

Mathematics 2022, 10, 475. https://doi.org/10.3390/math10030475 www.mdpi.com/journal/mathematics

Article

A Self-Parametrization Framework for Meta-Heuristics

André S. Santos 1,2*, Ana M. Madureira 1,2 and Leonilde R. Varela 3,4

1 Interdisciplinary Studies Research Center, (ISEP/IPP), 4200-072 Porto, Portugal; amd@isep.ipp.pt
2 Department of Computer Science, Institute of Engineering from Polytechnic of Porto (ISEP/IPP), 4249-015

Porto, Portugal
3 Department of Production and Systems Engineering, Universidade do Minho, 4800-058 Guimarães,

Portugal; leonilde@dps.uminho.pt
4 Algoritmi Research Centre, Universidade do Minho, 4800-058 Guimarães, Portugal

* Correspondence: abg@isep.ipp.pt

Abstract: Even while the scientific community has shown great interest in the analysis of meta-

heuristics, the analysis of their parameterization has received little attention. It is the parameteriza-

tion that will adapt a meta-heuristic to a problem, but it is still performed, mostly, empirically. There

are multiple parameterization techniques; however, they are time-consuming, requiring considera-

ble computational effort and they do not take advantage of the meta-heuristics that they parameter-

ize. In order to approach the parameterization of meta-heuristics, in this paper, a self-parameteriza-

tion framework is proposed. It will automatize the parameterization as an optimization problem,

precluding the user from spending too much time on parameterization. The model will automate

the parameterization through two meta-heuristics: A meta-heuristic of the solution space and one

of the parameter space. To analyze the performance of the framework, a self-parameterization pro-

totype was implemented. The prototype was compared and analyzed in a SP (scheduling problem)

and in the TSP (traveling salesman problem). In the SP, the prototype found better solutions than

those of the manually parameterized meta-heuristics, although the differences were not statistically

significant. In the TSP, the self-parameterization prototype was more effective than the manually

parameterized meta-heuristics, this time with statistically significant differences.

Keywords: meta-heuristics; discrete artificial bee colony; search parametrization;

self-parametrization

1. Introduction

In optimization there are problems that cannot be solved efficiently, that is, it is nec-

essary to enumerate, implicitly or explicitly, the solutions, to find the optimum. The enu-

meration of solutions is inefficient, laborious and impractical. This is particularly im-

portant because most complex optimization problems are COPs (combinatorial optimiza-

tion problems), susceptible to combinatorial explosion. In other words, susceptible to a

rapid increase in the number of solutions with an increase in the size of the problem. One

answer to complex COPs is the use of approximate techniques, that is, techniques that do

not always find the optimal solutions, but unlike the enumeration techniques, are effi-

cient. Among the approximate techniques, it is important to highlight meta-heuristics.

Meta-heuristics are equipped with mechanisms that allow them to overcome the limita-

tions of other approximate techniques.

Even if meta-heuristics can be considered the ideal approximate techniques for com-

plex optimization problems, there are obstacles to their implementation. One obstacle is

the impact of parameterization on their performance. One meta-heuristic performance

cannot be disassociated from the parameterization procedure, that is, it is impossible to

assess the appropriateness of the meta-heuristic to a problem without considering the pa-

rameterization. It is the parameterization that allows a meta-heuristic to be adapted to a

Citation: Santos, A.S.; Madureira,

A.M.; Varela, L.R. A

Self-Parametrization Framework for

Meta-Heuristics.

Mathematics 2022, 10, 475.

https://doi.org/10.3390/

math10030475

Academic Editor: Shih-Wei Lin

Received: 31 December 2021

Accepted: 30 January 2022

Published: 1 February 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Mathematics 2022, 10, 475 2 of 23

problem, or even to an instance of the problem. In other words, it is the parameters that

tune the meta-heuristic to the desired performance, weighing the intensification/diversi-

fication of the exploration of the space of solutions.

Although the parameterization influences the performance of the meta-heuristic, it is

still common for the parametrization to be performed empirically, based on the

knowledge the user has of a given meta-heuristic. Even though there are multiple param-

eterization methods, most require considerable effort in parameterization or involve the

application of complex parameterization techniques. When faced with a complex prob-

lem, one does not only need to implement a meta-heuristic, but spend a lot of time on

parameterization, or use a method that can be more complex than the meta-heuristic itself.

