = 〈x〉 ≡ y + y = y ∧ y + x = y ∧ (∀z)(z + z = z ∧ z + x = z→ y + z = z).

By Lemmas 4 and 2, the formula y + z = z is equivalent to y ⊆ z.

Definition 1 (Kernel of a set x, ker x). The kernel of a set x (denote it with ker x) is the least
subgroup H such that x is included in some coset of H.

Alternatively stated, ker x is the least kernel of a homomorphism that maps all the set
x to one element.

Corollary 4. ker x ⊆ 〈x〉.
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Proof. For 〈x〉 we have x ⊆ 0 + 〈x〉, so, ker x ⊆ 〈x〉 by the definition.

Lemma 7. For any set x the kernel ker x exists.

Proof. Let a ∈ x. Let {Hi : i ∈ J} be the family of all subgroups H such that x ⊆ a + H.
Hence,

x ⊆
⋂

i
(a +Hi) = a +

⋂
i
Hi = a +H

for H =
⋂

i Hi, this subgroup is the least one, i. e. the kernel ker x.

Corollary 5. If 0 ∈ x, then ker x = 〈x〉.

Proof. Let a = 0 in the proof of Lemma 7. Thus, H =
⋂
i
Hi for all subgroups Hi such that

x ⊆ Hi. But this intersection is 〈x〉.

Lemma 8. Let a ∈ x, then ker x = 〈x− a〉 and this subgroup is the least among all subgroups
〈x− b〉, b ∈ G.

Proof. Evidently, ker x = ker(x − b) for all b ∈ G because x ⊆ a + H if and only if
x− b ⊆ (a− b) +H for any subgroup H. For a ∈ x we have 0 ∈ x− a. By Corollary 5, we
obtain ker x = ker(x− a) = 〈x− a〉.

For b ∈ G we have ker x = ker(x− b) ⊆ 〈x− b〉.

Corollary 6. If x ≈ y, then ker x = ker y.

Corollary 7. The kernel of a set is definable in expG.

Proof. The definition is

y = ker x ≡ (∃u)
(

K1(u) ∧ y = 〈x + u〉 ∧ (∀v)(K1(v)→ 〈x + u〉+ 〈x + v〉 = 〈x + v〉)
)

.

The equality 〈x + u〉 + 〈x + v〉 = 〈x + v〉 is equivalent to 〈x + u〉 ⊆ 〈x + v〉 because
0 ∈ 〈x + v〉.

Lemma 9. For all x the equality 〈x〉 = ker x is true if and only if 〈x〉 = nx for almost every
natural n.

Proof. Let 〈x〉 = ker x, then 〈x〉 = ker x = 〈x− a〉 for all a ∈ x by Lemma 8. By Corollary 2,
we have 〈x− a〉 = n(x− a) for all but finitely many n due to 0 ∈ x− a. From a ∈ x we can
deduce na ∈ 〈x〉 for all n, so, for all but finitely many n we have

nx = n(a + (x− a)) = na + n(x− a) = na + 〈x− a〉 = na + 〈x〉 = 〈x〉.

Now let 〈x〉 = nx for all but finitely many n. Let b ∈ G, ord b = l. Then, for all but
finitely many n multiple of l we obtain n(x− b) = nx− nb = 〈x〉. Thus, 〈x〉 = n(x− b) ⊆
〈x− b〉. Therefore, 〈x〉 is the least of all 〈x− b〉. By Lemma 8, we have ker x = 〈x〉.

Corollary 8. For any x there is a natural n such that nx ≈ ker x.

Proof. Let a ∈ x, then x = a + (x − a) where 0 ∈ x − a. So, for some n we have nx =
na + 〈x− a〉 = na + ker(x− a) = na + ker x ≈ x.

Lemma 10. n{0, a} ≈ ker{0, a} if and only if n ≥ ord a− 1.
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Proof. Indeed, we have ker{0, a} ≈ {0, a, 2a, . . . , ma} where m = ord a− 1, and n{0, a} ≈
{0, a, 2a, . . . , na}. So, the claim is evident.

Corollary 9. 3{0, a} 6≈ ker{0, a} if and only if ord a > 4.

4. Interpretation of Elementary Arithmetic

Here we define an interpretation of the elementary arithmetic in the algebra expG of
finite subsets.

The positive natural number m we interpret with a pair of sets x ≈ {0, a} and
X ≈ m{0, a} where ord a > 4 and m ≤ (ord a− 2)/2.

