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Abstract: Even while the scientific community has shown great interest in the analysis of meta-

heuristics, the analysis of their parameterization has received little attention. It is the parameteriza-

tion that will adapt a meta-heuristic to a problem, but it is still performed, mostly, empirically. There 

are multiple parameterization techniques; however, they are time-consuming, requiring considera-

ble computational effort and they do not take advantage of the meta-heuristics that they parameter-

ize. In order to approach the parameterization of meta-heuristics, in this paper, a self-parameteriza-

tion framework is proposed. It will automatize the parameterization as an optimization problem, 

precluding the user from spending too much time on parameterization. The model will automate 

the parameterization through two meta-heuristics: A meta-heuristic of the solution space and one 

of the parameter space. To analyze the performance of the framework, a self-parameterization pro-

totype was implemented. The prototype was compared and analyzed in a SP (scheduling problem) 

and in the TSP (traveling salesman problem). In the SP, the prototype found better solutions than 

those of the manually parameterized meta-heuristics, although the differences were not statistically 

significant. In the TSP, the self-parameterization prototype was more effective than the manually 

parameterized meta-heuristics, this time with statistically significant differences. 

Keywords: meta-heuristics; discrete artificial bee colony; search parametrization;  

self-parametrization 

 

1. Introduction 

In optimization there are problems that cannot be solved efficiently, that is, it is nec-

essary to enumerate, implicitly or explicitly, the solutions, to find the optimum. The enu-

meration of solutions is inefficient, laborious and impractical. This is particularly im-

portant because most complex optimization problems are COPs (combinatorial optimiza-

tion problems), susceptible to combinatorial explosion. In other words, susceptible to a 

rapid increase in the number of solutions with an increase in the size of the problem. One 

answer to complex COPs is the use of approximate techniques, that is, techniques that do 

not always find the optimal solutions, but unlike the enumeration techniques, are effi-

cient. Among the approximate techniques, it is important to highlight meta-heuristics. 

Meta-heuristics are equipped with mechanisms that allow them to overcome the limita-

tions of other approximate techniques. 

Even if meta-heuristics can be considered the ideal approximate techniques for com-

plex optimization problems, there are obstacles to their implementation. One obstacle is 

the impact of parameterization on their performance. One meta-heuristic performance 

cannot be disassociated from the parameterization procedure, that is, it is impossible to 

assess the appropriateness of the meta-heuristic to a problem without considering the pa-

rameterization. It is the parameterization that allows a meta-heuristic to be adapted to a 
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problem, or even to an instance of the problem. In other words, it is the parameters that 

tune the meta-heuristic to the desired performance, weighing the intensification/diversi-

fication of the exploration of the space of solutions. 

Although the parameterization influences the performance of the meta-heuristic, it is 

still common for the parametrization to be performed empirically, based on the 

knowledge the user has of a given meta-heuristic. Even though there are multiple param-

eterization methods, most require considerable effort in parameterization or involve the 

application of complex parameterization techniques. When faced with a complex prob-

lem, one does not only need to implement a meta-heuristic, but spend a lot of time on 

parameterization, or use a method that can be more complex than the meta-heuristic itself. 

In this paper, the authors intend to contribute to the automation of the parameteriza-

tion of meta-heuristics, reducing the user’s intervention to a minimum. In order not to 

increase the complexity of the parameterization process, a meta-heuristic will be used in 

the parameterization procedure. Our self-parametrization framework uses two meta-heu-

ristics, a meta-heuristic of the parameter space and a meta-heuristic of the solutions space. 

In order to evaluate the framework, a self-parametrization prototype was compared with 

a well-established parameterization method in the computational study. 

This paper is organized as follows: Section 1 is the introduction, Sections 2 and 3 are 

literature review. Section 2 is a brief introduction to meta-heuristics and Section 3 an in-

depth review of parametrization techniques. Section 4 presents the proposed self-para-

metrization framework. Section 5 presents the results of computational study and Section 

6 examines the results. Section 7 presents the conclusions. 

2. Meta-Heuristics 

Meta-heuristics are approximate techniques that can be applied to almost all optimi-

zation problems, regardless of their size or complexity. In fact, meta-heuristics have been 

accepted as the only realistic approach for optimization problems that are too complex. 

For example, in scheduling operations, Xhafa & Abraham [1] claim that “meta-heuristics 

have become a de facto approach to tackle in practice with the complexity of scheduling 

problems.” 

In [2], meta-heuristics are defined as techniques that control subordinate heuristics 

in the search of solution space. In other words, approximate techniques, developed to 

overcome the limitations of other approximate techniques. Even the name “meta-heuris-

tic” is not consensual. In [3], Sean Luke states that the name meta-heuristics is “An unfor-

tunate term, often used to describe a subfield of stochastic optimization.” It is worth men-

tioning that several authors, including [4], classify local search as a meta-heuristic and 

neither steepest-descent or first-descent are stochastic. In this paper, meta-heuristics are 

defined as approximate techniques, equipped with stochastic mechanisms to overcome 

local optimums. In that context, local search is not considered a meta-heuristic. 

In [5], the properties of meta-heuristics are presented: first, meta-heuristics can be 

applied to almost all problems; second, they incorporate mechanisms to overcome local 

optimums; third, they use experience to direct the search of the solutions space. In short, 

they must be applicable to almost all problems with few, if any, modifications, they must 

be efficient and they must use the information collected to direct their search of the solu-

tions space. In other words, meta-heuristics are flexible techniques that make a compro-

mise between the effectiveness of the solution and the efficiency of search. For problems 

where it is time consuming to enumerate the solutions, and the other approximate tech-

niques are ineffective, meta-heuristics compromise between effectiveness and efficiency. 

It is important to mention the contrast between intensification and diversification, 

which is essential to understand how a meta-heuristic will approach a problem. Intensifi-

cation is the comprehensive exploration of the most auspicious areas of the solution space 

while diversification maintains the overall perspective of the solution space. It is the in-

tensification/diversification balance that allows meta-heuristics to move past local opti-

mums. If a meta-heuristic has too much intensification it will stop on the nearest local 
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optimum. On the other hand, if a meta-heuristic has too much diversification it becomes 

inefficient and almost identical to a random search [5]. It is the parameterization that bal-

ances the intensification/diversification, that is, it is the parameterization that will deter-

mine how much intensification/diversification the meta-heuristic has. 

