
����������
�������

Citation: Fang, J.-S.; Tsai, J.S.-H.; Yan,

J.-J.; Chiang, L.-H.; Guo, S.-M. Secure

Data Transmission and Image

Encryption Based on a Digital-

Redesign Sliding Mode Chaos

Synchronization. Mathematics 2022,

10, 518. https://doi.org/10.3390/

math10030518

Academic Editor: Xinsong Yang

Received: 3 January 2022

Accepted: 4 February 2022

Published: 5 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Secure Data Transmission and Image Encryption Based on a
Digital-Redesign Sliding Mode Chaos Synchronization
Jiunn-Shiou Fang 1 , Jason Sheng-Hong Tsai 1, Jun-Juh Yan 2,* , Li-Huseh Chiang 1 and Shu-Mei Guo 3

1 Department of Electrical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
fjshow611@gmail.com (J.-S.F.); shtsai@mail.ncku.edu.tw (J.S.-H.T.); Chiang@stu.edu.tw (L.-H.C.)

2 Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 41107, Taiwan
3 Department of Computer Science and Information Engineering, National Cheng Kung University,

Tainan 701, Taiwan; guosm@mail.ncku.edu.tw
* Correspondence: jjyan@ncut.edu.tw

Abstract: In this paper, a novel image encryption algorithm based on chaotic synchronization is
proposed. First, a digital-redesign sliding mode controller (SMC) is developed to guarantee the chaos
synchronization. The digital redesign method makes it possible to transform a proposed continuous-
time SMC to discrete-time SMC whilst maintaining the performance of the robust synchronization.
Then, the secret keys are embedded in the state equations of the master chaotic system, such that the
secret keys do not appear in the public channel, and utilize the chaotic synchronization to achieve
secure communication for transmitting the secret keys from transmitter to receiver. Second, an image
encryption algorithm integrating the S-box with chaotic synchronization is established, where the
S-box is created by the secret key transmitted from the transmitter. Finally, a detailed analysis of the
image encryption algorithm based on chaos synchronization is included to verify the feasibility and
effectiveness of this proposed approach.

Keywords: image encryption; digital redesign; sliding mode control; synchronization; S-box

1. Introduction

Chaotic systems are nonlinear systems with many complex characteristics. Due to
the randomness of chaotic systems, they can be applied in many aspects, especially in
secure communication. For application in secure communication, chaos synchronization
is the most important issue, and some control methods for chaos synchronization have
been developed in the literature. In the report [1], the adaptive fuzzy control approach
is designed to deal with the synchronization for time-delay uncertainty chaotic systems.
In [2], the sliding mode control is utilized in the process of synchronization for the chaotic
system with disturbances. It is well known that the sliding mode control (SMC) is a
nonlinear control method using a discontinuous control signal to force state trajectories to
hit the switching surface and enter the sliding manifold such that the Lyapunov stability
for the controlled systems can be ensured. Moreover, SMC is an effective method to
eliminate the influence of the matched disturbances [3–5], and the design of SMC often
combines with the disturbance estimator or observer to achieve better robustness [6–8].
Due to this reason, SMC has been widely used to solve the robust control problems for
many problems in engineering. However, there is a chattering phenomenon due to the
utilization of sign function in SMC, which causes the high-frequency oscillation in the
controller. To solve this problem, there are some alternatives, such as high-order SMC [9,10],
second-order SMC [11,12], and saturation function [13]. Thus, in this paper, we also
introduce the saturation function to avoid the chattering phenomenon and achieve the
chaos synchronization.

To develop the digital-redesign SMC, we introduce the digital redesign approach to
transform a well-designed continuous-time SMC to a corresponding discrete-time SMC
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directly and keep the control performance. There have been many control laws designed
with the digital-redesign method, for example, the H∞ and H2 continuous-time controllers
are redesigned to the discrete-time controllers by the digital-redesign method [14]. In [15],
the authors also presented a new digital-redesign control scheme applied to a high-gain
analogy controller and improve the state responses. Thus, one can know that the digital
redesign method is an effective approach to discretize the continuous-time controller and
maintain the performance of the designed continuous controller as possible.