In the next sections we define two following relations:

• P3(x, X, z) that is true if and only if x ≈ {0, a}, X ≈ mx, and z ≈ {0, ma} for some
positive natural m, m ≤ (ord a− 2)/2, and some a ∈ G;

• E(x, X, y, Y) that is true if x ≈ {0, a}, X ≈ mx, y ≈ {0, b}, Y ≈ my for some natural m,
m ≤ (ord a− 2)/2, m ≤ (ord b− 2)/2.

Theorem 1. Elementary arithmetic can be interpreted in the monoid expG.

Proof. The interpretation area can be defined as

I(x, X) ≡ 3x 6≈ ker x ∧ (∃z)P3(x, X, z).

The atomic formulas are interpreted the following way:

• each variable xi is interpreted by a pair (xi, Xi);
• x = y is interpreted by E(x, X, y, Y);
• x + y = z is interpreted by

(∃x′, X′, y′, Y′)(E(x, X, z, X′) ∧ E(y, Y, z, Y′) ∧ X′ + Y′ = Z).

This formula says that x ≈ {0, a}, y ≈ {0, b}, z ≈ {0, c}, X ≈ {0, a, 2a, . . . , ma},
Y ≈ {0, b, 2b, . . . , nb}, X′ ≈ {0, c, 2c, . . . , mc}, Y′ ≈ {0, c, 2c, . . . , nc}, and Z = X′ +
Y′ ≈ {0, c, 2c, . . . , (n + m)c}.

• x · y = z is interpreted by

(∃X′, Y′, z′, Z′)(E(x, X, z, X′) ∧ P3(z, X′, z′) ∧ E(y, Y, z′, Z′) ∧ 2Z = Z + Z′).

This formula says that x ≈ {0, a}, y ≈ {0, b}, z ≈ {0, c}, X ≈ {0, a, 2a, . . . , ma},
Y ≈ {0, b, 2b, . . . , nb}, X′ ≈ {0, c, 2c, . . . , mc}, z′ ≈ {0, mc}, Z′ ≈ {0, nc, 2nc, . . . , mnc},
and Z ≈ {0, c, 2c, . . . , mnc}.
The boolean formulas φ∧ψ, φ∨ψ, φ→ ψ, ¬φ are interpreted as Φ∧Ψ, Φ∨Ψ, Φ→ Ψ,

¬Φ correspondingly. Here Φ and Ψ are interpretations of φ and ψ correspondingly.
The quantified formulas (∃x)φ and (∀x)φ are interpreted as (∃x, X)(I(x, X) ∧Φ) and

(∀x, X)(I(x, X)→ Φ) correspondingly.

Corollary 10. The theory of expG is undecidable.

Corollary 11. Let the Abelian group G include any infinite subgroup H of the group of unity roots.
Then, the theory of expG allows interpreting the elementary arithmetic and undecidable.

Proof. If G has an element of infinite order, then the result follows from [8]. Otherwise, G
is a torsion Abelian group and has elements of unbounded order because there are finitely
many elements of bounded order in H. Therefore, the result follows from Theorem 1.

An immediate generalization of the previous corollary is the following.
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Corollary 12. Let the Abelian group G be not a group of finite exponent (i. e. there is no natural
n such that na = 0 for all a ∈ G). Then, the theory of expG allows interpreting the elementary
arithmetic and undecidable.

5. Multiple Relations

Early, we use the relation P3 to interpret the multiplication in the algebra expG. Here
we establish that this relation P3 is definable.

In [9] the following claim was proved (Theorem 1):

Lemma 11. Let G be any Abelian torsion group. Then, there is a formula K2(x) that is true in
expG if and only if the set x has exactly two elements.

Proof. If ker x contains five or more elements, then the condition can be expressed by
the formula

(∃u)
(

3x = u + x ∧ u 6= 2x ∧ (∀v)
(
3x = v + x → v = 2x ∨ v = u

))
.

Another cases (two, three, or four elements in ker x) are considered separately.
For details see [9].

Let us consider the following binary relation P2:

P2(x, X) ≡ X + ker x 6≈ X ∧ (∀u, v)(X = u + v ∧ ¬K1(v)→ (∃w)X = u + x + w).

Lemma 12. If P2(x, X) is true, then X ≈ nx for some natural n.

Proof. If X is invertible, then X ≈ {0} = 0x.
Otherwise, X = {0}+ X and K1(X) is false. By the implication, we have X = {0}+

x + w1 = x + w1. If w1 is uninvertible, then the same manner we have X = x + x + w2 =
2x + w2. So, we obtain X = nx + wn for all naturals n until wn is invertible. Then, X ≈ nx.

