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Abstract: Complex networks with node attribute information are employed to represent complex
relationships between objects. Research of attributed network embedding fuses the topology and
the node attribute information of the attributed network in the common latent representation space,
to encode the high-dimensional sparse network information to the low-dimensional dense vector
representation, effectively improving the performance of the network analysis tasks. The current
research on attributed network embedding is presently facing problems of high-dimensional sparsity
of attribute eigenmatrix and underutilization of attribute information. In this paper, we propose a net-
work embedding algorithm taking in a variational graph autoencoder (NEAT-VGA). This algorithm
first pre-processes the attribute features, i.e., the attribute feature learning of the network nodes.
Then, the feature learning matrix and the adjacency matrix of the network are fed into the variational
graph autoencoder algorithm to obtain the Gaussian distribution of the potential vectors, which more
easily generate high-quality node embedding representation vectors. Then, the embedding of the
nodes obtained by sampling this Gaussian distribution is reconstructed with structural and attribute
losses. The loss function is minimized by iterative training until the low-dimension vector represen-
tation, containing network structure information and attribute information of nodes, can be better
obtained, and the performance of the algorithm is evaluated by link prediction experimental results.

Keywords: attributed network; network embedding; random walk; autoencoder

1. Introduction

Attribute networks are widely employed to model connections between entities in
the real world, where the connected edges of nodes denote the relationships between
objects and the attribute information of the nodes in the description about the nodes
themselves. For example, the citation network [1,2] describes citations between articles by
academic authors, and the node attribute information describes the abstract and subject
of the article. Social networks [3,4] describe interpersonal relationships between people,
the node also contains a user’s area, email, and release of words, pictures, and video, etc.
Protein interaction network [5]: In addition to the topological information about pro-
tein interactions, each node also features attribute information about proteins in biology.
Performing data analysis and data mining on these attribute networks, using network
information for prediction and decision making, and discovering useful information latent
in them, have strong academic and commercial value. Common network analysis tasks
include node classification [6], node clustering [7], community detection [8–10], link pre-
diction [11,12], and anomaly detection [13]. The networks are growing in size in the big
data era, some reaching hundreds of millions of nodes, with high and sparse dimensions
that not only have complex structures but are also rich in information. If such large-scale
networks are directly applied to data mining, not only will they consume a large amount of
data storage resources, but also the time complexity of computation is high, which is not
conducive to algorithm deployment and application.
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Attribute network embedding [14] enables the topological structure information of an
attribute network and node attribute information to be effectively fused in a common latent
representation space, which preserves the information of both. The schematic diagram
of attribute network embedding is shown in Figure 1. The accuracy of the downstream
network analysis task is further improved by enhancing the network node vector represen-
tation by employing information about the attributes of the nodes, based on the previous
consideration of only the network structure information.

Figure 1. Diagram of attributed network embedding.

Graph neural networks (GNNs) [15] are also employed to perform network embed-
ding. The graph convolutional network (GCN) [16] and the GraphSAGE model [17] employ
graph convolutional networks, sampling nodes, and local neighbors for feature aggregation
to learn the vector representation of nodes. The graph autoencoders (GAEs) [18] algorithm
is an attribute network embedding algorithm that introduces a deep autoencoder. Based
on the idea of the autoencoder, after using GCN encoding, the structural error is recon-
structed in the decoder to learn the vector representation of the node. Variational graph
autoencoders (VGAEs) [18] build on GAEs by using graph variational autoencoders to
learn the embedding representation of attribute networks. The co-embedding model for
static attributed networks (CSAN) [19] is also an attribute network embedding algorithm
based on graph autoencoder, but in the attribute reconstruction part, the matrix product of
the GCN encoder of the graph convolutional network and the multilayer perceptron MLP
processing is employed to reconstruct the attribute errors.

The GAE algorithm is the attribute feature matrix employed as the GCN encoder
input when extracting the attribute features of the network. The node attribute feature
matrix is generally obtained by processing the descriptive information of the nodes using
a bag-of-words model or a TF-IDF model. If the word list is too large, it tends to be
characterized by high-dimensional sparsity and great algorithmic complexity. Moreover,
these feature matrices are directly employed as encoder input, which does not reflect
or fully employ the node attribute information. In addition, the GAE algorithm takes
a single mapping approach to generate node embedding vectors in the encoder part,
while the variogram autoencoder can generate the distribution of latent vectors, which is
more capable of generating high-quality potential vectors after sampling, and the GAE
algorithm does not consider the reconstruction loss of attribute information.