Chaotic synchronization methods are often used in secure communications by embed-
ding the private information in the state equations of the transmitter and synchronizing the
states on both sides to achieve the secure communication [16]. However, secure communi-
cation with the chaotic system may be destroyed by noise and external disturbances [17],
in other words, the response of the chaotic system is sensitive to the initial conditions;
therefore, the proposed digital-redesign SMC-based controller utilizes this property to
reconstruct the transmission message for achieving secure communication. In [18], the slid-
ing mode observer is designed for the secure communication and recovery of the desired
message from the chaos trajectory. In [19], an adaptive terminal sliding mode tracking
scheme is proposed for synchronizing the chaotic systems. Therefore, we combine the
chaos secure communication with the SMC to the image encryption algorithm, and the
designed secure key as a message is embedded in the state equation of the transmitter
and securely sent to the receiver through the synchronization to perform the decryption
in the receiver part. Due to the properties of the pseudo-randomness sensitivity to initial
condition and unpredictability in the chaotic systems, the image encryption algorithm can
be strengthened. Furthermore, the S-box is established to have secure encryption. The
S-box is a core component to provide higher security properties and is widely used in image
encryption. There have been many approaches proposed for image encryption based on
chaotic systems [20–23]. In [20], an image encryption scheme based on the pseudo-orbits of
1D chaotic maps is proposed for image encryption. However, the synchronization problem
was not considered. In [21], Moon et al. introduced the self-synchronization approach
for generalized Lorenz chaotic systems and applied it to image encryption. But the pro-
posed synchronization approach was difficult to extend to general types of chaotic systems.
In [22,23], the authors integrated the randomness of the chaotic signal to construct S-boxes
and apply some methods to increase the execution efficiency. However, the mentioned
researches above are all used the continuous controller to achieve chaos synchronization.
Today, with the advancement and popularization of digital signal processing (DSP) technol-
ogy, to simplify control circuit realization and reduce design costs, there is a current trend
to use digital microcontroller to implement control solutions. However, to utilize the DSP
microcontroller to implement the control schemes, the traditional continuous-time control
design methods mentioned above for chaos synchronization cannot been applicable. There-
fore, we aim to propose a novel discrete digital-redesign SMC which can be easily realized
by using the microcontrollers to guarantee the chaos synchronization and then applied to
image encryption. To complete the design, the analogy chaotic systems are established and
the secret message is embedded in the master chaotic system such that it does not appear
on the public channel. Then, the digital redesign sliding mode controller is proposed for
synchronizing chaotic behavior. After the chaotic systems are synchronized, the embedded
message can be reconstructed at the receiver and adopted for the image encryption.

The structure of this paper is given as follows. In Section 2, the structure of the secure
communication based on synchronization is introduced. In Section 3, the image encryption
algorithm is proposed and the performance index to show the strength of the algorithm is
discussed. In Section 4, the results are concluded.

In this paper, xT denotes the transport for a matrix x. ‖x‖ represents the Euclidean
norm of a vector x. In ∈ <n×n denotes the identity matrix. | x | is the absolute value of a
constant x. x† = (xTx)−1xT denotes to the pseudo inverse matrix for a matrix x ∈ <n×m

and x†x = Im.sgn(x) is the nonlinear sign function of x and if x > 0, sgn(x) = 1; if x < 0,
sgn(x) = −1; and sgn(x) = 0 if x = 0. sgn(x) = [sgn(x1) , sgn(x2) , · · · , sgn(xm)]

T ∈ <m.
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2. Communication Structure Based on Synchronization

A. The secure communication based on chaos synchronization.
In this section, a secure communication based on synchronization is formulated. Due

to the characteristic of chaos synchronization, the message m(t) can be embedded in
the master system and obtained in the slave system through the SMC synchronization
control method.

First, the structure of the master system can be described as

.
ym(t) = Aym(t) + B

(
gy(y(t)) + m(t)

)
(1)

and the slave system is described as

.
xs(t) = Axs(t) + B(gx(x(t)) + u(t)), (2)

where A ∈ Rn×n and B ∈ Rn×m are the system matrices, gx(x(t)) and gy(y(t)) are the
nonlinear terms of chaotic systems, and m(t) is the embedded message.

The error vector is defined as e(t) = ym(t) − xs(t) and the error dynamics can be
obtained as follows: .

e(t) =
.
ym(t)−

.
xs(t)

= Ae(t) + B(m(t)− u(t) + ge(t)),
(3)

where ge(t) = gy(y(t))− gx(x(t)). When the synchronization is ensured, it means the error
state converges to zero, i.e., e(t) = ym(t)− xs(t) = 0, and ge(t) will converge to zero as
well. Then, the equivalent error dynamics can be rewritten as

.
e(t) = B(m(t)− u(t)) = 0. (4)

B is the system matrix and not be equal to zero, therefore, one can derive that
m(t) = u(t). As a result, the message can be recovered in the slave system if the syn-
chronization is ensured.

B. SMC design for message communication.
First, to achieve the sliding mode control for completing chaos synchronization, the

sliding mode function can be selected as

s(t) = Cse(t) +
∫ t

0
(−Cs Ae(τ) + Kce(τ))dτ, (5)

where Cs = B†, and Kc is the designed controller gain. By differentiating (5), we have

.
s(t) = Cs

.
e(t)− Cs Ae(t) + Kce(t)

= Cs(Ae(t) + B(m(t)− u(t) + ge(t)))− Cs Ae(t) + Kce(t)
= −u(t) + m(t) + Kce(t) + ge(t).