Such n must exist because otherwise we have X ≈ ker x+wn for some n by Corollary 8.
Then, X + ker x ≈ (ker x + wn) + ker x = ker x + wn = X and P2(x, X) is false.

Lemma 13. If K2(x) is true, X ≈ mx, and X + ker x 6≈ X, then the formula P2(x, X) is true.

Proof. From K2(x) we have x ≈ {0, a} for some a.
Let X = u + v and v have at least two elements. The difference between any two

elements of X has the form ia, so, the difference between any two elements of u or any two
elements of v have the same form. Hence, u ⊆ m1x + c and v ⊆ m2x + d. Let us select the
minimal m2, then m2 > 0, and we have u + v ≈ u + x + (m2 − 1)x.

Let us define

Q(x, y) ≡ (∃X)(P2(x, X) ∧ X + x ≈ ker x ∧ y + X = y + X + ker x).

Lemma 14. Let x ≈ {0, a} and K2(x) be true. Then, Q(x, y) is true if and only if y ≈ {0, ia, . . . }
for some ia 6= 0.

Proof. Let Q(x, y) be true. Then, X ≈ mx by Lemma 12. From X + x ≈ ker x we have
m ≥ ord a − 2 and X ≈ {0, a, 2a, . . . , ma}. As y + X = y + X + ker x, so y + X must
include b + {0, a, 2a, . . . , (m + 1)a}. Hence, there are different c, d ∈ y such that c + ia =
b + ja and d + ka = b + la. So, c = b + (j − i)a, d = b + (l − k)a, j − i 6= l − k, and
y = c + {0, (l + i− k− j)a, . . . }.

The converse claim is true because X ≈ {0, a, 2a, . . . , ma}, m = ord a− 2, y + X ≈
{0, a, 2a, . . . , ma, (m + 1− i)a + ia, . . . } ≈ y + X + ker x.
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Lemma 15. If Q(x, my) is true, x ≈ {0, a}, y ≈ {0, b}, m < ord b, then all elements ia + jb are
pairwise different where i < ord a, j ≤ m.

Proof. Let i1a + j1b = i2a + j2b.
If j1 = j2, then i1a = i2a and i1 = i2 due to i2, i1 < ord a.
Now let j1 > j2. If i1 = i2, then j1b = j2b and j1 = j2 due to j1, j2 ≤ m < ord b.

Otherwise, (j1 − j2)b = (i2 − i1)a, j1 − j2 ≤ m, and i2 − i1 6= 0. Hence, my ≈ {0, (i2 −
i1)a, . . . } that contradicts to Q(x, my) by Lemma 14.

The relation P3 is

P3(x, X, z) ≡ K2(x) ∧ 2X 6≈ ker x ∧ K2(z)

∧ (∃X′)(P2(x, X′) ∧ X ≈ X′ + x ∧ X + X′ ≈ z + X′).

Theorem 2. The formula P3(x, X, z) is true if and only if x ≈ {0, a}, X ≈ nx, z ≈ {0, na} for
some a ∈ G, a 6= 0, and natural n > 0, n ≤ (ord a− 2)/2.

Proof. Let P3(x, X, z) be true. Then, x ≈ {0, a} for some a 6= 0. By Lemma 12, we have
X′ ≈ n′x and X ≈ nx for some naturals n′ and n = n′ + 1. If n > (ord a − 2)/2, then
2n ≥ 2((ord a − 2)/2 + 1), 2n ≥ ord a − 1, 2X ≈ {0, a, 2a, . . . , (2n)a} ≈ ker x, and we
have a contradiction. So, n ≤ (ord a− 2)/2. The set X + X′ contains exactly 2n elements:
X + X′ ≈ {0, a, 2a, . . . , (2n− 1)a}. So, the set z + X′ contains exactly 2n elements also. If
z ≈ {0, b}, then

z + X′ ≈ {0, . . . , (n− 1)a, 0 + b, . . . , (n− 1)a + b}.

Hence, b = na or (n− 1)a + b = −a. In the first case, we have z ≈ {0, na}. In the second
case we have z ≈ {0,−na} ≈ {0, na}.

Now let x ≈ {0, a}, X ≈ nx, z ≈ {0, na} for some a ∈ G, a 6= 0, and natural
n > 0, n ≤ (ord a − 2)/2. Then, the formulas K2(x), 2X 6≈ ker x, K2(z) are true. Let
X′ = (n− 1)x = {0, a, . . . , (n− 1)a}+ b. Thus, X ≈ X′ + x and X + X′ ≈ z + y′ are true.
The formula P2(x, X′) is true by Lemma 13.