To address the above problems, this paper proposes a network embedding algorithm
taking in a variational graph autoencoder (NEAT-VGA). The main idea of the NEAT-
VGA algorithm is to first pre-process the attribute features, and the obtained attribute
feature learning vectors are inputted into the variational graph autoencoder, together
with the adjacency matrix, to complete the attribute network embedding task. Initially,
the MHRWAE algorithm is employed to learn the attribute features of the nodes for the
attribute network to obtain a low-dimensional vector representation of the node attributes.
Then, the feature learning matrix and the adjacency matrix of the network are employed
as input to the variogram autoencoder algorithm to generate a Gaussian distribution of
the latent vectors, sample the Gaussian distribution to obtain the embedding vectors of
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the nodes, reconstruct the structural and attribute losses, and iteratively train for attribute
network embedding. The final experimental results show that the proposed algorithm in
this paper has better link prediction results compared with the benchmark comparison
algorithm, i.e., the proposed network representation learning algorithm in this paper has
better representation performance.

2. Related Works

The DeepWalk [20] algorithm is inspired by the Word2Vec [21], which treats the
sequence of nodes obtained by random walking in the network as sentences in the text and
the nodes in the sequence as words in the text, to obtain the embedding representation of
the nodes by maximizing the probability of predicting the node’s context by employing
the skip-gram model. The LINE [22] algorithm learns the embedding representation of a
node to design and optimize the objective function with the definition of first-order and
second-order similarities of the nodes. The first-order similarity refers to the existence of
contiguous edges between nodes, while the second-order similarity refers to the common
neighbor nodes between nodes. With the introduction of second-order similarity, LINE
greatly alleviates the sparsity problem in the network, and the obtained node embedding
representation can also maintain the local and global structural information of the network
to the greatest extent. Based on DeepWalk, Node2Vec [23] introduces parameters to control
the path of random walk, allowing the choice of whether to bias the random walk towards
depth or breadth, and the sequence of nodes generated by the random walk, thus enabling
better preservation of local and global structural information of the network.

With the development of deep learning in the fields of natural language processing
and computer vision, many algorithms have also emerged that employ deep learning for
network embedding, which employs neural networks to extract the structure of attribute
networks and attribute information to combine to obtain the embedding representation of
network nodes. The self-translation network embedding (STNE) [24] algorithm employs a
sequence model to map a sequence of nodes’ content information to a sequence of nodes
for network embedding. The attributed social network embedding (ASNE) [25] algorithm
combines the information about the attributes of nodes in social networks during the
learning node embedding. The attributed network representation learning (ANRL) [26]
algorithm is an algorithm that employs a neighborhood-enhanced autoencoder and an
attribute-aware skip-gram model, employed to capture node attribute and network struc-
ture information for attribute network embedding algorithm, which employs the node’s
attribute information as input to the autoencoder to reconstruct the attribute information
of neighboring nodes.

3. Methodology

The NEAT-VGA algorithm consists of the 5 following components:

(1) Node Attribute Feature Learning: We employ the Metropolis–Hastings random walk
(MHRW) algorithm [27] sampling, node sequence generation corpus, and Doc2Vec [28]
model training to preprocess the attribute information, which is the attribute feature
learning, named the MHRWAE algorithm. High-dimensional sparse attribute feature
matrix learning can obtain low-dimensionality and better reflect the attribute feature
learning matrix.

(2) Attribute Network Encoder: The adjacency matrix and the attribute feature learning
matrix are employed as input to the variational graph autoencoder, which takes GCN
for encoding and maps the attribute network to a Gaussian distribution.

(3) Structure Reconstruction Decoder: Sampling the Gaussian distribution to obtain a
vector representation of the nodes, the structure decoder is employed to reconstruct
the adjacency matrix of the network, i.e., the structural information of the network.