Some of the better-known meta-heuristics are: Genetic Algorithms (GA), proposed 

by Holland [6] in 1975; Simulated Annealing (SA), independently developed by Kirkpat-

rick et al. [7] and Černý [8] in the 1980s; Tabu Search (TS), proposed by Glover in 1986 [9]; 

GRASP, proposed by Feo & Resende [10]; the Variable Neighborhood Search (VNS), pro-

posed by Mladenocić & Hansen [11]; the Iterated Local Search (ILS) proposed by Stützle 

[12]; Dorigo’s Ant Colony Optimization (ACO) [13], Kennedy & Eberhard’s Particle 

Swarm Optimization (PSO) [14] and the Bacterial Foraging Optimization Algorithm 

(BFOA), proposed by Passino [15]. Other meta-heuristics include: The Firefly Algorithm 

(FA), Cuckoo Search (CS) and the Bat Algorithm (BT), developed by Yang [16–18]; Grey 

Wolf Optimizer (GWO) proposed by Mirjalili et al. [19] and later adapted for discrete 

problems in [20]. Other meta-heuristics have been adapted to better suit specific problems; 

one example is the recent variation of CS presented in [21]. 

One recent trend is the development of “hybrid” meta-heuristics. One oldest “hy-

brid” meta-heuristic is the Memetic Algorithm (MA), proposed in 1989 [22]. It combines 

an evolutionary meta-heuristic with local search. In addition, the combination of meta-

heuristics with mathematical models, math-heuristics, have also been studied [23]. An-

other trend is the combination of meta-heuristics with other AI (Artificial Intelligence) 

techniques, particularly, ML (Machine Learning). One unfortunate trend is the focus on 

the inspiration in natural phenomenon [24], with multiple meta-heuristics with similar 

procedures. In the meantime, the parametrization continues to be understudied. 

While much could be said about the recent developments in meta-heuristics and their 

applications, since the bulk of the literature review is presented in Section 3 any further 

expansion of Second 2 would make the paper unnecessarily dense. 

2.1. Discrete Artificial Bee Colony 

Bees have inspired multiple meta-heuristics, including Queen-Bee Evolution (QBE) 

[25], Marriage in Honey Bees Optimization (MBO) [26], Bee Colony Optimization (BCO) 

[27], Virtual Bee Algorithm (VBA) [28] and others [29]. One of the best-known is Artificial 

Bee Colony (ABC), developed by Karaboga [30] and Pham et al. [31]. ABC uses three cat-

egories of bees to search for solutions, worker bees, onlooker bees and scout bees. Alt-

hough ABC was developed for continuous problems, there are adaptations of ABC for 

discrete problems, including the Discrete Artificial Bee Colony (DABC), proposed in [32]. 

DABC procedure is similar to the ABC, but bees explore discrete solutions. Food 

sources represent solutions. Worker bees explore food sources, onlooker bees wait in the 

hive and choose and explore the most promising food sources, and finally, scout bees look 

for new food sources. As the most promising food sources will attract more onlooker bees, 

they will be explored more meticulously than other food sources. 

In detail, DABC, and ABC, repeat three phases until the search is interrupted. First, 

each worker bee is allocated to a food source (s0), then the phases of worker, onlooker and 

scout bees are repeated. In the worker bee phase, bees explore a solution (si’), in the vicin-

ity of the food source (si) to which they have been allocated. If the candidate solution (si’) 

is better than the food source, then the new solution replaces the food source (si). In the 

onlooker bee phase, bees will wait for the performance of each food source (si), before 

selecting one. After selecting a food source, the bees will explore a solution (si’) in the 

vicinity of the selected food source (si). If the candidate solution (si’) is better than the food 

source, then it replaces that food source (si). Finally, the scout bee phase occurs when a 

food source is abandoned. If a food source is abandoned, then, the worker bee is trans-

formed into a scout bee and searches for a new food source [16]. 

DABC parameters are the hive size (L) and the limit number (l). Hive size determines 

how many bees there are, in other words, how many solutions are explored per iteration. 
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An excessive L will make DABC inefficient. On the other hand, the limit number deter-

mines when a food source is abandoned, that is, the number of iterations without im-

provement until a food source is abandoned [16]. DABC is presented in Table 1. 

Table 1. Discrete Artificial Bee Colony. 

si = s0 

While No Stoppage Criteria Do 

For Each Worker Bee Do Generate si’ 

For Each si Do Calculate P(si) 

Allocate Worker Bees to si 

For Each Onlooker Bee Do Generate si’ 

If f(si’) ≤ f(si) Then si = si’ 

Else Increase li 

If li = l 

Transform Worker Bee in Scout Bee  

Generate si 

Transform Scout Bee in Worker Bee  

End While 

Output: Best Solution 

Other versions of DABC have been developed. In [33–35] three versions of the DABC 

can be examined, with variations in the procedure. In [36], an adapted version of the 

DABC was used to address the TSP, and in [37], it was used to solve a manufacturing cell 

design problem (MCDP). The performance of DABC and Simulated Annealing (SA), were 

compared in a single machine scheduling problem [38]. DABC obtained better solutions 

than SA, but it needed more computational time. 

One of the variations of DABC is related to how onlooker bees choose food sources. 

In [32], it is proposed that part of the probability is not impacted the by quality of the 

solution. In other words, the onlooker bees will not only consider the amount of food in a 

food source, which should increase the diversification. 

3. Parametrization of Meta-Heuristics 

For meta-heuristics, parameterization can be described as: for an optimization tech-

nique A, an instance of problem I, with a performance index C, which parameters of A 

optimize C in I [39]. In other words, what are the parameters that will result in the best 

performance of the meta-heuristic in an instance of a problem. It is inexplicable how par-

ametrization has been so understudied, when the performance of meta-heuristics depends 

so much on it. Manual parametrization is still predominant, with parameters selected em-

pirically, when they are even reported [40]. It is common to report on the performance of 

a meta-heuristics with “certain” parameters. Why or how were these parameters selected? 

It is rarely explained [41]. To ensure the best performance from a meta-heuristic, it is nec-

essary to select the correct parameters for the problem, or even, the instance. 

Parameterization can be offline or online. Offline is when the parameters of the meta-

heuristic are predetermined and online is when the parameters are updated as the meta-

heuristic is executed [4]. In other words, offline parametrization, which is the focus of this 

paper, is performed a priori. It can be divided into: manual parametrization, parametri-

zation by analogy, parametrization by DOE and search-based parametrization [42]. 