(6)

When the controlled state trajectories enter the sliding manifold, the equivalent con-
troller with the fact of s(t) =

.
s(t) = 0 can be derived as

uceq(t) = Kce(t) + m(t) + ge(t) (7)

Thus, one can know that the equivalent controller ueq(t) is equal to m(t) when the
error converges to zero which is mentioned in (4).

To guarantee the minimization of the state error e(t), we use the linear-quadratic
method [24] to calculate the controller gain Kc which will be used in the sliding mode
function (5). We consider the cost function as follows

J =
1
2

∫ tend

0

{
e(τ)TQe(τ) + uT(τ)Ru(τ)

}
dτ, (8)
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where Q = 10q × In, R is a positive define matrix. According to the above performance, we
have the Riccati equation as

AT P + PA− PBR−1BT P + Q = 0n, (9)

where P is a positive symmetric define matrix. Thus, one can obtain the gain Kc:

Kc = R−1BT P. (10)

To ensure the controlled dynamics, (3) can enter the sliding manifold, the controller is
designed as follows:

u(t) = −Kce(t)− γ1s(t)− γ2sgn(s(t))− r3sgn(s(t)). (11)

Replacing (11) into (6), (6) becomes

.
s(t) = ge(t) + m(t)− γ1s(t)− γ2sgn(s(t))− γ3sgn(s(t)), (12)

where γ1 and γ2 are positive parameters and γ3 is chosen as ‖ge(t)‖+γ, where ‖m(t)‖ < γ.
To verify the designed controller can ensure the occurrence of the sliding mode, a Lyapunov
function is chosen as follows:

V(s(t)) =
1
2

sT(t)s(t), (13)

and then one differentiates (13) and obtains

.
V(s(t)) = sT(t)

.
s(t)

= sT(ge(t) + m(t)− γ1s(t)− (γ2 + γ3)sgn(s(t)))
≤ ‖ge(t)‖‖s(t)‖+ ‖m(t)‖‖s(t)‖ − γ1‖s(t)‖2 − γ2‖s(t)‖ − γ3‖s(t)‖

≤ −γ1‖s(t)‖2 − γ2‖s(t)‖ ≤ 0.

(14)

From (14), one can know that
.

V(s(t)) ≤ 0 when γ3 is chosen as ‖ge(t)‖+ γ. Thus, the
design of SMC (12) is complete through the above derivation.

There is a chattering phenomenon when the design of SMC includes the nonlinear
sign function. To overcome this situation, we replace sign function with saturation function
sat(s(t)) [13]. The saturation function is shown as follows:

sat(s(t)) =
[

s1(t)
|s1(t)|+ ε

. . .
sm(t)

|sm(t)|+ ε

]T
, (15)

where the parameter ε is an arbitrarily small but positive constant. Therefore, one can
obtain the continuous-time SMC-based control law for secure communication as follows:

uc(t) = −Kce(t)− γ1s(t)− γ2sat(s(t))− γ3sat(s(t)). (16)

While the sliding mode is reaching, the synchronized error approaches to zero, the
desired message m(t) can be established by the control law (16) in the continuous time.

C. Digital redesign of H2 SMC for message communication
After obtaining the continuous-time SMC-based controller, we utilize the digital-

redesign method to make the transformation and obtain the corresponding discrete-time
SMC controller. First, one can discretize (9) with Euler’s method [25] and get

s(kTs + Ts) = s(kTs) + Ts(g(x(kTs))− g(y(kTs)) + m(kTs) −γ1s(kTs)− γ2sgn(s(kTs))− γ3sgn(s(kTs)))
∆s(kTs) = −γ1Tss(kTs) + Ts(g(x(kTs))− g(y(kTs)) +m(kTs)− γ2sgn(s(kTs))− γ3sgn(s(kTs)))

(17)

where Ts is the sampling time. To guarantee the occurrence of the sliding manifold in the
discrete-time domain, Lemma 1 is given as follows.
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Lemma 1 The following reaching condition is considered. [26].

∆s(kTs) = s(kTs + Ts)− s(kTs)
≤ −γ1Tss(kTs)− γ2Tssgn(s(kTs)) < 0, for s(kTs) > 0,

∆s(kTs) = s(kTs + Ts)− s(kTs)
≥ −γ1Tss(kTs)− γ2Tssgn(s(kTs)) > 0, for s(kTs) < 0,

where (1− γ1Ts) > 0, k = 0, 1, · · · , ∞. If the reaching conditions above are satisfied, then
the controlled state trajectories can converge to s(kTs) = 0 and enter the sliding manifold.