(4) Attribute Reconstruction Decoder: Sampling the Gaussian distribution to obtain a
vector representation of the nodes and using the attribute decoder to reconstruct the
attribute feature learning matrix of the encoder input.
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(5) Loss Function Definition: We define a novel loss function, and the matrix recon-
structed by the decoder is compared with the input information of the variogram
autoencoder to construct the loss function, considering the effects of structural and
attribute reconstruction. The final learning yields vector representations that are as
good as possible in low-dimensional space for both structure and attributes.

The framework of the NEAT-VGA algorithm is shown in Figure 2.
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3.1. Preliminaries

The goal of the NEAT-VGA algorithm is to learn the feature vector of each node based
on the attribute network graph. Symbols and descriptions are shown in Table 1.

Table 1. Description of mathematical symbols.

Symbol Description

G Attribute network diagram
V, E Node set, edge set
|V|, |E| Number of nodes, number of edges

A The adjacency matrix of the topological structure of the attribute network graph
d Attribute vector dimension of each node

X ∈ R|V|×d Attribute matrix
m Attribute feature learning vector dimension

F ∈ R|V|×m Node attribute feature learning matrix
g The number of sample node sequences
l The length of each sample node sequence
t Neighborhood size when node attributes are aggregated
n The vector dimension represented by each node embedding
µ Node embedding represents the mean of Gaussian distribution
σ Node embedding represents the variance of Gaussian distribution
p Training times of the node attribute feature learning part

q The number of training times of the image autoencoder attribute
network embedding

Z ∈ R|V|×n Attribute network embedding representation matrix

3.2. Aggregation-MHRWAE

The random walk-based network embedding algorithms sample node sequences with
random walks, making the sampled sequences biased toward nodes of a large degree,
and such algorithms do not consider the attribute information of nodes during the training
process. The stitching relationship between structure vectors and attribute vectors is too
complicated to fuse the structure and attributes well by these methods directly. In this paper,
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we propose the MHRWAE algorithm, which is a module of the NEAT-VGA algorithm.
Its main function is to preprocess the attribute features of the nodes of the attribute network.

The main idea of the MHRWAE algorithm is that the embeddings of some nodes in
the network should be more similar if they have similar attributes and the distribution of
attributes of neighborhood nodes similarly. The framework of this algorithm is shown in
Figure 3. The MHRWAE algorithm employs MHRW to generate a fixed-length sequence of
nodes and the structural information of the network is utilized to generate a corpus based
on the aggregation of node neighborhood relationships and node attribute information.
The corpus is then trained using skip-gram with negative sampling to fuse the network
structure and attribute information of the nodes to obtain a low-dimensional representation
vector for each node.

Figure 3. The framework of the MHRWAE algorithm.

(1) The unbiased random wandering is performed with the MHRW algorithm to generate
a sequence of nodes. the MHRW algorithm samples nodes without bias towards nodes
of a larger degree, and the node sequences generated by the sampling reflect the con-
nectivity between nodes, i.e., the structural information of the network. The MHRW
algorithm sampling process is where the transfer probability of the MH algorithm is
employed in the Random Walk algorithm to determine the transfer probability when
the current node is sampled to a neighboring node. We assume that the probability
distribution given in the MH algorithm is πv = 1/|V|, and the election probability,
Qi,j, is assumed to be Qi,j = 1/di, then the transition probability of sampling from
node i to its neighbor node j, as shown in Equation (1), as follows:

pi,j =
1
di
×min(1,

di
dj
), i 6= j, (1)

where pi,i = 1− pi,j, di and dj respectively, represent the degrees of nodes i and j. pi,i
indicates the probability of node i staying at the current node.

(2) Corpus generation: In the process of corpus generation by the MHRWAE algorithm,
unlike DeepWalk, which employs multiple sets of nodes and node context nodes as a
corpus, it employs multiple sets of nodes and node neighborhood node attributes as
the corpus for SGNS training. The corpus is generated employing neighborhood node
attribute aggregation, in which a sequence of nodes of a given length is generated,
and for each node in the sequence, the attributes of the node and its neighborhood
nodes are paired and added to the multiset, with each node in the sequence completing
an iterative node attribute aggregation operation to form the final corpus.
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(3) The Doc2Vec model trains the corpus: Doc2Vec is a model that generates vector
representations of documents, and the PV-DBOW method in the model enables SGNS.
using the corpus as input, the Doc2Vec model is employed to train the corpus and
generate a vector representation of each document, i.e., a vector representation of each
node is obtained.