3.1. Manual Parametrization 

In manual parameterization the parameters are iteratively tweaked. Manual param-

eterization does not require a careful plan of experiments but needs a user who is familiar 

with the meta-heuristic. It is a simple procedure: the user runs the meta-heuristics with 

some initial parameters, which are tweaked one by one to improve the performance until 

the user is satisfied with the performance of the meta-heuristic [42]. It is a laborious 
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procedure that depends on the user’s acquaintance with the meta-heuristic. One repre-

sentation of manual parametrization is presented in Figure 1. Once the initial parameters 

have been determined (1), the user evaluates the performance (2), the parameters are 

tweaked (3) and the procedure is repeated (4). Manual parametrization is inconsistent, 

since it does not consider the interactions between parameters, but it is still the most com-

mon parameterization technique [43]. 

 

Figure 1. Manual Parametrization. 

3.2. Parametrization by Analogy 

In parametrization by analogy users search for successful implementation of the 

meta-heuristic and replicate the parameters. One representation of parametrization by 

analogy is presented in Figure 2. Before the user runs the meta-heuristic (1), they will 

search for successful implementations of the meta-heuristic (2), find what parameters 

were used (3) and apply those parameters (4). 

 

Figure 2. Parametrization by Analogy. 
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3.3. Parametrization by DOE 

In parametrization by DOE users choose the parameters in multiple experimental 

trials. One representation of parametrization by DOE is presented in Figure 3. Before the 

user runs the meta-heuristic, multiple parameterization trials are executed (1), then, the 

user chooses the parameters with the best performance (2) and applies them to the meta-

heuristic (4). 

 

Figure 3. Parametrization by DOE. 

Parametrization DOE is the methodical and statistical examination of experiments 

[44]. Input variables are tweaked, and the output is evaluated [45]. OFAT (one factor at a 

time) is when one input variable is tweaked per experiment. It does not consider the in-

teractions between the variables. DOE is the alternative, which examines the interaction 

between the variables in the output. In [46] DOE is divided into classical experiments, 

Taguchi experiments or Shainin experiments. 

Classical experiments uses the concepts developed by Fisher [47] to evaluate the out-

put sensitivity to the input parameters. Complete factorial experiments, which are only 

useful when there are few parameters, consider all the interaction between the inputs [46]. 

In order to reduce the number of experiments, fractional factorial experiments were de-

veloped. While complete factorial experiments will examine each combination of param-

eters, fractional factorial experiments will only perform a fraction of the experiment with 

orthogonal arrays. Response surface methodology (RSM), developed by Box and Wilson 

[48], is, for example, a form of classical experiment. On the other hand, Taguchi experi-

ments, which use orthogonal arrays, focus on the reduction in the variance of the outputs 

[49]. In order to reduce variance in the response to the inputs, they are classified into con-

trol and noise inputs [50]. Control inputs are, for example, the parameters of a meta-heu-

ristic, while the noise inputs cannot be controlled, for example, the differences between 

instances. Taguchi experiments search for the control inputs that allow the meta-heuristic 

to withstand the uncontrollable variation of the noise inputs. Other parametrization by 

DOE techniques such as F-Race and Sequential Parameter Optimization (SPO), can be 

found in [51–64]. 

3.4. Search based Parametrization 

In search-based parametrization, the parameterization is approached as a meta-opti-

mization problem [4]. In other words, the space of the parameters is explored by an ap-

proximate technique, such as local search or a meta-heuristic [42]. One representation of 
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search-based parametrization is presented in Figure 4. Before the user runs the meta-heu-

ristics (1), they first use an approximate technique to explore the space of the parameters 

(2) and then use those parameters in the meta-heuristics (3). 

 

Figure 4. Search-based Parametrization. 

One successful implementation of search-based parametrization was presented in 

1986, when a Meta-GA was applied in the parameterization of the Genetic Algorithm 

(GA). In that case, the Meta-GA was used to explore GA’s parameter space, which, in turn, 

would explore the solution space [65]. Since the same meta-heuristics was used in the 

parameterization and optimization, the user did not need to implement a technique de-

veloped specifically to solve the parameterization problem. It was a smart solution, which 

inspired the proposed self-parametrization framework. 

One similar approach is relevance estimation and value calibration (REVAC), pro-

posed by Nannen & Eiben [66]. REVAC uses an evolutionary algorithm (EA) to estimate 

the parameters of another EA. It starts from a population of calibrations and will explore 

the space of the parameters. Like all EAs, it will use the best solutions, in this case the best 

calibrations, to find even better calibrations. The REVAC procedure is simple: It starts 

with a population of parameter vectors, that is, calibrations for the EA used in the optimi-

zation problem. REVAC will then improve those vectors iteratively. At the start, the prob-

ability distribution is uniform, however, REVAC will increase the probability of the vec-

tors that result in better performance of the EA [67]. At the same time, REVAC will smooth 

the probability distribution of the vectors, to reduce the variance in the performance of 

the parameters. 

Parameter iterated local search (ParamILS) is a search-based parametrization pro-

posed by Hutter et al. [39]. It is similar to manual parametrization, since it will manipulate 

the parameters one-by-one, that is, ParamILS does not consider iterations between param-

eters but uses local search to explore the parameter space [42]. The ParamILS procedure 

is simple: it will tweak one parameter and see if it results in a better solution for the opti-

mization problem. In order to overcome the local optimums, disturbance mechanisms 

were introduced. ParamILS will repeat these two phases, local search and disturbances. 

First it does a local search and once it reaches a local optimum it causes a disturbance to 

restart the search. It more flexible than REVAC, since ParamILS is not limited to quantita-

tive parameters. In [39], two variations of ParamILS were proposed: BasicILS and Fo-

cusedILS. 
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3.5. Other Parametrization Techniques 

As an alternative approach, it is common to “mix” parameterization techniques. For 

example, when the interruption criteria are determined by manual parametrization and 

the other parameters are determined by parametrization by analogy. Another common 

combination is parameterization by analogy with parameterization by DOE, since it is 

necessary to determine levels for the parameters for the experiments. Even search-based 

parameterization could need to levels for parameters, which can be selected by manual 

parametrization or parametrization by analogy. 

It is also important to mention Calibra, which is a parameterization technique that 

combines parameterization by DOE and search-based parametrization [68]. It will refocus 

the parametrization experiments in the best zones of the parameter space. It determines a 

parameter interval and performs a complete factorial experiment of the values of the first 

and third quartile of the parameter interval or it will perform 2k experiments, where k 

represents the number of parameters. Once those experiments are completed, it will de-

fine three levels for each parameter and use local search to decrease the interval of each 

parameter. One of the limitations of Calibra is the fact that it only calibrates up to four 

parameters, since it was developed with a L9 orthogonal arrays. 