Proof of Lemma1: when s(kTs) > 0, ∆s(kTs) = s(kTs + Ts) − s(kTs) < 0 means
s(kTs + Ts) < s(kTs) and the trajectory of s(kTs) converges towards the sliding surface
s = 0. When s(kTs) < 0, ∆s(kTs) = s(kTs + Ts)− s(kTs) > 0 means s(kTs + Ts) > s(kTs)
and the trajectory of s(kTs) also converges towards the sliding surface s = 0. Therefore, if
the reaching conditions above are satisfied, the controlled state trajectories can converge to
s(kTs) = 0 and enter the sliding manifold.

Based on Lemma 1, we calculate

∆s(kTs) = −γ1Tss(kTs) + Ts(ge(kT) + m(kTs)− (γ2 + γ3)sgn(s(kTs)))
≤ −γ1Tss(kTs)− γ2Tssgn(s(kTs)), for s(kTs) > 0,

(18)

∆s(kTs) = −γ1Tss(kTs) + Ts(ge(kT) + m(kTs)− (γ2 + γ3)sgn(s(kTs)))
≤ −γ1Tss(kTs)− γ2Tssgn(s(kTs)), for s(kTs) < 0,

(19)

Therefore, according to Lemma 1, s(kTs) will always converge to zero and the con-
trolled system enters the sliding manifold. In this paper, Euler’s method is adopted to
discretize the proposed sliding mode controller such that the existence of the sliding mode
can be guaranteed and the equivalent control can be achieved.

When the system is in the sliding manifold, i.e., uc(t) = uceq(t) as given in (7), the
error dynamics can be discretized as

e(kTs + Ts) = Ge(kTs) + Hu∗d(kTs), (20)

where G = eATs , and H = (G− In)A−1B. Due to zero-order-hold (Z.O.H.), the controller
u∗d(kTs) can be approached to u∗c (t) = u∗d(kTs) ∼= u∗c (kTs + Ts), for kTs ≤ t < kTs + Ts, and
u∗d(kTs) can be approximated as

u∗d(kTs) ∼= u∗c (kTs + Ts) = −Kce(kTs + Ts). (21)

According to (20), (21) can be rearranged as

u∗d(kTs) = −(I + Kc H)−1KcGe(kTs)= −Kde(kTs), (22)

where Kd = −(I + Kc H)−1KcG. Since the reaching condition is satisfied, the controlled
system is operated in the sliding manifold. The digital-redesign method is utilized to ensure
that (G− HKd) is Hurwitz and the stability of the controlled system can be guaranteed.
Furthermore, to achieve the digital-redesign-based SMC, one can discretize (8) to implement
the discrete-time SMC as follows

s(kTs) = Cse(kT) + sI(kTs), (23)

sI(kTs + Ts) = sI(kTs) + Ts(−Cs Ae(kTs) + Kce(kTs)). (24)

Finally, with the utilization of the proposed digital-redesign method and the adoption
of the saturation function (15), the discrete SMC synchronization scheme can be obtained as

ud(kTs) = −Kde(kTs)− γ1s(kTs)− γ2sat(s(kTs))− γ3sat(s(kTs)), (25)
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While the sliding mode is reaching, the synchronized error approaches to zero, the
desired message m(t) can be established by the control law (16) in the discrete time.

D. Simulation for message communication
After completing the design of the digital redesign SMC synchronization controller,

the simulation for verifying the feasibility is performed with the Lorenz chaotic system
which can be found in reference [27]. The Lorenz chaotic system is given as follows:

.
x(t) = δ1(y(t)− x(t))
.
y(t) = x(t)(δ2 − z(t))− y(t)
.
z(t) = x(t)y(t)− δ3z(t)

,

where, δ1 = 10, δ2 = 28 and δ3 = 8/3.
First, one rearranges the Lorenz chaotic system as the structure of the master-slave

system considered in (1) and (2) for secure communication as follows

.
ym(t) = Aym(t) + B

(
gy(ym(t)) + m(t)

)
,

and
.
xs(t) = Axs(t) + B(gx(xs(t)) + u(t)),

where the system matrices are A =

 −10 10 0
28 −1 0
0 0 −8/3

, B =

 0 0
1 0
0 1

, gx(xs(t)) =[
−xs1(t)× xs3(t)
xs1(t)× xs2(t)

]
, and gy(ym(t)) =

[
−ym1(t)× ym3(t)
ym1(t)× ym2(t)

]
. Then, the message m(t) =[

m1(t) m2(t)
]T
=
[

0.3 cos(2π f t) 0.3 cos(2π f (t + 1))
]T is given with f = 1/3, and

embedded in the master system. The parameter in the controller is chosen with γ1 = 40 and
γ2 = 0.3, and the parameter in saturation function is selected as ε = 0.01. The weighting
matrices of the cost function are chosen as Q = 104 × I3 and R = I2. The controller gain is
calculated as

Kc =

[
65.612 105.3637 −3.379× 10−15

2.585× 10−14 −3.379× 10−15 97.3689

]
.