3.3. NEAT-VGA

The training process of the NEAT-VGA algorithm is shown in Algorithm 1.

Algorithm 1. NEAT-VGA

Input: Attribute network G = (V, E, X), parameterα, m, g, l, b, t, n, p, q, a1, a2.
Output: Attribute network node embedding vector Z

1: for n = 1: p do
2: Pick vi.
3: Generate a vertex sequence (vi, vi, . . . , vl) of length l by MHRW on network G.
4: for j in 1: l-t do
5: for r in 1: t do
6: Add vertex–context–feature pair (vj, f j+r) to multiset D.
7: Add vertex–context–feature pair (vj+r, f j) to multiset D.
8: Update D.
9: end for
10: end for
11: end for
12: Doc2Vec (D, epochs = p, m, b, a1).
13: Create F ∈ R|V|×m.

14: Calculate matrix
∼
D
− 1

2 ∼
A
∼
D
− 1

2
.

15: Initialization parameter θ = [W(0), W(1), W(2), W(3), W(4)].
16: for j = 1: q do
17: Calculate µ and σ according to Equations (5) and (6).
18: Calculate Z according to Equation (7)
19: Calculate LsLa LKL according to Equations (9)–(12).
20: Calculate L according to Equation (13)
21: Update θ by Adam algorithm and learning rate = a2.
22: end for
23: return Z ∈ R|V|×n.

3.3.1. Node Attribute Feature Learning

Pre-processing of node attribute information uses the MHRWAE algorithm, which
consists of the MHRW algorithm sampling, node sequence generation corpus, and Doc2Vec
model training. The nodes include the attributes of their neighboring nodes in their
attributes; as a result, each node’s attributes are a sentence of attributes, and the words of
the sentence are the node’s attributes and the neighboring node’s attributes.

For each node, there is a corresponding sentence describing the attributes of the node,
and the addition of the neighborhood attribute makes the node with the more similar
structure, the sentence with the more similar node attribute. Finally, the node numbers
and attribute sentences are trained on the Doc2Vec model to obtain the attribute feature
learning vector for each node.

For the attribute network G = (V, E, X), according to the MHRWAE algorithm,
given the vector dimension, m, of the attribute embedding representation of each node,
the number of sampled node sequences, g, the length of each sampled node sequence, l,
the neighborhood size, t, when node attributes are aggregated, and negative sampling
parameters, such as the number, b, the learning rate, a1, and the number of training, p,
can be obtained: F ∈ R|V|×m.
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3.3.2. Attribute Network Encoder

This algorithm is implemented by introducing a variational self-encoder into the
network structure using a GCN, which is used to capture information about the underlying
attribute network. The GCN encoder considers the proximity of high-order nodes, solves
the problem of network sparsity, and captures the non-linear information of the data
through multi-layer, non-linear conversion. The graph convolutional network of each layer
can employ Equation (2) to express the specific convolution process, as follows:

H(l+1) = f (H(l), A|W(l)) = σ(
∼
D
− 1

2 ∼
A
∼
D
− 1

2
H(l)W(l)), (2)

where H(l) is the input of the l layer convolutional layer, H(l+1) is the output of the l layer

convolutional layer
∼
A = A + I, which means that the adjacency matrix of the network

and the identity matrix are added together.
∼
D is a diagonal matrix, and the value of

∼
A the

diagonal is related. The specific calculation equation is
∼
Di,i = ∑j

∼
Ai,j. σ(·) is a non-linear

activation function, for example, Relu(x) = max(0, x).
In the encoding stage, the NEAT-VGA algorithm obtains the Gaussian distribution of

each node and samples the Gaussian distribution to obtain the attribute network embedding
representation matrix, Z ∈ R|V|×n. The Gaussian distribution can be uniquely determined
by the mean, µ, and variance, δ, and the encoder part is the process of obtaining µ and δ

through the GCN encoder.
The NEAT-VGA algorithm first employs two layers of GCN to share weights W(0).

W(1) after extracting features, one layer of GCN is added to obtain µ, log σ, and weight
W(2), W(3). Therefore, the generation of each µ and σ is obtained by three-layered GCN
encoding, but in the first two, the network encoder that shares parameters when layering is
employed as an attribute network encoder.