6. The Equivalence Relation

The remaining problem is to define the equality relation for our interpretation of the
elementary arithmetic. Thus, our last task is to construct a formula for an equivalence
relation E(x, X, y, Y) that is true if and only if X ≈ nx and Y ≈ ny for some n.

Lemma 16. Let 3{0, a} 6≈ ker a, 3{0, b} 6≈ ker b, and Q({0, a}, 3{0, b}) be false. Let x ≈ x′ =
{0, a, b}. Then, there are exactly seven sets u such that u + x = 3x.

Proof. By Corollary 9, we have ord a > 4 and ord b > 4. From falsehood of the formula
Q({0, a}, 3{0, b}) we have all elements ia + jb to be pairwise different for j ≤ 3 (Lemma 15).

Let x = x′ + c. From u + x = 3x we have (u− 2c) + x′ = 3x′. The set 3x′ consists of
all ia + jb for i + j ≤ 3. From 0 ∈ x′ we have u′ = u− 2c ⊆ u′ + x′ = 3x′.

If we suppose that u′ contains ia+ jb where i+ j = 3, then u′+ x′ contains (i+ 1)a+ jb.
Thus, (i + 1)a + jb = ka + lb for k + l ≤ 3. If j = l, then (i + 1)a = ka. As (i + 1) ≤ 4
and k ≤ 4, so i + 1 = k that is impossible. If j < l, then (k− i− 1)a + (l − j)b = 0 that is
impossible too. Analogously the case l < j is impossible.

Thus, u′ contains ia + jb for i + j ≤ 2 only, i. e. u′ ⊆ 2x′ = {0, a, b, 2a, 2b, a + b}.
Further, u′ 3 0, 2a, 2b because 0, 3a, 3b ∈ 3x′ can be obtained only as 0 = 0 + 0,

3a = 2a + a, 3b = 2b + b correspondingly. To obtain a + b ∈ 3x′ the set u′ must contain a, b,
or a + b.

Thus, u′ = {0, 2a, 2b} ∪ u′′ for any nonempty u′′ ⊆ {a, b, a + b}. There are exactly
seven such u′′.
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Lemma 17. Let x ≈ x′ = {0, a, . . . } for a 6= 0. Let there be exactly seven sets u such that
u + x = 3x. Then, x contains exactly three elements.

Proof. Let x = x′ + d. From u + x = 3x we have (u− 2d) + x′ = 3x′. If x (and x′) contains
exactly two elements, then there are exactly two such u (see [8], Proposition 4).

Let us denote u− 2d with u′. Let us suppose that x contains four or more elements:
x′ = {0, a, b, c, . . . } for non-zero and pairwise different a, b, c. Then, u′ can be u′ = 2x′ \ u′′

for any u′′ ⊆ {a, b, c}. There exist exactly eight such u′′ (and u′). Let us prove u′ + x′ =
2x′ + x′ = 3x′ for u′ = 2x′ \ {a, b, c}, then the other possibilities follow. Evidently, we have
u′ + x′ ⊆ 2x′ + x′, consider the converse inclusion.

• a + g = g + a for g /∈ {a, b, c};
• a + a = 2a + 0 when 2a /∈ {b, c}. Let us note that 2a 6= a;
• a + a = 0 + c when 2a = c;
• a + a = 0 + b when 2a = b;
• a + b = (a + b) + 0 when a + b 6= c. Let us note that a + b 6= a and a + b 6= b;
• a + b = 0 + c when a + b = c.

The other cases can be considered analogously.
Therefore, if x has four or more elements, then there are at least eight u such that

u + x = 3x.

Let us denote

K3(x) ≡ (∃u1, . . . , u7)
( 7∧

i=1

ui + x = 3x ∧
∧
i 6=j

ui 6= uj

∧ (∀u)(u + x = 3x →
7∨

i=1

u = ui)
)

.

Lemma 18. Let K2({0, a}) and K2({0, b}) be true, and Q({0, a}, {0, b}) be false. Then ker{0, a}+
x ≈ ker{0, a}+ {0, b} if and only if x ≈ x′ where x′ contains at least one element of the form ka,
at least one element of the form ka + b, and no element of another form.

Proof. Let ker{0, a}+ x ≈ ker{0, a}+ {0, b} be true. Then, ker{0, a}+ x = ker{0, a}+
{0, b} + c for some c. Hence, for any d ∈ x we have d = ka + c or d = ka + b + c. So,
x = x′ + c, and x′ contains only elements of the form ka and ka + b.

