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Abstract: This paper investigates the global exponential stability of uncertain delayed complex-
valued neural networks (CVNNs) under an impulsive controller. Both discrete and distributed
time-varying delays are considered, which makes our model more general than previous works.
Unlike most existing research methods of decomposing CVNNs into real and imaginary parts,
some stability criteria in terms of complex-valued linear matrix inequalities (LMIs) are obtained
by employing the complex Lyapunov function method, which is valid regardless of whether the
activation functions can be decomposed. Moreover, a new impulsive differential inequality is applied
to resolve the difficulties caused by the mixed time delays and delayed impulse effects. Finally, an
illustrative example is provided to back up our theoretical results.

Keywords: complex-valued neural networks; impulsive control; time-varying delays; globally
exponentially stable

1. Introduction

In recent decades, neural network models have a lot of potential to be used in vari-
ous fields such as pattern classification, optoelectronics, associative memory and signal
processing [1–5]. As the applications of neural networks with complex-valued inputs
successfully spread, the stability analysis of CVNNs is a growing research area. Compared
with real-valued systems, CVNNs have more complex characteristics which are not only
able to simulate much more practical situations but are also able to deal with problems that
real-valued systems cannot solve. For example, many applications of associative memories,
including the retrieval of gray-scale images in the presence of noise, require the storage
of multistate or complex-valued patterns. Another example is the XOR problem and the
detection of symmetry problem, which can be solved by a single complex-valued neuron
under the orthogonal decision boundaries, but not with their real-valued counterparts.
This reveals the strengthened potent computational power of complex-valued neurons.
For more engineering applications, we refer the reader to [6–10] and the references therein.
Moreover, since the inherent neuron communication and the switching speed of amplifiers
are finite, there are inevitably time delays in neural networks, which may cause undesirable
performances and even system instability [11–14]. Therefore, the study of CVNNs with
time delays has drawn significant scholarly attention [15–22].

In real-valued neural networks, their activation functions are usually chosen to be
smooth and bounded. However, in the complex domain, based on Liouville’s theorem [23],
every bounded entire function must be constant. Therefore, activation functions are the
main challenge for CVNNs [15]. According to different types of activation functions, the
research methods for the stability of CVNNs can be classified into two types. The first
method is to separate it into real and imaginary parts to form an equivalent real-valued
systems [15–18]. For example, in [15], the global stability of CVNNs with constant delays
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was investigated when activation functions were denoted as f (z) = f R(x, y) + i f I(x, y).
In [16], the authors obtained some criteria for boundedness and the complete stability
of CVNNs with time delays. One can observe that this method requires the activation
functions to be explicitly decomposed into their real and imaginary parts. However, this
separation cannot always be expressed in an analytical form. To solve this problem, a
complex-valued Lyapunov function method was proposed as another efficient way of
handling CVNNs [19–22]. Fang and Sun [19] addressed the stabilization of complex-valued
recurrent neural networks with time delays through constructing appropriate complex-
valued Lyapunov functions. In [21,22], the stability problem of CVNNs with impulsive
effect and mixed time delays is concerned via the complex Lyapunov functions method.

As we know, for control problems of neural networks, various approaches, such as
pinning control, sampled data control, adaptive control, impulsive control and intermittent
state feedback control have been proposed [24–28]. The impulsive control, as a hybrid
control approach, has attracted significant interest in many applications [29–32], since its
control input is only imposed on the topological structure of systems at some discrete
moments, which can dramatically decrease the quantity of transmitted information and
control cost. Hence, a great many attractive results on the impulsive control of delayed
neural networks have been presented in recent years [33–36]. However, there has been
limited work on delayed complex-valued systems [37–40]. In [37], the exponential stabiliza-
tion of complex-valued inertial neural networks with time-varying delays was analyzed by
utilizing impulsive control. Refs. [38,39] presented the synchronization of delayed CVNNs,
in which impulsive controllers were used to achieve master–slave exponential synchroniza-
tion. Most recently, the impulsive control problem of CVNNs with constant delays was
studied in [40] by employing the Lyapunov–Razumikhin technique in complex domains.