The activation function of each layer of graph convolutional network is
Relu(x) = max(0, x), the specific attribute network encoder process is shown in Equa-
tions (3)–(6), as follows:

H(1) = frelu(F, A
∣∣∣W(0)), (3)

H(2) = frelu(H(1), A
∣∣∣W(1)), (4)

µ = H(3) = frelu(H(2), A
∣∣∣W(2)), (5)

log σ = H(4) = frelu(H(2), A
∣∣∣W(3)), (6)

After µ and σ are obtained, which is after the mean vector covariance matrix of the
Gaussian distribution of each node, further sampling can be performed to calculate the
attribute network embedding representation matrix, Z ∈ R|V|×n. The specific equation for
obtaining Z through the mean and variance is shown in Equation (7), as follows:

Z = µ + εσ, (7)

where ε obeying the standard N(0, 1), Z is obeying N(µ, σ2).
Therefore, first, randomly sample one ε from the standard distribution, and then

calculate Z through the equation; then, you can further update the gradient through
backpropagation, and iteratively train to obtain new µ and σ.

3.3.3. Structure Reconstruction Decoder

In the attribute network encoding part, the attribute network embedding representa-
tion matrix is obtained, Z ∈ R|V|×n. The reconstructed adjacency matrix, B, can be obtained,



Mathematics 2022, 10, 485 8 of 13

Z, by predicting whether there is an edge between two nodes through the matrix, and the
calculation is shown in Equation (8), as follows:

B = sigmoid(Z× ZT), (8)

The function can map the input variables to between (0, 1). It is an activation function
often employed in neural networks, and ZT is the transpose matrix of matrix Z.

For structural errors, Ls, calculating the error between the reconstructed adjacency
matrix and the original adjacency matrix, which is Z, predicts whether there is a con-
nection between the pair of nodes in the original network, which can be regarded as a
two-classification problem in machine learning, using two-class prediction. As the loss
function, the calculation Equation (9) is as follows:

Ls = ds(A, B) = −(∑ y log ŷ + (1− y) log(1− ŷ))/N, (9)

where y represents the value of the element in row i and column j in A, and its value is
0 or 1, which means whether there is an edge between node i and node j in the original
network. ŷ represents the value of the element in B. After sigmoid(·) function, its value is
between 0 and 1. N represents the number of predicted connecting edges. The purpose of
constructing the loss function in this way is to make the adjacency matrix reconstructed by
the structural decoder more similar to the adjacency matrix of the original network.

3.3.4. Attribute Reconstruction Decoder

Using GCN as the attribute decoder, after the encoder obtains Z, connect a layer of
GCN, output the reconstructed attribute matrix Y, and predict the attribute information of
each node in the original network. The specific calculation is shown in Equation (10).

Y = frelu(Z, A
∣∣∣W(4)), (10)

where, to calculate the node attribute reconstruction error, the output dimension of this
layer of GCN is m.

For the attribute error La, calculating the error between the reconstructed attribute
matrix and the original attribute matrix can be defined by calculating the distance between
F and the reconstructed matrix Y in the vector space La, as shown in Equation (11).

La = da(F, Y)=||F−Y||F, (11)

where represents ||F−Y||F, the Frobenius norm of the difference between the matrices.

3.3.5. Loss Function Definition

The loss function is jointly determined by the structure loss function, Ls, the attribute
loss function, La, and the relative entropy, LKL.

We use KL divergence to calculate the relative entropy, and its calculation equation is
shown in Equation (12), as follows:

LKL = KL[q(Z|X, A)||p(Z)], (12)

KL divergence is employed to describe the measurement of the difference between
two probability distributions. q(Z|X, A) is the probability distribution calculated by the
previous GCN encoder, and p(Z) is a priori distribution and standard Gaussian distribution.

To control the contribution of Ls and La to the total loss function, L, during the training
process, α ∈ [0, 1] parameters are introduced to the weights of Ls and La. The calculation
equation L is shown in Equation (13), as follows:

L = (1−α)Ls + αLa + LKL, (13)
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The larger the value of α, the greater the contribution of attribute reconstruction loss
to the total loss function. The minimization process is to make the reconstructed adjacency
matrix and attribute matrix closer to the input of the GCN encoder and the probability
distribution obtained by the GCN closer to the standard Gaussian distribution.