If x′ contains only elements of the form ka, then ker{0, a}+ x ≈ ker{0, a} 6≈ ker{0, a}+
{0, b}. If x′ contains only elements of the form ka + b, then ker{0, a}+ x′ ≈ ker{0, a}+ b
and ker{0, a}+ x ≈ ker{0, a} 6≈ ker{0, a}+ {0, b}.

The converse is trivial.

Lemma 19. Let z ≈ {0, a}, y ≈ {0, b}, Y ≈ my, and the formula Q(z, Y + y) be false. Let x be
as in the previous Lemma. Then, ker z + kx ≈ ker x + Y if and only if k = m.

Proof. The set ker z + Y contains exactly (m + 1) ord a elements (Lemma 15). The set
ker z + kx contains no more than (k + 1) ord a elements. So, k ≥ m.

If k > m, then ker z + kx contains together c and c + (m + 1)b for some c. So, ker x +Y
must contain d and d+ (m+ 1)b for some d. It is impossible due to falsehood of Q(z, Y + y),
thus, k = m.

Now let k = m, then ker z + kx consists of c + ia + jb for all i and j ≤ m, and ker z + Y
consists of d + ia + jb for all i and j ≤ m. Hence, ker z + kx ≈ ker x + Y.

Lemma 20. Let x ≈ {0, a}, y ≈ {0, b}, ord a > 4, ord b > 4, the formulas K2(z), K3(u), K3(v)
be true, the formula Q(x, 4y) be false, and ker x + z ≈ ker{0, a}+ y, ker x + u ≈ ker{0, a}+ y,
ker x + v ≈ ker{0, a}+ y. Then, x + y + z ≈ u + v if and only if
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• z ≈ {a, b} and u ≈ {0, a, b}, v ≈ {a, b, a + b} (or vice versa), or
• z ≈ {0, a + b} and u ≈ {0, a, a + b}, v ≈ {a, b, a + b} (or vice versa).

Proof. The converse claim can be verified trivially. So, we must prove the straight one.
From ord b > 4 and falsehood of Q(x, 4y) we obtain that b, 2b, 3b, 4b are not equal ia

for any i (Lemma 15).
By Lemma 18, we have z ≈ {0, αa + b}, u ≈ {0, δa + b, ζa + kb}, v ≈ {0, βa + b, γa +

mb}, for some integers α, β, γ, δ, ζ and k, m ∈ {0, 1}. So, we have the equality

{0, a}+ {0, b}+ {0, αa + b} = c + {0, δa + b, ζa + kb}+ {0, βa + b, γa + mb} (1)

for some c. The left set in (1) consists of elements of the form ia, ia + b, and ia + 2b. The
right set in (1) contains c, so c = θa, c = θa + b, or c = θa + 2b for some integer θ. For
c = θa + b or c = θa + 2b the right set contains ia + 3b or ia + 4b correspondingly. It is
impossible because ia + 3b and ia + 4b don’t belong to the left set. Thus, c = θa.

Further, let us show m + k = 1, i. e. one of them is 0 and another is 1. If we expand (1),
then we obtain

{0, a, b, a + b, αa + b, (α + 1)a + b, αa + 2b, (α + 1)a + 2b}
= {θa, (δ + θ)a + b, (ζ + θ)a + kb, (β + θ)a + b, (γ + θ)a + mb, (δ + β + θ)a + 2b,

(ζ + β + θ)a + (k + 1)b, (δ + γ + θ)a + (m + 1)b, (ζ + γ + θ)a + (k + m)b}. (2)

For m = k = 1 the right set in (2) can’t contain 0 and a together from the left set.
For m = k = 0 the right set in (2) contains θa, (ζ + θ)a, (γ + θ)a, and (ζ + γ + θ)a.

These elements can be equal to only a or 0 in the left set. As u and v contain three elements,
ζ and γ can’t be equal to zero. Thus, ζ = γ = ±1 and 2a = 0. It contradicts to ord a > 4.

Now we can suppose k = 0, m = 1. Hence, the equality (2) becomes

{0, a, b, a + b, αa + b, (α + 1)a + b, αa + 2b, (α + 1)a + 2b}
= {θa, (δ + θ)a + b, (ζ + θ)a, (β + θ)a + b, (γ + θ)a + b, (δ + β + θ)a + 2b,

(ζ + β + θ)a + b, (δ + γ + θ)a + 2b, (ζ + γ + θ)a + b}.