Note that most results mentioned above are working on the system whose parameters
are known and time delays are only of discrete nature. However, in reality, the exact values
of parameters are very hard to acquire in neural networks because of modeling inaccuracies
or external disturbances. Meanwhile, neural networks always have spatial characteristics
because there are plenty of parallel paths with several axon sizes, which means that the
signal transmission is not usually instantaneous. Introducing distributed delays to simulate
them is very essential. In addition, since it takes a certain amount of time to receive and
transmit signals from the controller to the controlled system, including a time delay in the
impulsive control input makes more sense. However, to the best of our knowledge, few
studies have focused on the stabilization of CVNNs with both discrete and distributed
time-varying delays as well as uncertain parameters via delayed impulsive control. This is
the motivation of the present paper.

This study deals with the exponential stability of uncertain CVNNs with both discrete
and distributed time-varying delays by time-delay impulsive control. The major contribu-
tions can be listed as follows: (i) a comprehensive model of CVNNs which simultaneously
contains uncertain parameters and mixed time-delays is discussed; (ii) by constructing
complex-valued Lyapunov function and designing a delayed impulsive controller, some
stability criteria are derived for CVNNs, which are valid regardless of whether the activa-
tion functions can be decomposed. Our results extend those of previous studies [37,40]; and
(iii) a new impulsive differential inequality is employed to resolve the difficulties caused
by the delayed impulse effects and mixed delays. The structure of this study is as follows.
Section 2 introduces the models and knowledge related to CVNNs. In Section 3, the main
stability results are obtained. An explicit example is presented in Section 4. Section 5 makes
a summary of the paper.

Notation 1. Throughout this paper, let Cn and Cn×n be the set of n-dimensional complex-valued
spaces and n× n complex-valued matrices, respectively. Rn×n denotes n× n real-valued matrices.
Let Z+ define the set of positive integers. For a Hermitian matrix P, λmin(P) and λmax(P) mean
the minimum and maximum eigenvalues of matrix P. τ ∨ β represents the maximum values of τ
and β, Λ = {1, 2, · · · , n}. A < 0 represents that the matrix A is a negative definite matrix. A ≤ 0



Mathematics 2022, 10, 526 3 of 14

or A ≥ 0 means that the matrix A is a symmetric negative semi-definite or positive semi-definite
matrix. Moreover, A−1 represents the inverse of A. The notation ‖A‖ means the spectral norm of
matrix A. For complex-valued vector ž ∈ Cn, ‖ž‖ =

√
žž∗, where ž∗ is the conjugate transpose

of ž. ‖ž‖$ = sup
s∈[−$,0]

‖ž(s)‖. PC(J, V) = {ϑ : J → V denotes continuous everywhere except at a

finite number of points t, at which ϑ(t+), ϑ(t−) exist and ϑ(t+) = ϑ(t)}. Notation I means that
the identity matrix with appropriate dimensions and ? always denotes the symmetric block in one
symmetric matrix.

2. Preliminaries

This section studies CVNNs with uncertain parameters and mixed delays as follows:{
ẋ(t) = −C(t)x(t) + A(t) f (x(t)) + B(t) f (x(t− τ(t))) + D(t)

∫ t
t−β(t) f (x(s))ds + J, t > 0,

x(t) = ϑ(t), t ∈ [−$1, 0],
(1)

where x(t) = (x1(t), x2(t), · · · , xn(t))T ∈ Cn denotes the state vector of the system,
f (x(t)) = ( f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ Cn is the neuron activation function;
C(t) = C + ∆C(t), A(t) = A + ∆A(t), B(t) = B + ∆B(t), D(t) = D + ∆D(t), in which
C ∈ Rn×n is a positive diagonal matrix, A ∈ Cn×n, B ∈ Cn×n, D ∈ Cn×n are the connection
weight matrices, ∆C(t), ∆A(t), ∆B(t), ∆D(t) are time-varying parametric uncertainties; J is
the external input of the CVNNs; τ(t) and β(t) are the transmission delays and distributed
delays, respectively, which satisfy 0 ≤ τ(t) ≤ τ, 0 ≤ β(t) ≤ β, where τ and β are constants;
ϑ(·) ∈ PC([−$1, 0],Cn) is the initial condition, where $1 = τ ∨ β.