After using the proposed digital redesign approach, one can obtain G, H, Kd as below:

G =

 0.9902 0.0099 0
0.0278 0.9991 0

0 0 0.9973

, H =

 4.9818× 10−6 0
9.995× 10−4 0

0 9.9867× 10−4

,

and

Kd =

[
61.4144 95.8046 −2.7782× 10−15

2.3432× 10−14 −2.559× 10−15 88.5036

]
.

We select the initial conditions as x(0) =
[
−1 2 5

]T and y(0) =
[

2 5 3
]T

for simulation. Simulation results are shown as follows.
In Figure 1, one can observe that the synchronization errors are soon approaching

zero, which means the designed controller can make the system achieve synchronization
effectively. The errors between controller u(t) and message m(t) converge to zero as shown
in Figures 2 and 3, which is in accordance with the derivation in (4). Figure 4 illustrates the
sliding mode trajectory also converges to zero as expected. Thus, one can figure out that the
digital-redesign SMC-based controller is an effective method to make the system achieve
synchronization and establish a secure communication. In Figure 5, one can observe that
the synchronization errors are not stable before 10 seconds, however, the synchronization
errors are closing to zero while the control input is active after 10 seconds. Therefore, the
proposed SMC controller is effectiveness and robust.
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3. Results

Image encryption based on secure communication
After completing the construction of secure communication with the hybrid synchro-

nization control, the proposed controller is applied in image encryption in this section. First,
the secret key for the image encryption algorithm is designed as the embedded message m(t)
and the S-box is established by the secret key. The main function of the S-box is to increase
encryption strength. With the secret key and S-box, the image encryption algorithm is
proposed. The structure of the synchronization-based image encryption algorithm and
flowchart are shown in Figure 6.
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>
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Figure 6. (a) The process of image encryption with secure communication; (b) The flowchart of the
proposed algorithm.

A. Preliminary: establish S-Box by utilizing chaotic behavior
In this section, the secret key and the generation steps of the S-box are introduced. The

reconstructed message m̂(t) is used for establishing the S-box and it is designed as


m1
m2
m3

 =


round(m̂steady(t)), 0 < t < tend/3

round(m̂steady(t)), tend/3 < t < (2× tend)/3

round(m̂steady(t)), (2× tend)/3 < t < tend

, (26)
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where m1, m2, and m3 are appropriate positive integers, tend is an entire time of synchro-
nization simulation, and msteady(t) is the steady-state trajectory of m(t). Then, one uses
three constants in the message to establish the sample period mts for dealing with the state
of the Lorenz chaotic system. 

mts1 = round(1/(m1 ∗ ts1)),
mts2 = round(1/(m2 ∗ ts2)),
mts3 = round(1/(m3 ∗ ts3)),

(27)

where ts1, ts2, and ts3 are sampling times and round(•) is a function that rounds the element
• to the nearest integer. The constants m1, m2, and m3 are the important elements in image
encryption and decryption.

After getting the mts1, mts2, and mts3, one can sample the states of the Lorenz chaotic
system with mts1, mts2, and mts3 respectively, and obtain sampled states

[
xd1 xd2 xd3

]T .
Furthermore, the simple rules are applied in sampled states to get three sequences, xts1,
xts2, and xts3. The rules are shown as follows

xts1(i) =
{

1, if xd1(i) > mean(xd1),
0, if xd1(i) < mean(xd1),

xts2(i) =
{

1, if xd2(i) > mean(xd2),
0, if xd2(i) < mean(xd2),

xts3(i) =
{

1, if xd3(i) > mean(xd3),
0, if xd3(i) < mean(xd3),

(28)

where i = 0, 1, . . . , s2 − 1, the size of the image is s1 × s2, s1 for row and s2 for column,
and mean(xd) is the function to get the mean value of the sequence xd and it is a rule. The
function of the sampled states is to permute the sequence and obtain the S-box.