It is clear that θa and (ζ + θ)a must be equal 0 and a only, hence, θ = 0, ζ = 1 or θ = 1,
ζ = −1. In the second case, we have

{0, a}+ {0, b}+ {0, αa + b} = a + {0, δa + b,−a}+ {0, βa + b, γa + b}

and
{0, a}+ {0, b}+ {0, αa + b} = {0, (δ + 1)a + b, a}+ {0, βa + b, γa + b}

that is the first case.
Thus, we can consider only the equality

{0, a, b, a + b, αa + b, (α + 1)a + b, αa + 2b, (α + 1)a + 2b}
= {0, δa + b, a, βa + b, γa + b, (δ + β)a + 2b,

(β + 1)a + b, (δ + γ)a + 2b, (γ + 1)a + b}. (3)

The elements αa+ 2b and (α+ 1)a+ 2b from the left set in (3) must be equal to (δ+ β)a+ 2b
and (δ + γ)a + 2b from the right set. It follows that γ = β± 1. So, we can assume that
γ = β + 1 and α = δ + β. Hence, we obtain

{0, a, b, a + b, (δ + β)a + b, (δ + β + 1)a + b, (δ + β)a + 2b, (δ + β + 1)a + 2b}
= {0, δa + b, a, βa + b, (β + 1)a + b, (δ + β)a + 2b,

(β + 1)a + b, (δ + β + 1)a + 2b, (β + 2)a + b}. (4)
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Now we can consider all possibilities for δa + b from the right set in (4). It must be equal
to 0, a, (δ + β)a + 2b, or (δ + β + 1)a + 2b from the left set in (4). Thus, we have the next
four possibilities.

1. δa + b = b, δ = 0, and we have

{0, a, b, a + b, βa + b, (β + 1)a + b, βa + 2b, (β + 1)a + 2b}
= {0, b, a, βa + b, (β + 1)a + b, βa + 2b,

(β + 1)a + b, (β + 1)a + 2b, (β + 2)a + b}.

Then, (β + 2)a + b can be equal to b or a + b only. In the first case, we have β = −2
and

{0, a, b, a + b,−2a + b,−a + b,−2a + 2b,−a + 2b}
= {0, b, a,−2a + b,−a + b,−2a + 2b,−a + b,−a + 2b, b}.

That is impossible because a + b from the left set is not in the right one. Thus,
(β + 2)a + b = a + b, β = −1, α = −1, γ = 0, and we have

{0, a}+ {0, b}+ {0,−a + b} = {0, b, a}+ {0,−a + b, b}

or
{0, a}+ {0, b}+ {a, b} = {0, b, a}+ {a, b, a + b}.

2. δa + b = a + b, δ = 1, and we have

{0, a, b, a + b, (β + 1)a + b, (β + 2)a + b, (β + 1)a + 2b, (β + 2)a + 2b}
= {0, a + b, a, βa + b, (β + 1)a + b, (β + 1)a + 2b,

(β + 1)a + b, (β + 2)a + 2b, (β + 2)a + b}.

So, βa + b can be equal to b or a + b only. It means that β = 0 or β = 1. In the second
case, we obtain

{0, a, b, a + b, 2a + b, 3a + b, 2a + 2b, 3a + 2b}
= {0, a + b, a, a + b, 2a + b, 2a + 2b, 2a + b, 3a + 2b, 3a + b}.

That is impossible because b from the left set is not in the right one. Hence, β = 0,
α = 1, γ = 1, and we have

{0, a}+ {0, b}+ {0, a + b} = {0, a + b, a}+ {0, b, a + b}.

3. δa + b = (δ + β)a + b, δ = δ + β, so β = 0. We have

{0, a, b, a + b, δa + b, (δ + 1)a + b, δa + 2b, (δ + 1)a + 2b}
= {0, δa + b, a, b, a + b, δa + 2b, a + b, (δ + 1)a + 2b, 2a + b}.

Then, 2a + b can be equal δa + b or (δ + 1)a + b only. We have δ = 2 or δ = 1. In the
first case, we have

{0, a, b, a + b, 2a + b, 3a + b, 2a + 2b, 3a + 2b}
= {0, 2a + b, a, b, a + b, 2a + 2b, a + b, 3a + 2b, 2a + b}.

This is impossible because 3a + b from the left set not in the right set. Thus, δ = 1 and
we have the case 2.
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4. δa + b = (δ + β + 1)a + b, δ = δ + β + 1, and β = −1. We obtain

{0, a, b, a + b, (δ− 1)a + b, δa + b, (δ− 1)a + 2b, δa + 2b}
= {0, δa + b, a,−a + b, b, (δ− 1)a + 2b, b, δa + 2b, a + b}.