In the training process, the Adam algorithm is employed in the gradient descent
method to minimize the above loss function, L. The learning rate, a2, is updated after
iterative q times. Finally, the NEAT-VGA model obtains Z that can better reflect the
structure information and attribute information of the network.

4. Experiments

For the experiments in this section, three datasets commonly employed in attribute net-
work experiments—Cora (Avaliable at https://neusncp.com/api/view_dataset?dataset_
id=173 (accessed on 1 January 2022)), CiteSeer (Avaliable at https://neusncp.com/a-pi/
view_dataset?dataset_id=82 (accessed on 1 January 2022)), and PubMed (Avaliable at
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes (accessed on 1 January 2022))—
were chosen [29]. Some basic information about the datasets is shown in Table 2. Link
prediction was employed as a downstream application to validate the performance of the
model and to analyze the experimental results. An implementation of the proposed method
has been made available at https://github.com/mingshuonie/NEAT-VGA (accessed on 1
January 2022).

Table 2. Citation network dataset.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
CiteSeer 3327 4732 3703 6
PubMed 19,717 44,338 500 3

4.1. Experimental Setting

The performance of the algorithm’s attribute network embedding is evaluated based
on whether the edges are correctly predicted in the experiment. The specific testing
procedure is that the edges in the network are randomly divided into three parts, with 85%
of the edges serving as the training set and 5% and 10% of the edges removed as the
validation and test sets. The network embedding algorithm was employed to generate a
low-dimensional vector of network nodes, logistic regression was employed as the classifier
for the binary classification problem of link prediction, the AUC (area under the curve) and
AP (average precision) metrics were employed for evaluation, and the AUC and AP values
of the test results were calculated. Both AUC and AP can evaluate the excellent or poor
performance of the classifier. Their values range from 0 to 1, and the closer the value is to 1,
the more effective the classifier is.

The experimental data sets are Cora, CiteSeer, and PubMed. AANE [30], Graph-
SAGE [17], ANRL-WAN [26], VGAE [18], and CSAN [19] algorithms are comparison
algorithms. To ensure the fairness of the experiment, each parameter is set according to
the reference. The NEAT-VGA algorithm has 200 iterations of feature learning and dimen-
sionality of 128 dimensions for F. The number of iterations for the variational autoencoder
part is 400, the learning rate is 0.05, the learning rate is 0.01, the dimensions of the encoding
part are all set to 64 dimensions, and the reconstruction weight parameter, α, is 0.5.

4.2. Results and Analysis

The link prediction results obtained from the experiment are shown in Table 3. Fur-
thermore, the histogram and the link prediction experiment results for the AUC and AP
value comparison are shown in Figures 4 and 5.

https://neusncp.com/api/view_dataset?dataset_id=173
https://neusncp.com/api/view_dataset?dataset_id=173
https://neusncp.com/a-pi/view_dataset?dataset_id=82
https://neusncp.com/a-pi/view_dataset?dataset_id=82
https://linqs-data.soe.ucsc.edu/public/Pubmed-Diabetes
https://github.com/mingshuonie/NEAT-VGA
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Table 3. Link prediction task performances.

Method
Cora CiteSeer PubMed

AUC AP AUC AP AUC AP

AANE 0.767 0.720 0.785 0.765 0.783 0.754
GraphSAGE 0.795 0.763 0.802 0.791 0.840 0.829

ANRL-
WAN 0.832 0.843 0.867 0.848 0.918 0.897

VGAE 0.914 0.903 0.908 0.920 0.944 0.947
CSAN 0.985 0.984 0.950 0.958 0.980 0.977
NEAT-

VGA(Ours) 0.987 0.985 0.972 0.968 0.986 0.985

Figure 4. AUC of link prediction task.

Figure 5. AP of link prediction task.

As can be seen from Table 3 and Figures 4 and 5, the network embedding is carried
out on the three citation network data sets, and the link prediction experiment is car-
ried out. The AUC and AP values are all in AANE, GraphSAGE, ANRL, VGAE, CSAN,
and NEAT-VGA algorithm is gradually improved. All the compared algorithms are at-
tributed to network embedding algorithms, which utilize the attribute information of the
nodes. The NEAT-VGA algorithm proposed in this paper achieves the highest AUC and
AP values for link prediction experiments by combining node attribute feature learning
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and variational graph autoencoder, both of which are improved compared with the other
algorithms.