After dealing with the states of the system, one uses it to obtain the S-box_x, S-box_y, and S-
box_z. Take the S-box_x, for example. First, one generates a sequence z0 = [0, 1, 2, . . . , s2 − 1], and
compare the sequence zj with the sequence xts1, where j is the execution times. If the i term
of xts1 (i.e., xts1(i)) is one, the i term of z0 (i.e., z0(i)) is arranged to the far left side of the
sequence z0. If the i term of xts1 (i.e., xts1(i)) is zero, the i term of z0 (i.e., z0(i)) is arranged
to the far right side of the sequence z0, and replaces the original z0 after permutation. After
completing the permutation from i = 0 to s2 − 1, one gets the new sequence z1. Then, one
performs the same rules to get z2. After running N × s1 times, one obtains an S− box_1
with size (N × s1)× s2 and chooses the last s1 rows of S-box_1 to build the S-box_x whose
dimension is s1 × s2. Rules for establishing the S-box is given in Figure 7.
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With the rules mentioned above, one can have another two S-box, S-box_2, and
S-box_3, which are generated from the xts2 and xts3, respectively. Then, one selects the last
s1 rows in S-box_2 and S-box_3 to obtain the S-box_y and S-box_z.

B. Image encryption algorithm
After constructing the S-boxes, the image encryption algorithm is proposed with the

obtained S-boxes.
Step 1. Separate the image I with the size of s1 × s2 into three grayscale images of red,

green, and blue, respectively. Arrange the pixel from row to column, and one can obtain
three sequences 

R = {r1, r2, r3, . . . , rs1×s2},
G = {g1, g2, g3, . . . , gs1×s2}
B = {b1, b2, b3, . . . , bs1×s2},

, (29)

where ri, gi, and bi are ith pixel of the red layer, green layer, and blue layer in a color
image, respectively.

Step 2. Generate three S-boxes, S-box_x, S-box_y, and S-box_z, with the rules men-
tioned above and arrange three S-boxes from row to column as

S− box_x = {Sx1, Sx2, . . . , Sxs1×s2},
S− box_y = {Sy1, Sy2, . . . , Sys1×s2},
S− box_z = {Sz1, Sz2, . . . , Szs1×s2}.

(30)

Step 3. Generate three sequences, cr, cg, and cb. Then, one can get{
uri = (ri + Szi + cri−1)mod256,
cri = uri ⊕ Sxi,

(31)

{
ugi = (gi + cri + cgi−1)mod256,
cgi = ugi ⊕ Syi,

(32){
ubi = (bi + cgi + cbi−1)mod256,
cbi = ubi ⊕ Szi,

(33)

where ⊕ denote the bitwise exclusive or operation and i = 1, 2, 3, . . . , s1 × s2.
With the above three steps, one can obtain three encrypted layers cri,cgi, and cbi, and

combine three layers to obtain the encrypted color image.
C. Decryption algorithm
In this section, the decryption algorithm is established. The decryption algorithm is

just the inverse process of the encryption algorithm. One can obtain some decryption infor-
mation from the transmitter such as the entire simulation time of synchronization, sampling
time ts, fast sampling time t f , the state of the master system with the message embedded,
and the formula of the sampling time for sampling the state of the system. With the above
information, the message is obtained through the approach of synchronization, establishes
the same S-box, and performs the following steps to obtain the decryption image.

Step 1. Perform the synchronization to have the message and calculate the sample
time for sampling the state with the formula given in part A of Section 3. Then, sample the
state to obtain xtsd =

[
xtsd1 xtsd2 xtsd3

]T .
Step 2. Separate the encryption image Ien into three grayscale images of red, green, and

blue, arrange the pixels from row to column, and get three sequences Ren, Gen and Ben as
Ren =

{
r′1, r′2, . . . , r′s1×s2

}
,

Gen =
{

g′1, g′2, . . . , g′s1×s2

}
,

Ben =
{

b′1, b′2, . . . , b′s1×s2

}
.

(34)
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Step 3. Establish the S-boxes with the state generated by synchronization and rule in
part A of Section 3 and arrange three sequences as

S− box_xd = {Sxd1, Sxd2, . . . , Sxds1×s2},
S− box_yd = {Syd1, Sxyd2, . . . , Syds1×s2},
S− box_zd = {Szd1, Szd2, . . . , Szds1×s2}.

(35)

Step 4. Generate the sequences, udr, udg, and udb, and get the decryption component
cdr, cdg, and cdb as follows:{

udri = r′i ⊕ Sxdi,
cdri =

(
udri − Szdi − r′i−1

)
mod256,

(36)

{
udgi = g′i ⊕ Sydi,
cdgi =

(
udgi − r′i − g′i−1

)
mod256,

(37)

{
udbi = b′i ⊕ Szdi,
cdbi =

(
udbi − g′i − b′i−1

)
mod256.

(38)

Finally, one can combine three layers, cdr, cdg, and cdb, and obtain the decrypted
color image.