For further discussion, the following assumptions are made:
(H1) There exists a positive diagonal matrix L = diag(L1, L2, . . . , Ln) such that:

‖ fi(ǔ1)− fi(ǔ2) ‖≤ Li ‖ ǔ1 − ǔ2 ‖, i ∈ Λ,

for all ǔ1, ǔ2 ∈ C.
(H2) The time-varying parametric uncertainties ∆A(t), ∆B(t), ∆C(t), ∆D(t) are sup-

posed to be of the form:

(∆C(t), ∆A(t), ∆B(t), ∆D(t)) = TK(t)(Û1, Û2, Û3, Û4),

where T, Û1, Û2, Û3, Û4 are known matrices, and K(t) is the matrix of appropriate dimen-
sions satisfying K∗(t)K(t) ≤ I.

Assume that x̌ = (x̌1, x̌2, · · · , x̌n)T is an equilibrium point of system (1). Let ž = x− x̌.
Then, the equilibrium point x̌ is converted to zero. To achieve the stability of CVNNs, the
following impulsive control law is designed:{

0 ≤ t0 < t1 < · · · < tk → ∞, k→ ∞,
∆ž(t) = Ek ž(t−) + Fk ž(t− − η(t−)), t = tk,

(2)

where Ek, Fk ∈ Cn×n denote impulsive gain matrices at impulsive time tk; ∆ž(t) = ž(t)−
ž(t−); η(t) denotes a time-varying delay and satisfies 0 ≤ η(t) ≤ η. Let A = {tk} be an
impulsive sequence satisfying the first inequality of (2), and A� be a subset of A satisfying
tk − tk−1 ≤ ζ for any k ∈ Z+, where ζ is a positive constant.

The system (1) can be converted into the following form:
˙̌z(t) = −C(t)ž(t) + A(t)F(ž(t)) + B(t)F(ž(t− τ(t))) + D(t)

∫ t
t−β(t) F(ž(s))ds, t 6= tk,

∆ž(t) = Ek ž(t−) + Fk ž(t− − η(t−)), t = tk,
ž(t) = χ(t), ∀t ∈ [−$, 0],

(3)

where χ(·) = ϑ(·)− x̌, χ(·) ∈ PC([−$, 0],Cn), F(ž) = f (ž + x̌)− f (x̌), $ = τ ∨ β ∨ η.
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Definition 1. In ([41]) The zero equilibrium point of system (3) is said to be globally exponentially
stable over the impulse set A�, if for any solution of (3), there exist constants λ > 0 and W > 1
such that ‖ž(t)‖ ≤W‖χ‖$e−λt, for all t ≥ 0.

Lemma 1. In ([42]) Considering the following impulsive differential inequality:{
D+V(t) ≤ aV(t) + bV̄(t), t 6= tk,
V(t) ≤ δ1V(t−) + δ2V̄(t−), t = tk, k ∈ Z+,

(4)

where V̄(t) = sup
s∈[t−$,t]

V(s). If there exist constants a ∈ R, b > 0, δ1, δ2 > 0 such that:

δ1 + δ2 < 1, a +
b

δ1 + δ2
<

ln 1
δ1+δ2

ζ
,

then the solution of inequality (4) satisfies:

V(t) ≤ V̄(0)αe−λt, t ≥ 0

over the class A�, where α and λ are positive constants with α > 1 and λ > 0.

Lemma 2. In ([21]) For any positive definite Hermitian matrix E ∈ Cn×n, a vector function
υ : [c, d]→ Cn with scalars c < d such that the related integration is well defined, it follows that:(∫ d

c
υ(s)ds

)∗
E
∫ d

c
υ(s)ds ≤ (d− c)

∫ d

c
υ∗(s)Eυ(s)ds.

Lemma 3. In ([21]) For any positive Hermitian matrix R ∈ Cn×n, vectors x, z ∈ Cn, it follows
that:

x∗z + z∗x ≤ x∗Rx + z∗R−1z.