4. Self-Parametrization Framework 

In this section, the self-parametrization framework will be presented, but first, what 

would be the purpose of self-parametrization framework? It should find the appropriate 

parameters for all meta-heuristics, in all instances of all problems, without user interven-

tion. It would, also, remove the parameterization burden from the user of the meta-heu-

ristic which, in turn, would allow inexperienced users to solve problems that could not be 

solved otherwise. Even the more experienced users could benefit from a self-parametri-

zation framework and avoid the laborious parametrization procedure. One could run the 

self-parametrization module and tune the parameters of the meta-heuristic to the prob-

lem, or even to the instance, and avoid the all the experiments and the search in literature 

for recommendations for the values of the parameters. Moreover, if the self-parameteri-

zation is implemented it can help in the development of decision support systems (DSS), 

where the parameters are not pre-defined for a problem, or a specific instance of the prob-

lem. 

With the self-parametrization framework parameters are tweaked as if the parame-

terization was an optimization problem. In order to automate the parameterization pro-

cedure, the self-parametrization framework will use two meta-heuristics. One is the meta-

heuristic of the solution space and the other is the meta-heuristic of the parameter space. 

It is the second that will search for complete calibrations, which in turn are evaluated with 

runs of the meta-heuristic of the solution space. In essence, the meta-heuristic of the pa-

rameter space searches for solutions for the parametrization problem and the meta-heu-

ristic of the solutions space evaluates the solutions. Solutions from the meta-heuristic of 

the parameter space are complete calibrations of the meta-heuristic of the solution space, 

whose performance is used to calculate the quality of those calibrations. Once the meta-

heuristic of the solution space receives a calibration, it runs in the optimization problem 

before returning the solutions to the meta-heuristic of the parameters space, which will 

tweak the parameters and repeat the whole procedure. 

In Figure 5 the procedure of the self-parametrization framework is presented. 
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Figure 5. Self-Parametrization Framework. 

First, the problem’s data is sent to the meta-heuristic of the parameter space (1), then, 

the meta-heuristic of the parameter space will examine the problem’s data and limit the 

parameter space, before it starts to search for a calibration solution (2). Once it has found 

a calibration solution, that calibration is sent to the meta-heuristic of the solution space 

(3), which will search in the solution space with that calibration (4), before it returns the 

solution of the problem to the meta-heuristic of the parameter space (5). Steps (2), (3), (4) 

and (5) are repeated until the interruption criterion of the meta-heuristic of the parameter 

space, and in 6, the meta-heuristic of the parameter space will recommend a calibration 

for the problem to the user of the self-parametrization framework. In addition, the self-

parameterization framework will report the solution for the optimization problem. 

One limitation of the self-parametrization framework is the representation of the pa-

rameters, since the parameters of a meta-heuristic can be continuous, discrete or a mixture 

of discrete and continuous. If a discrete meta-heuristic was used as the meta-heuristic of 

the parameters space, then, continuous parameters would need to be discretized. If a con-

tinuous meta-heuristic was used as the meta-heuristic of the parameters space it would 

be the opposite. Of course, the discretization of parameters represents a decrease in the 

resolution, but it’s a flexible solution that allows user to implement any meta-heuristic, as 

the meta-heuristic of the parameter space. 

Another limitation of the self-parametrization framework is the evaluation of the cal-

ibrations. As mentioned, the meta-heuristic of the parameters space will use the meta-

heuristic of the solution space to evaluate the performance of the calibrations, but since 

meta-heuristics are stochastic, bad calibrations can still result in decent solutions. In order 

to minimize this, the meta-heuristic of the parameters space needs to evaluate calibrations 

in multiple runs of the meta-heuristic of the solutions space. The user would need to select 

if the calibration solution is evaluated by the best, worst or the mean solution for the op-

timization problem. 

In Figure 6 the structure of the self-parametrization prototype is presented. DABC is 

as both the meta-heuristic of the parameters space and the meta-heuristic of the solutions 

space. 
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Figure 6. Self-Parametrization Prototype. 

It can be divided into parameterization modules, which are: DABCP (); the neighbor-

hood structure, Par (), which the meta-heuristic of the parameters space uses to manipu-

late the calibration solutions and the evaluation module, DABCS (). On the other hand, 

the optimization modules are: DABCS (); four neighborhood structure modules, Tran (), 

Swap (), Inse () and Op-2 (), which the meta-heuristic of the solution space uses to manip-

ulate the solutions and the two evaluation modules, APP () and TSP (), since it will be 

tested in two problems. Main reports the calibration to the user, in a txt file. 

5. Computational Study 

In order to validate the proposed self-parametrization framework, it will be com-

pared to conventionally parametrized frameworks, namely, parameterization by analogy 

and parametrization by DOE, DABC in two optimization problems. First, the self-para-

metrization framework will be tested in a scheduling problem (SP), in this case, the mini-

mization of total weighted tardiness (TWT). TWT is often used to evaluate the perfor-

mance of meta-heuristics. It will, also, be tested in TSP, in the case, a Euclidean/symmet-

rical-TSP, which is also a well-known problem, often used to evaluate meta-heuristics. 

For both TWT and TSP, the instances are from well-known databases of optimization 

problems. In TWT, the proposed framework will be evaluated in 30 instances of 50 activ-

ities problem, available in the ORLibrary [69]. In the TSP, the proposed framework will 

be evaluated in the instances KroA100, KroB100, KroC100, KroD100 and KroE100, availa-

ble in TSPLIB [70]. In both problems the proposed framework, will be compared to the 

performance of a conventionally parametrized DABC. Moreover, in other to ensure both 

the proposed framework and the conventionally parametrized DABC have found suitable 

solutions, SA was also included in the computational study. SA’s resilience to subpar par-

ametrization is well-known [71–73]. Since SA is included as a baseline and it will not be 

included in the statistical comparison, its parametrization process will not be described. 

In the future, it would be important to compare the proposed framework with other 

search-based and hybrid parameterization techniques. However, most search-based and 

hybrid parameterization methods were developed for specific meta-heuristics and were 

tested in the same instances as our framework. Such comparison would require imple-

mentation, and possible adaption of other complex techniques, which fall outside the 

scope of this paper. Moreover, other search-based and hybrid parameterizations are often 

inaccessible to users. Our framework does not require a separate parametrization algo-

rithm and can be applied to any meta-heuristic, without much effort. 
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5.1. Parametrization 

Before the parametrization of DABC it is necessary to mention the three parameters 

that have been proposed but are not used in all implementations of DABC. The first is the 

number of scout bees. In ABC [30] only one scout bee is allowed per iteration, but in [74] 

from 10% to 30% of scout bees are recommended per iteration. The second is the number 

of movements (NuMo) of a scout bee, before it turns back into a worker bee. In [34] at least 

three movements are recommended. Lastly, another parameter is proposed in this article, 

inspired by [32]. In [32], 10% of the probability of an onlooker bee selecting one food 

source is not impacted the quality of the food source. In this article we consider the part 

not impacted, hence the quality of the solution is 1-α, where α is the elitism percentage. 