In this case, −a + b can be (δ − 1)a + b or δa + b only, i. e. δ = 0 or δ = −1. The
last implies

{0, a, b, a + b,−2a + b,−a + b,−2a + 2b,−a + 2b}
= {0,−a + b, a,−a + b, b,−2a + 2b, b,−a + 2b, a + b},

that is impossible: −2a + b is in the left set but is not in the right one. So, δ = 0 and
we have the case 1.

Lemma 21. Let 3m < ord a, 3m < ord b, m ≥ 2, Q({0, a}, 3m{0, b}) be false, and x ≈
{0, a′, b′} where a′ = ±a and b′ = ±b. Then, P2(x, mx) is true.

Proof. Falsehood of Q({0, a}, 3m{0, b}) means that jb 6= ia for 0 < j ≤ 3m (Lemma 15).
Hence, ±jb 6= ia also, and jb′ 6= ia′.

Let x = c + {0, a′, b′}. Then, the set mx consists of mc + ia′ + jb′ where i + j ≤ m.
Evidently, mx + x 6≈ ker x because mx + x can’t contain g and g + (m + 2)b′ together:
m + 2 ≤ m + m ≤ 3m− 2 < ord a− 1.

Let u + v = mx and d ∈ u. Then, (u− d) + (v−mc + d) = m{0, a, b}. As 0 ∈ u− d,
so v1 = v−mc + d ⊆ m{0, a′, b′}, hence, u1 = u− d ⊆ m{0, a′, b′,−a′,−b′}.

If u1 contains no elements of the form −ia′ ± jb′, i > 0, then u2 = u1 and v2 = v1.
Otherwise, let us select −i1a′ ± jb′ ∈ u′ with maximal i1. Then, v1 can’t contain ia′ + kb′

with i < i1. Assume u2 = u1 + i1a′ and v2 = v1 − i1a′.
If u2 contains no elements of the form ia′ − jb′, j > 0, then u3 = u2 and v3 = v2.

Otherwise, let us select ia′ − j2b′ ∈ u2 with maximal j2. Then, v2 can’t contain ka′ + jb′ with
j < j2. Assume u3 = u2 + j2b′ and v3 = v2 − j2b.

Then, v3 ⊆ m{0, a′, b′}, u3 ⊆ 2m{0, a′, b′}, and u3 + v3 = u1 + v1 = m{0, a′, b′}.
Let us select i0a′ + j0b′ ∈ v3 with maximal i0 + j0. If i0 + j0 = 0, then v3 and v are

invertible. Otherwise, i0 + j0 ≥ 1 and v3 ⊆ (i0 + j0){0, a′, b′}. In this case, u3 can’t contain
ia′ + jb′ with i + j > m− i0 − j0, i. e. u3 ⊆ (m− i0 − j0){0, a′, b′}. Then

m{0, a′, b′} = u3 + v3 ⊆ u3 + (i0 + j0){0, a′, b′}
⊆ (m− i0 − j0){0, a′, b′}+ (i0 + j0){0, a′, b′} = m{0, a′, b′}.

Thus, u3 + (i0 + j0){0, a′, b′} = m{0, a′, b′} and we have u + x + (i0 + j0 − 1)x ≈ mx.

Lemma 22. Let the formulas I(x, X) and I(y, Y) be true, and Q(x, 4Y) be false. Then, n = m if
and only if all the following formulas are true for some z, Z, u, U, v, V:

1. K2(z), K3(u), K3(v);
2. P2(z, Z);
3. P2(u, U), P2(v, V);
4. ker x + Z ≈ ker x + Y, ker x + U ≈ ker x + Y, ker x + V ≈ ker x + Y;
5. x + y + z ≈ u + v;
6. X + Y + Z ≈ U + V.

Proof. Let n = m. Assume z = {0, a + b}, Z = mz, u = {0, a, a + b} ≈ {0,−a, b}, U = mu,
v = {0, b, a + b} ≈ {0, a,−b}, V = mu. Then, K2(z) is true by Lemma 11; K3(u) and K3(v)
are true by Lemma 16; P2(z, Z) is true by Lemma 13; P2(u, U) and P2(v, V) are true by
Lemma 21; ker x + Z ≈ ker x + Y, ker x + U ≈ ker x + Y, and ker x + V ≈ ker x + Y are
true by Lemma 18; x + y + z ≈ u + v and X + Y + Z ≈ U + V are true by Lemma 20.
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Now let all the formulas 1–6 be true. Then, from 1 we have z has two elements
(Lemma 11), u and v have three elements (Lemma 17). By Lemma 20, from 5 we have