Lemma 4. In ([43]) If Γ, Ω and Υ are complex-valued matrices of appropriate dimensions and
Υ∗ = Υ, then:

Υ + ΓS(t)Ω + Ω∗S∗(t)Γ∗ < 0

holds, for all matrices S(t) satisfying S∗(t)S(t) ≤ I, if and only if there exists a constant ε > 0,
such that:

Υ + εΓΓ∗ + ε−1Ω∗Ω < 0

holds.

3. Main Results

In this section, some criteria for the globally exponentially stable of the CVNNs (3)
are derived based on a complex-valued Lyapunov function and the impulsive differential
inequality technique.
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Theorem 1. Suppose that (H1) holds. If there exist some constants a ∈ R, b > 0, ζ > 0, δ1 > 0,
δ2 > 0 (δ1 + δ2 < 1), 0 < µ < 1 and a positive definite Hermitian matrix P, positive definite
diagonal matrices G, Q, M ∈ Rn×n such that following inequalities hold:

Ξ1 =


Ξ́11 Ξ́12 Ξ́13 Ξ́14
? −G 0 0
? ? −Q 0
? ? ? −M

 < 0, (5)

Π1 =

 −P PEk + P PFk
? −δ1P 0
? ? −δ2P

 ≤ 0, (6)

{
µbP− LQL ≥ 0,
(1− µ)bP− β2LML ≥ 0,

(7)

a +
b

δ1 + δ2
+

ln(δ1 + δ2)

ζ
< 0, (8)

with:
Ξ́11 = −PC(t)− C∗(t)P + LGL− aP, Ξ́12 = PA(t), Ξ́13 = PB(t), Ξ́14 = PD(t),

then the CVNNs (3) are globally exponentially stable over the set A�.

Proof. Consider the Lyapunov function:

V(t) = ž∗(t)Pž(t). (9)

Taking the derivative of V(t) along the trajectory of CVNNs (3), one has, for t ∈
[tk−1, tk), k ∈ Z+ :

D+V(t) = ž∗(t)P ˙̌z(t) + ˙̌z∗(t)Pž(t)

= ž∗(t)P[−C(t)ž(t) + A(t)F(ž(t)) + B(t)F(ž(t− τ(t))) + D(t)
∫ t

t−β(t)
F(ž(s))ds]

+ [−C(t)ž(t) + A(t)F(ž(t)) + B(t)F(ž(t− τ(t))) + D(t)
∫ t

t−β(t)
F(ž(s))ds]∗Pž(t)

= ž∗(t)(−PC(t)− C∗(t)P)ž(t) + ž∗(t)PA(t)F(ž(t)) + F∗(ž(t))A∗(t)Pž(t) + ž∗(t)PB(t)F(ž(t− τ(t)))

+ F∗(ž(t− τ(t)))B∗(t)Pž(t) + ž∗(t)PD(t)
∫ t

t−β(t)
F(ž(s))ds +

∫ t

t−β(t)
F∗(ž(s))dsD∗(t)Pž(t).

From Lemmas 2 and 3, we obtain:

D+V(t) ≤ ž∗(t)(−PC(t)− C∗(t)P)ž(t) + ž∗(t)PA(t)G−1 A∗(t)Pž(t) + F∗(ž(t))GF(ž(t))

+ ž∗(t)PB(t)Q−1B∗(t)Pž(t) + F∗(ž(t− τ(t)))QF(z(t− τ(t))) + ž∗(t)PD(t)M−1D∗(t)Pž(t)

(
∫ t

t−β(t)
F∗(ž(s))ds)M(

∫ t

t−β(t)
F(ž(s))ds)

≤ ž∗(t)(−PC(t)− C∗(t)P)ž(t) + ž∗(t)PA(t)G−1 A∗(t)Pž(t) + F∗(ž(t))GF(ž(t))

+ ž∗(t)PB(t)Q−1B∗(t)Pž(t) + F∗(ž(t− τ(t)))QF(ž(t− τ(t))) + ž∗(t)PD(t)M−1D∗(t)Pž(t)

+ β(t)
∫ t

t−β(t)
F∗(ž(s))MF(ž(s))ds

By (H1) and using the Schur complement lemma in inequality (5), it yields:
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D+V(t) ≤ ž∗(t)(−PC(t)− C∗(t)P)ž(t) + ž∗(t)PA(t)G−1 A∗(t)Pž(t) + ž∗(t)LGLž(t)