The NEAT-VGA algorithm holds the best performance based on two metrics—AUC
and AP. The best performance among the other compared algorithms is the CSAN algo-
rithm, which uses multiple perceptrons for feature extraction of the attributes of the nodes
and considers attribute reconstruction on the decoder. The experimental results of the
NEAT-VGA algorithm and the CSAN algorithm are compared and analyzed. On the Cora
data, the NEAT-VGA algorithm improved the AUC and AP metrics by 0.2% and 0.1%
compared with the CSAN algorithm. On the CiteSeer data, the NEAT-VGA algorithm
improved the AUC and AP metrics by 1.3% and 1% over the CSAN algorithm, which is a
large improvement. On the PubMed data, the NEAT-VGA algorithm improved the AUC
and AP metrics by 0.6% and 0.8% over the CSAN algorithm, which was the highest of the
other algorithms.

The NEAT-VGA algorithm is an improvement on the graph autoencoder algorithm,
using node attribute feature learning, which results in a significant improvement in link
prediction compared with the VGAE algorithm, using a three-layered GCN variational
encoder in the encoder and a loss function that reconstructs the structure and attributes
jointly. On the Cora data, the AUC and AP metrics on the link prediction task for the NEAT-
VGA algorithm improved by 8.0% and 9.1% compared to the VGAE algorithm. On the
CiteSeer data, the NEAT-VGA algorithm improved the AUC and AP metrics on the link
prediction task by 7.0% and 5.2%, compared with the VGAE algorithm. On the PubMed
data, the NEAT-VGA algorithm improved the AUC and AP metrics on the link prediction
task by 4.4% and 4.0%, compared with the VGAE algorithm. In summary, the improved
NEAT-VGA algorithm had a very significant improvement in results.

The reasons why the NEAT-VGA algorithm can achieve the best results in all three
datasets and improve the embedding performance of the attribute network are analyzed
from two aspects.

First, the employ of attribute features of the nodes. Except for the NEAT-VGA algo-
rithm and the CSAN algorithm, several other algorithms do not learn the attribute features
and directly employ the node vector representations processed by the bag-of-words model
and the TF-IDF model. while these vectors can retain and make employ of the node in-
formation of the attribute network, these vectors do not extract information about the
attribute features of the nodes. the GCN and MLP employed by the CSAN algorithm.
The NEAT-VGA algorithm, on the other hand, employs the MHRWAE algorithm to obtain
an embedding representation of the node attributes that better captures the attribute infor-
mation using unbiased random wandering and node neighborhood attribute aggregation.

Secondly, in the attribute network embedding part, the AANE algorithm is imple-
mented by matrix decomposition of the attribute similarity matrix, which is less effective
than other algorithms that employ graph neural networks to capture the graph structure and
attribute information, such as NEAT-VGA, GraphSAGE, ANRL-WAN, VGAE, and CSAN.
Compared with the other graph neural network algorithms, NEAT-VGA also employs net-
work structures and node attribute information well when performing network embedding,
employs learned node features as input, effectively extracts higher-order nonlinear infor-
mation from the network, and considers the contribution of node attribute reconstruction
and structure reconstruction to the total loss function.

Overall, the NEAT-VGA algorithm achieves excellent performance on all three citation
networks through node-attribute feature learning, variational graph autoencoders, and loss
functions that reconstruct the joint structure and attributes, enabling the model to perform
well for network embedding and obtain low-dimensional vector representations that retain
the structure and attribute information.

5. Conclusions

In this paper, we propose the NEAT-VGA algorithm as a solution for the problem
that the attribute information matrix in the attribute network embedding is often high-
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dimensional and sparse, which increases the complexity of the algorithm and does not
reflect the attribute information of the nodes well; moreover, the GAE algorithm uses a
single mapping method in the encoder part and does not consider the attribute reconstruc-
tion. The NEAT-VGA algorithm employs the MHRWAE algorithm as a pre-processing
method for node attribute feature extraction. The experimental results of link prediction
on the citation attribute network dataset verify that the proposed algorithm outperforms
other comparison algorithms. However, it is mainly appropriate for the static network and
lacks the mining of the dynamic change characteristics of the network, which is the future
research direction.
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