• z ≈ {a, b}, u ≈ {0, a, b}, v ≈ {a, b, a + b} ≈ {0,−a,−b} or
• z ≈ {0, a + b} ≈ {−a, b}, u ≈ {0, a, a + b} ≈ {0,−a, b}, v ≈ {0, b, a + b} ≈ {0, a,−b}.
In any case, from 2 and 3 we obtain Z ≈ kzz, U ≈ kuu, V ≈ kvv by Lemma 12. By Lemma 18,
from 4 we have kz = ku = kv = m. Thus, from 6 we have

n{0, a}+ m{0, b}+ m{a, b} ≈ m{0, a, b}+ m{a, b, a + b}

or
n{0, a}+ m{0, b}+ m{0, a + b} ≈ m{0, a, a + b}+ m{0, b, a + b}.

If we suppose n > m, then the left sets have g and g + (n + m)a (or g + (n + m)a + mb)
for some g, but the right sets can’t have them together because all ia + jb are pairwise
different for i ≤ 2n, j ≤ 3m (Lemma 15).

Now let us suppose n < m, then the right sets have g and g + ia + 2mb (or g + (i +
m)a + 2mb) for some g and i ≤ m. By Lemma 15, we have 2mb 6= ia for all i 6= 0. The left
sets can have only elements of the form h and h+ ia+ 2mb (or h+ (i +m)a+ 2mb) for some
h and i ≤ n. Hence, {0, . . . , na} = {0, . . . , ma} that means n + 1 ≥ ord a. It contradicts to
2X 6≈ ker x (the formula I(x, X) includes P3(x, X, . . . )).

Therefore, n = m.

Let us construct formulas E′ and E:

E′(x, X, y, Y) ≡ I(x, X) ∧ I(y, Y) ∧ ¬Q(x, 4Y)

∧ (∃z, Z, u, U, v, V)(K2(z) ∧ K3(u) ∧ K3(v) ∧ P2(z, Z) ∧ P2(u, U) ∧ P2(v, V)

∧ ker x + Z = ker x + Y ∧ ker x + U = ker x + Y ∧ ker x + V = ker x + Y

∧ x + y + z = u + v ∧ X + Y + Z = U + V);

E(x, X, w, W) ≡ (∃y, Y)(K2(y) ∧ I(y, Y) ∧ E′(x, X, y, Y) ∧ E(w, W, y, Y)).

Theorem 3. Let I(x, X) and I(w, W) be true. Then, E(x, X, w, W) is true if and only if X ≈ nx
and W ≈ nw for some n.

Proof. From I(x, X) and I(w, W) we have X ≈ n1x and W ≈ n2w.
Let E(x, X, w, W) be true. Let us fix y and Y, so Y ≈ ny. Then, E′(x, X, y, Y) and

E′(w, W, y, Y) are true. By Lemma 22, we have n1 = n and n2 = n, so n1 = n2.
Now let X ≈ nx and W ≈ nw where x ≈ {0, a} and w ≈ {0, b}. Then, n ≤ (ord a−

2)/2 and n ≤ (ord b − 2)/2. Let us select y = {0, c} such that ord c > (4 ord a)2 and
ord c > (4 ord b)2, Y = ny. So, we have the formula I(y, Y) to be true and the formula
Q(x, 4Y) to be false. Thus, E′(x, X, y, Y) and E′(w, W, y, Y) are true by Lemma 22.

7. Conclusions

We have established that for any Abelian group of infinite exponent the algebra of
finite subsets allows us to interpret elementary arithmetic. The natural question is

• Let G be an infinite Abelian group of the finite exponent. Can elementary arithmetic
be interpreted in the algebra of finite subsets of G.

Another problem is generalizing this result to non-Abelian groups. For groups with
an element of infinite order, this can be done easily. Indeed, let a be an element of a group.
Then, the center of the centralizer of a is an Abelian group containing all an. This can be
expressed in expG:

C(x, y) ≡ K1(x) ∧ xy = yx; Z(x, y) ≡ C(x, y) ∧ (∀z)(C(x, z)→ yz = zy).
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Thus, the formula Z({0, a}, y) is true for all y ⊆ {0, a}n. Now we can use results from [8].
But such a method can’t be used for torsion groups because proofs of claims in Section 6

significantly use commutativity. Hence, the next question is

• Let G be an infinite torsion group. Can elementary arithmetic be interpreted in the
algebra of finite subsets of G.
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