In the TWT problem the limit number (l), the neighborhood structure, the number of 

movements (NuMo) and the elitism percentage (α) will be parametrization first by para-

metrization by analogy and then, fine-tuned with parametrization by DOE, in this case, 

in three levels, with Taguchi experiments. On the other hand, hive size (L) and the inter-

ruption criteria, which will be the number of iterations, in order to ensure the fairness of 

the comparison between the proposed framework, the conventionally parametrized 

DABC and the conventionally parametrized SA, will be chosen in manual parametriza-

tion, before the other parameters are determined. 

In [32], a hive size of 40 was used to solve a TS. In [33,34], a Hive Size of 20 was used 

to solve a SP. In [75], it is concluded that the ABC is not very sensitive to the hive size. For 

TWT problem will use a mean of the two values, in this case a hive size of 30. Since DABC 

will explore 30 solutions per iteration and in order to ensure the fairness of the compari-

son, DABC will be interrupted after 1000 iterations and SA after 30,000 iterations. 

In [32] a metric is presented to calculate the limit number. For a hive size of 30, the 

levels of 450, 500 and 550 were chosen. For the elitist percentage, in [32], a value of 0.9 is 

proposed, therefore levels of 0.85, 0.90 and 0.95 were chosen. For the number of move-

ments, in [34] at least three movements are recommended, so the levels of three four and 

five were chosen. Finally, the neighborhood structures chosen were Transpose, Swap and 

Insert. The Taguchi experiments, repeated for each of the first five instances of the prob-

lem, are presented in Table 2. 

Table 2. Taguchi Experiments for TWT Problem. 

Parameters Instance 
S/N 

l  α NuMo EV 1 2 3 4 5 

450 0.85 3 Tran 0.711 0.514 1.301 1.186 1.351 −0.564 

450 0.90 5 Swap 0.000 0.008 0.000 0.000 0.007 46.995 

450 0.95 4 Inse 0.000 0.001 0.000 0.000 0.000 66.972 

500 0.85 5 Inse 0.000 0.001 0.000 0.000 0.000 66.972 

500 0.90 4 Tran 0.682 1.421 0.264 0.742 1.960 −1.429 

500 0.95 3 Swap 0.000 0.001 0.000 0.000 0.057 31.924 

550 0.85 4 Swap 0.023 0.001 0.000 0.000 0.047 32.616 

550 0.90 3 Inse 0.000 0.001 0.000 0.000 0.057 31.924 

550 0.95 5 Tran 1.496 0.954 0.637 1.131 2.216 −2.898 

S/Ns are presented in Figure 7. It seems the neighborhood structure is the parameter 

with the most impact in the performance of DABC, due to the poor performance of 

Transponse, which is unappropriated for instances of this size. The limit number, elitist 

percentage and number of movements have more uniform results. 
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Figure 7. Parametrization for TWT Problem. 

For the TWT problem, SA will use an initial temperature (Tmax) of 45,000, an epoch 

length (L) of 49, a geometric cooling factor (α) of 0.90, Insert as the neighborhood structure 

and it will be interrupted after 30,000 iterations. 

For the TSP, DABC will also have a hive size of 30. In this case, it will be interrupted 

after 20,000 iterations and SA after 600,000 iterations. For the other parameters, since the 

limit number (l) should consider the size of the instance [16], the levels of 900, 1000 and 

1100 were chosen. On the other hand, the elitist percentage (α) and the number of move-

ments (NuMo) are independent of the size of the instance, so the values selected are the 

same used in the TWT problem. In this case, 0.85, 0.90 and 0.95 for the elitist percentage 

and three, four and five for the number of movements. A common neighborhood structure 

for TSP was introduced, in this case Op-2, so the choice is between Swap, Insert and Op-

2. The Taguchi experiments, repeated for each instance of TSP, are presented in Table 3. 

Table 3. Taguchi Experiments for TSP. 

Parameters Instance 
S/N 

l α NuMo EV 1 2 3 4 5 

900 0.85 3 Swap 0.507 0.476 0.641 0.604 0.604 4.882 

900 0.90 5 Inse 0.168 0.252 0.263 0.307 0.147 12.570 

900 0.95 4 Op-2 0.067 0.054 0.048 0.056 0.048 25.196 

1000 0.85 5 Op-2 0.032 0.032 0.064 0.041 0.066 26.119 

1000 0.90 4 Swap 0.604 0.529 0.524 0.499 0.475 5.546 

1000 0.95 3 Inse 0.289 0.256 0.227 0.162 0.171 12.905 

1100 0.85 4 Inse 0.207 0.259 0.292 0.222 0.233 12.231 

1100 0.90 3 Op-2 0.032 0.044 0.053 0.042 0.048 27.030 

1100 0.95 5 Swap 0.619 0.616 0.634 0.615 0.640 4.086 

S/Ns are presented in Figure 8, in the TSP it seems the neighborhood structure is the 

parameter with the most impact in the performance of the DABC, but this time, due to the 

poor performance of meta-heuristic with Swap. The limit number, elitist percentage and 

number of movements appear to have a limited impact on the performance. 
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Figure 8. Parametrization for TSP. 

For the TSP, SA will use an initial temperature (Tmax) of 95,000, an epoch length (L) of 

4950, a geometric cooling factor (α) of 0.80, Insert as the neighborhood structure and in-

terrupted criterion is 600,000 iterations. For the self-parametrization, the meta-heuristic of 

the parameters space will use a hive size of 10, a limit number of 50, an elitist percentage 

of 0.9 and a number of movements of 3. It will be interrupted after 500 iterations. On the 

other hand, the parameters of the meta-heuristic of the solutions space will be determined 

automatically, with the exception of the hive size, which will be 30 and the interrupted 

criterion, which will be 1000 for the TWT and 20,000 for the TSP. 

5.2. Results of the Computational Study 

For the TWT problem, the conventionally parametrized SA and DABC were run five 

times, with the best solution reported. For the self-parametrization, each calibration was 

evaluated in five runs of the meta-heuristic of the solutions space. In this case the min, 

max and mean values are presented. The results are presented in Table 4. 