+ ž∗(t)PB(t)Q−1B∗(t)Pž(t) + ž∗(t− τ(t))LQLž(t− τ(t)) + ž∗(t)PD(t)M−1D∗(t)Pž(t)

+ β(t)
∫ t

t−β(t)
ž∗(s)LMLž(s)ds (10)

< až∗(t)Pž(t) + ž∗(t− τ(t))LQLž(t− τ(t)) + β2(t) max
t−β≤s≤t

ž∗(s)LMLž(s)

≤ aV(t) + ž∗(t− τ(t))LQLž(t− τ(t)) + β2 max
t−$≤s≤t

ž∗(s)LMLž(s).

By inequality (7), we obtain:

ž∗(t− τ(t))LQLž(t− τ(t)) + β2 max
t−$≤s≤t

ž∗(s)LMLž(s)

≤ max
t−$≤s≤t

ž∗(s)LQLž(s) + β2 max
t−$≤s≤t

ž∗(s)LMLž(s) (11)

≤µb max
t−$≤s≤t

ž∗(s)Pž(s) + (1− µ)b max
t−$≤s≤t

ž∗(s)Pž(s)

=b max
t−$≤s≤t

ž∗(s)Pž(s) = bV̄(t).

It can be concluded from (10) and (11) that:

D+V(t) < aV(t) + bV̄(t). (12)

On the other hand, for t = tk, we have:

V(tk) =ž∗(tk)Pž(tk)

=[(I + Ek)ž(t−k ) + Fk ž(t−k − η(t−k ))]
∗Pž(tk)− ž∗(tk)Pž(tk)

+ ž∗(tk)P[(I + Ek)ž(t−k ) + Fk ž(t−k − η(t−k ))]

=ž∗(t−k )(I + Ek)
∗Pž(tk) + ž∗(t−k − η(t−k ))F∗k Pž(tk)− ž∗(tk)Pž(tk) + ž∗(tk)P(I + Ek)ž(t−k ) (13)

+ ž∗(tk)PFk ž(t−k − η(t−k ))− δ1ž∗(t−k )Pž(t−k )− δ2ž∗(t−k − η(t−k ))Pž(t−k − η(t−k ))

+ δ1ž∗(t−k )Pž(t−k ) + δ2ž∗(t−k − η(t−k ))Pž(t−k − η(t−k ))

=ξ∗(t)Π1ξ(t) + δ1V(t−k ) + δ2V(t−k − η(t−k ))

≤δ1V(t−k ) + δ2V̄(t−k ),

where ξ(t) =
(
ž∗(tk), ž∗(t−k ), ž∗(t−k − η(t−k ))

)∗.
Thus, according to Lemma 1, from (12) and (13), one can obtain that when t ≥ 0:

V(t) ≤ V̄(0)αe−λt. (14)

Notice, from (9), that one has:

V(t) ≥ λmin(P)‖ž(t)‖2, V̄(t0) ≤ λmax(P)‖χ(t)‖2
$, (15)

then:

‖ž(t)‖ ≤ α
1
2

√
λmax(P)
λmin(P)

‖χ(t)‖$e−
λ
2 t.

Hence, the system (3) is globally exponentially stable. The proof of the theorem has
been completed.
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Especially, when ∆A(t) = ∆B(t) = ∆C(t) = ∆D(t) = 0, the system (3) reduces to:
˙̌z(t) = −Cž(t) + AF(ž(t)) + BF(ž(t− τ(t))) + D

∫ t
t−β(t) F(ž(s))ds, t 6= tk,

∆ž(t) = Ek ž(t−) + Fk ž(t− − η(t−)), t = tk,
ž(t) = χ(t), ∀t ∈ [−$, 0].

(16)

Form Theorem 1, the following corollary is obtained.