D. Simulation results
The Lena image with the size 512× 512 is used as the test image to perform the image

encryption. The secret keys are taken as m1 = 1, m2 = 2, and m3 = 3. The plain image
of Lena is shown in Figure 8 and its histogram is shown in Figure 9. After using the
proposed encryption algorithm, one can obtain the encrypted image shown in Figure 10,
and its histogram is shown in Figure 11. The outline of the Lena is hard to distinguish in
the encrypted image. The encrypted image uses all the grayscales from 0 to 255 and the
histogram of the encryption image is flat which means the encryption scheme is effective
and secure.
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Furthermore, another two images, baboon image with size 512× 512, and the all-black
figure with size 512× 512, are used as the test images as well. The baboon image is shown
in Figure 12 and its histogram is shown in Figure 13. The all-black figure is shown in
Figure 14 and its histogram is shown in Figure 15. One can obtain the encrypted baboon
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image and the encrypted all-black image shown in Figures 16 and 17, respectively, and the
histograms are, respectively, shown in Figures 18 and 19. The encrypted image is done
by utilizing the above algorithm with the same secret key. Then, we can observe that the
histogram of the encrypted baboon image (Figure 18) and the histogram of the encrypted
all-black image (Figure 19) are flat as well. Eventually, the image encryption algorithm can
be applied in the image with any size, and the detailed analysis for the security is discussed
in the next section.
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Once the encryption is completed, one starts the process of the decryption with
decryption information. The file of decryption information includes the system states, the
sampling time, the synchronization time, and the encrypted image. The file of decryption
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information is established in the transmitter and sent to the receiver. Then, by using the
proposed synchronization-based communication to obtain the secret key, one performs the
decryption algorithm to obtain the decrypted image. Figure 20 shows the decrypted images.
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To show the effectiveness of the encrypted algorithm, the plain image is contrasted
with the decrypted image pixel by pixel, and one can get the following result.

image− imagedecryption =
s1

∑
i=1

s2

∑
j=1

(
image(i, j)− imagedecryption(i, j)

)
= 0 (39)

Thus, one can know that there is no difference between two images, and the encrypted
and decrypted algorithms are feasible.

E. Security analysis
In this section, we analyze the security of the encryption algorithm with three images.
(1) Key space analysis
Key space means the total number of all different keys used in the encryption algorithm.

The value of key space must be high so that it can make the brute-force attack ineffective.
The secure key m(t) in this proposed algorithm is utilized to generate the sampling time
mts for sampling the states, and the sampling time mts is ranged in 100 ∼ 103. The key
space can reach 109. The valid precision of the initial condition in chaotic systems is set
to 10−14, so the key space can reach 1014×3 = 1042. Thus, the number of different key
combinations that can be used are 1042 × 109 = 1051, which is large enough to resist the
brute-force attack.

(2) Correlation
Adjacent pixels of an image will always be similar and with a strong correlation. A

good image encryption algorithm is able to weaken the correlation of the adjacent pixels.
The correlation function of the image is given as follows:

correlation =
cov(x, y)√
D(x)

√
D(y)

(40)

where cov(x, y) = 1
N

N
∑

i=1
(xi − E(x))(yi − E(y)), E(x) = 1

N

N
∑

i=1
xi, D(x) = 1

N

N
∑

i=1
(xi − E(x))2.

The correlation analysis demonstrates the similarity between two adjacent pixels in the
vertical direction and the horizontal directions. The range of the correlation is [ −1 1 ].
The higher value means the higher correlation. One randomly selects 3000 pairs of the
adjacent pixel from the plain image and encrypted image, respectively, to calculate the
correlation coefficient. The horizontal correlation of the plain Lena image is shown in
Figure 21 and the horizontal correlation of encrypted Lena image is shown in Figure 22.
The vertical correlation of the plain Lena image is shown in Figure 23 and the vertical
correlation of the encrypted Lena image is shown in Figure 24. One can find that the
correlation of the adjacent pixel weakens after applying the encryption algorithm. The



Mathematics 2022, 10, 518 18 of 22

value of the correlation is shown in Table 1. Then, one can compare the proposed algorithm
with the algorithm in [22] on the encrypted Lena image. One can observe that the correlation
coefficient in this paper is smaller than the correlation coefficient in [22] and this means
the encryption algorithm in this paper is much more effective in decreasing the adjacent
correlation as wells.
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Table 1. The Correlation Coefficients in the Horizontal and Vertical Directions.