For the TSP, the results can be examined in Table 5. Once more, the conventionally 

parametrized SA and DABC were run five times and the best solution is presented. For 

the self-parametrization, each calibration was evaluated in five runs of the meta-heuristic 

of the solutions space and the min, max and mean are presented. 

Table 4. Results for the TWT Problem. 

Inst. SA DABC 
Self-Parametrization 

Optimum 
Min Max Mean 

1 2134 2134 2134 2134 2134.0 2134 

2 1996 1996 1996 1998 1997.2 1996 

3 2583 2583 2583 2583 2583.0 2583 

4 2691 2691 2691 2691 2691.0 2691 

5 1518 1518 1518 1518 1518.0 1518 

6 26,276 26,358 26,276 26,359 26,304.8 26,276 

7 11,733 11,403 11,403 11,415 11,404.2 11,403 

8 8610 8499 8499 8597 8528.7 8499 

9 9918 9892 9884 9918 9891.4 9884 

10 10,655 10,661 10,655 10,684 10,660.9 10,655 

11 43,504 43,513 43,504 43,580 43,533.5 43,504 
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12 36,461 36,462 36,401 36,540 36,485.1 36,378 

13 45,687 45,572 45,400 45,626 45,490.3 45,383 

14 51,974 51,977 51,788 51,997 51,906.5 51,785 

15 38,934 38,939 38,934 38,963 38,943.5 38,934 

16 87,902 87,966 87,913 88,004 87,959.7 87,902 

17 84,375 84,344 842,84 84,436 84,358.9 84,260 

18 104,795 104,988 104,844 105,058 104,976.0 104,795 

19 894,74 89,377 89,317 89,426 89,352.6 89,299 

20 72,316 72,328 72,321 72,377 72,350.1 72,316 

21 214,682 214,642 214,571 214,709 214,635.8 214,546 

22 150,800 150,839 150,842 150,874 150,857.2 150,800 

23 224,025 224,066 224,034 224,166 224,098.9 224,025 

24 116,015 116,089 116,029 116,206 116,099.2 116,015 

25 240,179 240,213 240,190 240,312 240,243.6 240,179 

26 2 2 2 2 2.0 2 

27 4 4 4 4 4.0 4 

28 775 755 755 755 755.0 755 

29 104 99 99 99 99.0 99 

30 22 22 22 22 22.0 22 

Table 5. Results for the TSP Problem. 

Inst. SA DABC 
Self-Parametrization 

Optimum 
Min Max Mean 

KroA 21,560 21,508 21,502 22,203 21,843.6 21,282 

KroB 22,405 22,703 22,358 23,400 22,888.8 22,141 

KroC 21,126 21,166 20,871 21,871 21,442.7 20,749 

KroD 21,720 21,560 21,572 22,420 22,070.9 21,294 

KroE 22,823 22,519 22,193 23,046 22,800.3 22,068 

In Table 6 computational cost of the conventionally parametrized SA and DABC and 

the auto-parameterization framework can be analyzed in Table 6 for the TWT problem 

and in Table 7 for the TSP problem. As expected, the auto-parameterization framework 

computational cost is much higher than those of the conventionally parametrized SA and 

DABC, because the auto-parameterization framework performs multiple searches of the 

solutions space, for each solution of the parameter space, namely, five runs of the meta-

heuristic of the solution space for each parameterization solution. It is important to men-

tion that the comparison of the computational cost is not equitable, since time spent in the 

parameterization cannot be not counted for conventionally parametrized SA and DABC. 

The difference in the results are reduced when one considers that the parameterization is 

often a laborious process that requires a considerable know-how and effort by the user. 

Table 6. Computational Cost for the TWT Problem. 

Inst. SA DABC Self-Parametrization 

1 0.025 s 0.030 s 913.27 s 

2 0.027 s 0.031 s 974.78 s 

3 0.021 s 0.021 s 959.85 s 

4 0.027 s 0.030 s 946.80 s 

5 0.025 s 0.026 s 989.46 s 

6 0.072 s 0.044 s 1035.48 s 

7 0.030 s 0.030 s 1027.52 s 

8 0.031 s 0.033 s 1016.76 s 

9 0.029 s 0.030 s 1014.64 s 

10 0.029 s 0.029 s 1018.50 s 

11 0.032 s 0.028 s 1065.04 s 
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12 0.027 s 0.028 s 1074.78 s 

13 0.029 s 0.026 s 1062.92 s 

14 0.051 s 0.031 s 1058.88 s 

15 0.032 s 0.028 s 1056.22 s 

16 0.030 s 0.029 s 1115.44 s 

17 0.032 s 0.026 s 1110.18 s 

18 0.031 s 0.029 s 1130.90 s 

19 0.029 s 0.033 s 1101.02 s 

20 0.033 s 0.032 s 1107.18 s 

21 0.033 s 0.028 s 1130.67 s 

22 0.026 s 0.035 s 1118.68 s 

23 0.033 s 0.031 s 1132.82 s 

24 0.032 s 0.029 s 1144.90 s 

25 0.027 s 0.030 s 1130.84 s 

26 0.026 s 0.024 s 975.74 s 

27 0.026 s 0.028 s 969.30 s 

28 0.021 s 0.022 s 1010.93 s 

29 0.064 s 0.037 s 999.68 s 

30 0.024 s 0.022 s 962.64 s 

Table 7. Computational Cost for the TSP Problem. 

Inst. SA DABC Self-Parametrization 

KroA 1.627 s 1.826 s 89,010.53 s 

KroB 1.678 s 1.823 s 90,959.96 s 

KroC 1.589 s 1.816 s 88,536.49 s 

KroD 1.680 s 1.815 s 88,907.57 s 

KroE 1.684 s 1.874 s 88,823.83 s 

6. Statistical Analyzes 

In order to compare the performance of the self-parametrization framework and the 

conventionally parametrized DABC and SA in the TWT problem and TSP, it is indispen-

sable to normalize the results. For example, a 2134 solution in the first instance of the TWT 

problem is better than a 2000 solution in the second. Solution from self-parametrization 

framework and the conventionally parametrized DABC and SA were normalized by the 

relative deviation to the optimal solution. An alternative would be to normalize by the 

absolute deviation, but this would not consider the value of the optimal solution. For ex-

ample, a deviation of 10 is different in a problem where the value of the optimal solution 

is 2134 or 22. To calculate the relative deviation was used expression (1). F(S)MH represents 

the solutions of the self-parametrization framework or the conventionally parametrized 

DABC and SA, and F(S)OTM the optimal solution. Relative deviation to the optimal solu-

tion, or when the optimum is unknown, to the best-known solution, is considered the best 

metric to compare meta-heuristics [76]. 
𝐹(𝑆)𝑀𝐻 − 𝐹(𝑆)𝑂𝑇𝑀

𝐹(𝑆)𝑂𝑇𝑀
 (1) 

6.1. TWT Problem 

For the TWT problem the performance of the self-parametrization framework is ex-

ceptional, in fact, it presented the user with near optimal solution in all 30 instances. The 

same was true with the conventionally parametrized DABC, which also found the near 

optimal solution in all 30 instances. In short, the self-parametrization framework was able 

to replicate, if not improve on, the conventionally parametrized DABC with complete au-

tomatized parametrization procedure. Even the max and mean solutions of the self-para-

metrization framework are nearly optimal in all instances. 
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Figure 9 shows the frequency of relative deviation to the optimum of the self-para-

metrization framework and the conventionally parametrized DABC and SA. It shows the 

excellent performance of the proposed framework. 