Corollary 1. Assume that (H1) holds. If there exist some constants a ∈ R, b > 0, ζ > 0, δ1 > 0,
δ2 > 0 (δ1 + δ2 < 1), 0 < µ < 1 and positive definite Hermitian matrix P, positive definite
diagonal matrices G, Q, M ∈ Rn×n such that following inequalities hold:

Ξ2 =


Ξ̌11 Ξ̌12 Ξ̌13 Ξ̌14
? −G 0 0
? ? −Q 0
? ? ? −M

 < 0,

Π1 =

 −P PEk + P PFk
? −δ1P 0
? ? −δ2P

 ≤ 0,

{
µbP− LQL ≥ 0,
(1− µ)bP− β2LML ≥ 0,

a +
b

δ1 + δ2
+

ln(δ1 + δ2)

ζ
< 0,

with:
Ξ̌11 = −PC− C∗P + LGL− aP, Ξ̌12 = PA, Ξ̌13 = PB, Ξ̌14 = PD, then the system (16) is

globally exponentially stable over the set A�.

In Theorem 1, it can be found that the uncertainty K(t) and control gains Ek, Fk need to
be a priori known. In fact, it is hard to accurately obtain the uncertainty K(t), only knowing
its possible estimates such that KT(t)K(t) ≤ I, and the control gains Ek, Fk are also needed
to be designed. Therefore, in the following, a result for this general situation is given by
making some transformations.

Theorem 2. Suppose that (H1) and (H2) hold. If there exist some constants a ∈ R, b > 0, ζ > 0,
ε > 0, δ1 > 0, δ2 > 0 (δ1 + δ2 < 1), 0 < µ < 1 and positive definite Hermitian matrices X, G̃, Q̃,
M̃, Ĝ, Q̂, M̂, matrices Yk, Zk ∈ Cn×n such that the following inequalities hold:

Ξ3 =


Ξ̂11 AX BX DX −XÛ∗1
? −G̃ 0 0 XÛ∗2
? ? −Q̃ 0 XÛ∗3
? ? ? −M̃ XÛ∗4
? ? ? ? −εI

 < 0, (17)

Π2 =

 −X Yk + X Zk
? −δ1X 0
? ? −δ2X

 ≤ 0, (18)
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{
µbX− Q̂ ≥ 0,
bX− µbX− β2M̂ ≥ 0,

(19)

a +
b

δ1 + δ2
+

ln(δ1 + δ2)

ζ
< 0 (20)

with:
Ξ̂11 = −CX− XC∗ + Ĝ− aX + εTT∗

then the system (3) is globally exponentially stable over the set A� with the impulsive gains:

Ek = YkX−1, Fk = ZkX−1.

Proof. In Theorem 1, the condition Ξ1 < 0 can be expressed as

Ξ1 =Ξ2 +


−P∆C(t)− ∆C∗(t)P P∆A(t) P∆B(t) P∆D(t)

? 0 0 0
? ? 0 0
? ? ? 0


=Ξ2 + Γ∗1K(t)Υ1 + Υ∗1K∗(t)Γ1

<0, (21)

where Γ∗1 = (T∗P 0 0 0)T , Υ1 = (−Û1 Û2 Û3 Û4) and Ξ2 is given in Corollary 1.
According to Lemma 4, (21) corresponds to the following inequality:

Ξ2 + εΓ∗1Γ1 + ε−1Υ∗1Υ1 < 0. (22)

Utilizing the Schur complement lemma, it can be concluded from (22) that:[
Ξ̄ Υ∗1
? −εI

]
< 0, (23)

where Ξ̄ = Ξ2 + εΓ∗1Γ1. By pre-multiplying and post-multiplying inequality (23) with diag
{P−1, P−1, P−1, P−1, I}, inequality (6) with diag {P−1, P−1, P−1}, and inequality (7) with
diag P−1. Denote that G̃ = P−1GP−1, Q̃ = P−1QP−1, M̃ = P−1MP−1, Ĝ = P−1LGLP−1,
Q̂ = P−1LQLP−1, M̂ = P−1LMLP−1 in (17)–(19), where P is a Hermitian matrix and let
X = P−1, Yk = EkP−1, Zk = FkP−1. This leads to inequalities (23), (6) and (7) being equiv-
alent to inequalities (17), (18) and (19). Therefore, the CVNNs (3) are globally exponentially
stable over the set A�.