Correlation. Horizontal Vertical

Figure 8 0. 9681 0.9823
Figure 10 −0.0017 −0.0013
Figure 12 0.8761 0.7786
Figure 14 0.0018 −0.0031
Figure 16 NaN NaN
Figure 18 −0.0042 −0.0048

Encrypted Lena
image in Ref. [22] 0.003

(3) Entropy
The entropy function of an image is given as follows:

Entropy = −∑
a,b

p(ρ(a, b)) log2 p(ρ(a, b)), (41)

where a,b are the numbers of the rows and the columns of the image, ρ(a, b) is the pixel
value at the ath row and the bth column in the image, and p(ρ(a, b)) is the probability of
image pixel at the ath row and the bth column. Entropy demonstrates the randomness
of the image and the value range in [ 0 8 ] for an image having 256 scales. The high
value of entropy means the encrypted image has a greater amount of randomness. The
value of entropy of the proposed algorithm is shown in Table 2. Comparing the encrypted
Lena image in [22] with the encrypted Lena image in this paper, one can figure out that the
entropy of the encrypted Lena image in this paper is larger than that in [22]. It means the
Lena image encrypted by the proposed algorithm can get the higher randomness in the
encrypted image.

Table 2. Entropies of the Encrypted Image.

Ecrypted Image. R G B

Figure 10 7.9993 7.9992 7.9992
Figure 14 7.9992 7.9992 7.9993
Figure 18 7.9993 7.9993 7.9993

Encrypted Lena
image in Ref. [22] 7.9808 7.9811 7.9814

F. Ability to resist differential attack
The differential attack is a good method to break the proposed encryption algorithm.

If the encryption method has good sensitivity and diffusion property to the plain image,
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it can resist those attacks. There are two indexes to evaluate the diffusion property, the
number of pixel changing rate (NPCR) and unified averaged changed intensity (UACI).
NPCR implies the change rate between two encrypted images C1 and C2 encrypted from
two plain images with only one pixel different. NPCR and the UACI are defined as (42)
and (43)

(1) NPCR :

N(C1, C2) = ∑
i,j

D(i, j)
N ×M

× 100%, (42)

(2) UACI :

u(C1, C2) =
1

N ×M∑
i,j

∣∣C1(i, j)− C2(i, j)
∣∣

T
× 100%, (43)

where D(i, j) is defined as D(i, j) =
{

0, if C1(i, j) = C2(i, j)
1, if C1(i, j) 6= C2(i, j)

.

Here, we encrypt the Lena image, baboon image, and all-black image as C1, and
change the value of one pixel Lena image, baboon image, and all-black image then encrypt
as C2. Then, calculate the values of NPCR and UACI, and compare NPCR and UACI of the
proposed method with the others [20,22] in Tables 3 and 4.

Table 3. NPCR Values of Encrypted Images with One Pixel Different in Plain Images.

NPCR R G B Average

Figure 8 Lena image 99.99% 99.61% 99.59% 99.73%
Figure 12 Baboon image. 99.99% 98.42% 99.99% 99.46%

Figure 16 All-black image. 99.99% 99.58% 99.59% 99.72%
Encrypted Lena image [22] 99.647% 99.623% 99.594% 99.63%

Table 4. UACI Values of Encrypted Images with One Pixel Different in Plain Images.

UACI R G B Average

Figure 8 Lena image 33.59% 33.56% 33.45% 33.53%
Figure 12 Baboon image. 33.42% 33.46% 33.41% 33.43%

Figure 16 All-black image. 33.37% 33.43% 33.48% 33.42%
Encrypted Lena image [22] 33.53% 33.27% 33.43% 33.41%

One can find that NPCR applied in color images is over 99% and NPCR applied in the
all-black image can be also over 99%. UACI applied in the color images can be over 33%
and UACI applied in all black image can approach 33%. The result shows that the proposed
encryption algorithm is sensitive to a tiny change in image, even if the change is only in
one pixel. The comparison results in Table 5 reveal that the method proposed in this paper
has better results in NPCR and UACI tests. Thus, the proposed encryption algorithm is
strong enough to make the differential attack ineffectively.

Table 5. Comparison of NPCR and UACI criteria of proposed method and the others.

Test Methods for Lena Image NPCR UACI

Proposed method 99.73% 33.53%
Erivelton et al. [20] 99.61% 33.46%

Liu et al. [22] 99.63% 33.41%
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4. Conclusions

This paper proposes a digital-redesign SMC-based control law to achieve the chaotic
synchronization. The proposed encryption/decryption algorithm integrates the synchro-
nization technology of chaotic systems with the secret key transmission which embeds
the secret keys in the chaos trajectory of the chaotic system. Therefore, the secret keys do
not expose in the public channel and the security is improved. The designed controller
makes the sliding trajectories converge to the sliding mode and complete synchronization.
Furthermore, the proposed discrete digital-redesign SMC-based control law can make the
controller easy to realize with high precision and low cost by using Raspberry Pi microcon-
trollers. After designing the controller, we construct the secure communication based on
the chaotic synchronization. Furthermore, a chaos-based image encryption algorithm is
established by the S-boxes to strengthen the complexity of the encryption algorithm. Secu-
rity analysis has been included to verify the feasibility and effectiveness for the proposed
encryption algorithm.
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