Table 8 shows the values of the mean, median, standard deviation and variance, of 

the relative deviation to the optimal solution of the self-parametrization framework and 

the conventionally parametrized DABC and SA. It is clear the proposed framework out-

performed the conventionally parametrized DABC. 

 

Figure 9. Relative Deviations for the TWT Problem. 

Table 8. Statistic of the TWT Problem. 

 SA DABC 
Self-Parametrization 

Min Max Mean 

Mean 0.463% 0.071% 0.009% 0.171% 0.073% 

Median 0.000% 0.018% 0.000% 0.092% 0.044% 

Standard Deviation 1.129% 0.115% 0.016% 0.238% 0.093% 

Variance 1.275% 0.013% 0.000% 0.057% 0.009% 

In order to conclude about the performance of the self-parameterization framework, 

when compared with the conventionally parametrized DABC, a one-way ANOVA (anal-

ysis of variance) was used [61]. μMin, μMax and μMed are the mean of the relative deviation 

from the optimum from the self-parameterization framework and μDABC is the mean of the 
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relative deviation from conventionally parametrized DABC. The ANOVA’s hypotheses 

are: 

• H0: 𝜇𝐷𝐴𝐵𝐶 = 𝜇𝑀𝑖𝑛 = 𝜇𝑀𝑎𝑥 = 𝜇𝑀𝑒𝑑 

• H1: Means all not all equal. 

In Table 9 it is possible to examine the ANOVA. It found statistical evidence to reject 

the H0, with 95% confidence. In other words, it is not possible to conclude the performance 

of the min, max and mean solutions from the self-parameterization framework and the 

conventionally parametrized DABC are equal (p-Value of 0.000). 

Table 9. ANOVA for TWT Problem. 

 S. of Squares df Mean Square F Sig. 

Between Groups 0.403 3 0.134 6.821 0.000 

Within Groups 2.285 116 0.020   

Total 2.688 119    

At least one population did not have an identical performance. In order to identify 

which, it is necessary to perform the Scheffe test [77]. The Scheffe test is shown in Table 

10. 

Table 10. Scheffe Test for TWT Problem. 

  Mean Difference Std. Error Sig. 

Min 

Max −0.161867* 0.036239 0.000 

Med −0.063700 0.036239 0.382 

DABC −0.061567 0.036239 0.413 

Max 

Min 0.161867* 0.036239 0.000 

Med 0.098167 0.036239 0.067 

DABC 0.100300 0.036239 0.059 

Med 

Min 0.063700 0.036239 0.382 

Max −0.098167 0.036239 0.067 

DABC 0.002133 0.036239 1.000 

DABC 

Min 0.061567 0.036239 0.413 

Max −0.100300 0.036239 0.059 

Med −0.002133 0.036239 1.000 

It is impossible, with 95% confidence, to confirm that the self-parameterization 

framework performs better than the conventionally parametrized DABC in the TWT 

problem (p-Value of 0.413). It seems the only difference is between the min and the max 

solutions of the self-parameterization framework (p-Value of 0.000). 

6.2. TSP 

In TSP, the self-parametrization framework also outperformed both the convention-

ally parametrized DABC and SA, but in this case, the disparities between them are notice-

able in the examination of Table 5. 

Figure 10 shows the frequency of relative deviation to the optimum of the self-para-

metrization framework and the conventionally parametrized DABC and SA. It shows that 

proposed framework outperformed DABC and SA. 



Mathematics 2022, 10, 475 18 of 23 
 

 

 

Figure 10. Relative Deviations for the TSP. 

In Table 11 shows the values of the mean, median, standard deviation and variance, 

of the relative deviation to the optimal solution of the self-parametrization framework and 

the conventionally parametrized DABC and SA. It is even more obvious the self-para-

metrization framework outperformed the conventionally parametrized DABC. 

Table 11. Statistic of the TSP. 

 SA DABC 
Self-Parametrization 

Min Max Mean 

Mean 1.947% 1.781% 0.895% 5.028% 3.265% 

Median 1.817% 2.010% 0.980% 5.288% 3.343% 

Standard Deviation 0.891% 0.611% 0.315% 0.610% 0.374% 

Variance 0.793% 0.374% 0.099% 0.372% 0.140% 

In order to conclude about the performance of the self-parameterization framework, 

since it is not possible to assume the normality by the central limit theorem (CLT), it is 

necessary to use a normality test. The Shapiro–Wilk test will analyze the hypothesis that 

a sample comes from a normally distributed population when that sample is smaller than 

30. Shapiro–Wilk’s hypotheses are: 

• H0: The sample is from a population that follows a normal distribution. 

• H1: The sample is not from a population that follows a normal distribution. 
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In Table 12 it possible to examine the Shapiro–Wilk. It found no statistical evidence 

to discard the H0. In other words, it is not possible to conclude that the sample is not from 

a normal distributed population (p-value of 0.427). 

Table 12. Shapiro–Wilk for the TSP. 

 
Kolmogorov–Smirnov Shapiro–Wilk 

Statistic df Sig. Statistic df Sig. 

Min 0.235 5 0.200 0.903 5 0.427 

Since it was not possible to demonstrate that the sample does not come from a normal 

distributed, the self-parametrization framework and conventionally parametrized DABC 

will be compared with the Student’s. It compares the means of normal distributions sam-

ples [61]. Student’s t-test hypotheses are: 

• H0: 𝜇𝑀𝑖𝑛 − 𝜇𝐷𝐴𝐵𝐶 = 0 

• H1: 𝜇𝑀𝑖𝑛 − 𝜇𝐷𝐴𝐵𝐶 ≠ 0 

Table 13 shows the Student’s t-test. It found statistical evidence to reject the H0, with 

95% confidence. In other words, it is not possible to assume the performance of the self-

parameterization framework and the conventionally parametrized DABC are equal for 

the TSP (p-value of 0.021). Since the sample points to the better performance of the self-

parametrization framework, it is possible to conclude it performs better. 