Remark 1. In [21,22], the stability problem of CVNNs with both impulsive effect and mixed time
delays is concerned, where the impulses are considered from the perspective of perturbation. In other
words, they are only suitable for systems subject to destabilizing impulses. Conversely, the present
paper studies the stability of CVNNs from the perspective of impulsive control. Actually, it can
be shown from Theorem 1 that constants a ∈ R, b > 0 and 0 < µ < 1 mean that the continuous
dynamics may be unstable while the discrete dynamics are stabilizing. Therefore, our present results
are different from those in [21,22].

Remark 2. In [37–40], the authors investigated the impulsive control problem of delayed CVNNs.
Compared with those results, the novelty and advantages of our study include: (i) distributed
time-varying delays and uncertain parameters are considered in our models, which are excluded in
those existing results; (ii) note that, in [37–39], the stability and synchronization of the system were
studied by decomposing the system into real and imaginary parts and constructing an equivalent
real-valued system. However, this approach is ineffective when the activation functions cannot be
decomposed. In this paper, some stability criteria are obtained by employing the complex Lyapunov
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function method, which is valid regardless of whether the activation functions can be decomposed or
not; (iii) in [40], the stability of impulsive CVNNs with constant delays was studied by utilizing
the complex-valued Lyapunov–Razumikhin technique, where the stability criterion is obtained by
analytical inequalities of matrix eigenvalues. In our paper, however, the stability criterion and
controller design scheme are given in terms of complex-valued LMIs, which can be effectively verified
with the Matlab LMI toolbox. Thus, our results improve and extend previous works.

Remark 3. From a practical application point of view, it is desirable to determine the control
gains with small norms. This is because small control gains lead to a low energy cost. In view of
Theorem 2, an LMI-based optimization method is suggested below to find an impulsive controller
with minimized control gains in norm:

Step 1: Solve the following optimization problem (OP):
minimum c1,
subject to (17)–(20), and(
−X Yk
? −µ1c2

1 I

)
< 0,

(
−X Zk
? −µ2c2

2 I

)
< 0, X ≥ µ1 I, X ≥ µ2 I.

(24)

If OP (24) is solvable, then max{‖Ek‖, ‖Fk‖} ≤ c1 min.
Step 2: Use the c1 min obtained in the previous step to solve the following OP:

minimum c2,
subject to (17)–(20), and(
−X Yk
? −µ1c2

1 min I

)
< 0,

(
−X Zk
? −µ2c2

2 I

)
< 0, X ≥ µ1 I, X ≥ µ2 I.

(25)

If OP (25) is solvable, then ‖Fk‖ ≤ c2 min.

4. Numerical Examples

In this section, an explicit example is given to illustrate the validity of the proposed
results.

Example 1. Give the 2D CVNNs (3) with parameters as follows:

C =

[
1 0
0 2.5

]
, A =

[
1.65− 0.22i −0.05 + 0.04i
−0.45 + 0.35i 2.8 + 0.1i

]
,

B =

[
−0.85 + 0.78i −0.1 + 0.1i
−0.1 + 0.2i −3.9− 3.8i

]
, D =

[
−0.3− 1.2i −0.25− 0.18i
4.3 + 4.27i −3− 3.1i

]
.

In particular, we consider the case that τ(t) = 0.39 + 0.01| sin t|, η(t) = 0.38 + 0.02| sin t|,
β(t) = 0.08+ 0.01| cos t|, with activation functions F1(s) = F2(s) = tanh(Re(s))+ i tanh(Im(s)).
The impulsive interval is tk+1 − tk = 0.0054, k ∈ Z+. The above parameters a = 18.7, b = 5.9,
δ1 = 0.76, δ2 = 0.11, µ = 0.9, ρ = 0.4, β = 0.09 ε = 0.1 and matrix T = 1.1I2×2,
K(t) = diag{sin(t), sin(t)}, U1 = I2×2, Uj = (1 + i)I2×2, j = 2, 3, U4 = (1.05 + 1.05i)I2×2.
Through the MATLAB LMI toolbox, feasible solutions can be found as follows:

X =

[
3.4859 0.1962 + 0.0033i

0.1962− 0.0033i 3.3993

]
, G̃ =

[
485.1427 12.5557 + 1.9368i

12.5557− 1.9368i 427.9925

]
,

Q̃ =

[
499.0266 6.513 + 3.443i

6.513− 3.443i 526.9978

]
, M̃ =

[
544.5205 −24.8872 + 2.6915i

−24.8872− 2.6915i 525.0512

]
,

Ĝ =

[
5.4147 0.6366− 0.1537i

0.6366 + 0.1537i 7.5015

]
, Q̂ =

[
9.2551 0.521 + 0.0087i

0.521− 0.0087i 9.0251

]
,

M̂ =

[
89.6766 3.3261 + 0.0623i

3.3261− 0.0623i 88.1382

]
, Yk =

[
−2.705 + 0.0036i −0.1818− 0.0064i
−0.185 + 0.2818i −2.6901− 1.3084i

]
,
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Zk =

[
−0.4012− 0.3992i −0.0642− 0.03i
−0.0679 + 0.0032i −0.3687− 0.0599i

]
.

Then, the gain matrices of control law are designed by

Ek = YkX−1 =

[
−0.7755 + 0.0011i −0.0087− 0.0012i
−0.0082 + 0.1021i −0.7908− 0.3908i

]
,

Fk = ZkX−1 =

[
−0.1144− 0.1144i −0.0124− 0.0021i
−0.0134 + 0.0018i −0.1077− 0.0177i

]
.

Figures 1 and 2 present the state trajectories of real and imaginary parts of CVNNs (3) with
initial value χ1(t) = 0.5 sin t + i0.5 sin t, χ2(t) = 0.5 cos t + i0.5 cos t, which indicates that the
system is unstable without impulsive control. Via the designed impulsive control, the system (3)
is globally exponentially stable and the state trajectories of real and imaginary parts are shown in
Figures 3 and 4.
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Figure 1. Real part of state trajectories for CVNNs (3) without impulsive control.
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Figure 2. Imaginary part of state trajectories for CVNNs (3) without impulsive control.

If we let:

Yk =

[
−2.3047 + 0.0696i −0.1321 + 0.7280i
−0.4270− 0.3643i −1.2465− 0.0700i

]
,
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Zk =

[
−0.7252 + 0.3373i −0.3810− 0.6943i
−0.7257 + 0.4973i −0.4498 + 0.3353i

]
,

then under the same matrices X, G̃, Q̃, M̃, Ĝ, Q̂, M̂ as above, LMIs (17)–(20) do not hold. The gain
matrices of the control law are given by

Ek =

[
−0.6611 + 0.2206i −0.0007− 0.0211i
−0.1022 + 0.0212i −0.3608− 0.1104i

]
,

Fk =

[
−0.2024− 0.2104i −0.1004− 0.1022i
−0.2014 + 0.1016i −0.2107− 0.1507i

]
.

It can be seen from Figures 5 and 6 that the system is unstable under such impulsive control,
which shows that if LMIs (17)–(20) do not hold, under derived impulsive control, the system may be
unstable. It is again verified that the LMIs’ conditions in Theorem 2 are effective.
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Figure 3. Real part of state trajectories for CVNNs (3) with time-delayed impulsive control.
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Figure 4. Imaginary part of state trajectories for CVNNs (3) with the designed impulsive controller.
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Figure 5. Real part of state trajectories for CVNNs (3) under impulsive control when LMIs (17)–(20)
are not satisfied.
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Figure 6. Imaginary part of state trajectories for CVNNs (3) under impulsive control when LMIs
(17)–(20) are not satisfied.

5. Conclusions

In this paper, the exponential stability for a comprehensive model of CVNNs which
simultaneously contains uncertain parameters and mixed time-delays was investigated by
delayed impulsive control. A new impulsive differential inequality was applied to resolve
the difficulties caused by the mixed time delays and delayed impulse effects. Instead
of decomposing CVNNs into real and imaginary parts, the complex Lyapunov function
method has been employed to establish the stability of models, which is valid regardless
of whether the activation functions can be decomposed. All the stability criteria were
formulated in the form of complex-valued LIMs, which are easily checked using the Matlab
LMI toolbox. Our results generalize and improve some existing results. Finally, a numerical
example has been given to show the validity of the derived results. In the future, it would
be an interesting research topic to study the state estimation problem of delayed CVNNs.
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