Table 13. Student’s t-test for the TSP. 

 

Levene’s Test of 

Equality Variances 
t-test for Equality of Means 

F Sig. t df 
Sig. (2-

tailed) 

Mean Dif-

ference 

Std. Error 

Difference 

Equal variances 

assumed 
3.789 0.087 −2.880 8.000 0.021 −0.885800 0.307620 

Equal variances 

not assumed 
  −2.880 5.989 0.028 −0.885800 0.307620 

Since the Shapiro–Wilk test is unprecise for small samples [78], the results were val-

idated with the Mann–Whitney test. The result of the Mann–Whitney was similar to those 

shown in Table 13, that is, it is not possible to determine the performance of the solutions 

of the self-parameterization framework and the conventionally parametrized DABC are 

equal (p-value of 0.032). Since the sample points to the better performance of the self-par-

ametrization framework, it is possible to conclude it performs better. 

In short, the statistical inference showed disparities in the performance of the self-

parameterization framework and the conventionally parametrized DABC. Even if the self-

parameterization framework presented better solutions in both problems, the smaller size 

of the instances of the TWT problem, ended up mitigating the variance in performance. 

Overall, the self-parametrization framework, not only found calibrations of the same qual-

ity as those found by conventionally parameterization, it was possible to infer that the 

performance of the self-parameterization framework is superior to that of conventionally 

parametrization in the TSP. 

7. Conclusions 

Meta-heuristics can be described as a compromise between the effectiveness of enu-

merative techniques and the efficiency of approximate techniques, that is, meta-heuristics 

are able to find “acceptable” solutions. However, the parametrization procedure cannot 

be disassociated from their performance It is the parameterization procedure that will 

adapt the meta-heuristics to the problem, or even to the instance of the problem. 
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In order to streamline the parameterization and, at the same time, allow more inex-

perienced users to implement meta-heuristics, a self-parametrization framework was de-

veloped. It approaches the parameterization procedure as an optimization problem and 

finds the parameters without user intervention. It uses two meta-heuristics, a meta-heu-

ristic of the parameter space and a meta-heuristic of the solution space. It is the meta-

heuristic of the parameter space that searches for calibrations, which are then evaluated 

by the meta-heuristic of the solution space. Each calibration is evaluated multiple times in 

order to overcome the stochastic nature of meta-heuristics. 

To evaluate the performance of the self-parameterization framework, it was com-

pared with a conventionally parametrized meta-heuristic in 30 instances of the TWT Prob-

lem and in five instances of the TSP. The purpose of the comparison was to see if self-

parameterization framework would reproduce the results from a conventionally para-

metrized meta-heuristic, but it exceeded expectations. It outperformed the conventionally 

parametrized meta-heuristic in both the TWT problem and in TSP. In the TWT, mean rel-

ative deviation from the optimum of the framework was 0.009%, compared to the 0.071% 

for the conventionally parametrized meta-heuristic. In the TSP instances, the self-param-

eterization framework also obtained a better mean relative deviation from the optimal 

solutions, but in this case, the statistical inference showed disparities (p value of 0.016). 

Some of the limitations of proposed framework are the increase in the computational 

cost. Such an increase was predictable and is minimized by the total automatization of the 

parametrization procedure. Moreover, the self-parameterization framework is limited by 

the characteristics of the meta-heuristic of the parameter space and will require the dis-

cretization of the parameters whenever a discrete meta-heuristic is applied. 

Future work should validate the proposed framework and compare it with other 

search-based and hybrid parameterization techniques presented in literature. However, 

such comparison should consider that other search-based and hybrid parameterization 

techniques are often inaccessible to users, while the proposed framework does not require 

a separate parametrization algorithm and can apply to any meta-heuristic, without much 

effort. Furthermore, the self-parametrization could be incorporated into a scheduling sys-

tem. It would be able to adapt the parameters of the meta-heuristic to any change, planned 

or not, in the production environment. 
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12. Stützle, T.G. Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New Applications.  

Ph.D. Thesis, Department of Computer Science, Darmstadt University of Technology, 1998. 

13. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, DEI, Politecnico di Milano, Italy, 1992. 

14. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural 

Network (ICNN’95), Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. 

15. Passino, K.M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control. Syst. Mag. 2002, 22, 52–

67. 

16. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2008. 

17. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired 

Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214. 

18. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). 

Studies in Computational Intelligence; Springer, Berlin/Heidelberg, Germany, 2016; volume 284, pp. 65–74. 

19. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. 

20. Abed-Alguni, B.H.; Alawad, N.A. Distributed Grey Wolf Optimizer for Scheduling of Workflow Applications in Cloud Envi-

ronments. Appl. Soft Comput. 2021, 102, 107113. 

21. Abed-Alguni, B.H.; Alawad, N.A.; Barhoush, M.; Hammed, R. Exploratory cuckoo search for solving single-objective optimi-

zation problems. Soft Comput. 2021, 25, 10167–10180. 

22. Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts—Towards Memetic Algorithms; Technical Re-

port 826; Caltech Concurrent Computation Program, California Institute of Technology: Pasadena, CA, USA, 1989. 

23. So ̈rensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics. In Handbook of Heuristics; Springer: Berlin/Heidelberg, Ger-

many, 2018; pp. 1–8. 

24. So ̈rensen, K. Metaheuristics: The Metaphor Exposed. Int. Trans. Oper. Res. 2018, 22, 3–18. 

25. Jung, S.H. Queen-Bee Evolution for Genetic Algorithm. Electron. Lett. 2003, 39, 575–576. 

26. Abbass, H.A. MBO: Marriage in Honey Bees Optimization—A Haplometrosis Polygynous Swarming Approach. In Proceedings 

of the 2001 Congress on Evolutionary Computation (CEC), Seoul, Korea, 27–30 May 2001; pp. 207–214. 

27. Luc ̌ić, P.; Teodorović, D. Computing with Bees: Attacking Complex Transportation Engineering Problems. Int. J. Artif. Intell. 

Tools 2003, 12, 375–394. 

28. Yang, X.S. Engineering Optimization via Nature-Inspired Virtual Bee Algorithms. In Artificial Intelligence and Knowledge Engi-

neering Applications: A Bioinspired Approach; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; 

Volume 3562, pp. 317–323. 
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