In this paper, the authors intend to contribute to the automation of the parameteriza-

tion of meta-heuristics, reducing the user’s intervention to a minimum. In order not to

increase the complexity of the parameterization process, a meta-heuristic will be used in

the parameterization procedure. Our self-parametrization framework uses two meta-heu-

ristics, a meta-heuristic of the parameter space and a meta-heuristic of the solutions space.

In order to evaluate the framework, a self-parametrization prototype was compared with

a well-established parameterization method in the computational study.

This paper is organized as follows: Section 1 is the introduction, Sections 2 and 3 are

literature review. Section 2 is a brief introduction to meta-heuristics and Section 3 an in-

depth review of parametrization techniques. Section 4 presents the proposed self-para-

metrization framework. Section 5 presents the results of computational study and Section

6 examines the results. Section 7 presents the conclusions.

2. Meta-Heuristics

Meta-heuristics are approximate techniques that can be applied to almost all optimi-

zation problems, regardless of their size or complexity. In fact, meta-heuristics have been

accepted as the only realistic approach for optimization problems that are too complex.

For example, in scheduling operations, Xhafa & Abraham [1] claim that “meta-heuristics

have become a de facto approach to tackle in practice with the complexity of scheduling

problems.”

In [2], meta-heuristics are defined as techniques that control subordinate heuristics

in the search of solution space. In other words, approximate techniques, developed to

overcome the limitations of other approximate techniques. Even the name “meta-heuris-

tic” is not consensual. In [3], Sean Luke states that the name meta-heuristics is “An unfor-

tunate term, often used to describe a subfield of stochastic optimization.” It is worth men-

tioning that several authors, including [4], classify local search as a meta-heuristic and

neither steepest-descent or first-descent are stochastic. In this paper, meta-heuristics are

defined as approximate techniques, equipped with stochastic mechanisms to overcome

local optimums. In that context, local search is not considered a meta-heuristic.

In [5], the properties of meta-heuristics are presented: first, meta-heuristics can be

applied to almost all problems; second, they incorporate mechanisms to overcome local

optimums; third, they use experience to direct the search of the solutions space. In short,

they must be applicable to almost all problems with few, if any, modifications, they must

be efficient and they must use the information collected to direct their search of the solu-

tions space. In other words, meta-heuristics are flexible techniques that make a compro-

mise between the effectiveness of the solution and the efficiency of search. For problems

where it is time consuming to enumerate the solutions, and the other approximate tech-

niques are ineffective, meta-heuristics compromise between effectiveness and efficiency.

It is important to mention the contrast between intensification and diversification,

which is essential to understand how a meta-heuristic will approach a problem. Intensifi-

cation is the comprehensive exploration of the most auspicious areas of the solution space

while diversification maintains the overall perspective of the solution space. It is the in-

tensification/diversification balance that allows meta-heuristics to move past local opti-

mums. If a meta-heuristic has too much intensification it will stop on the nearest local

Mathematics 2022, 10, 475 3 of 23

optimum. On the other hand, if a meta-heuristic has too much diversification it becomes

inefficient and almost identical to a random search [5]. It is the parameterization that bal-

ances the intensification/diversification, that is, it is the parameterization that will deter-

mine how much intensification/diversification the meta-heuristic has.

Some of the better-known meta-heuristics are: Genetic Algorithms (GA), proposed

by Holland [6] in 1975; Simulated Annealing (SA), independently developed by Kirkpat-

rick et al. [7] and Černý [8] in the 1980s; Tabu Search (TS), proposed by Glover in 1986 [9];

GRASP, proposed by Feo & Resende [10]; the Variable Neighborhood Search (VNS), pro-

posed by Mladenocić & Hansen [11]; the Iterated Local Search (ILS) proposed by Stützle

[12]; Dorigo’s Ant Colony Optimization (ACO) [13], Kennedy & Eberhard’s Particle

Swarm Optimization (PSO) [14] and the Bacterial Foraging Optimization Algorithm

(BFOA), proposed by Passino [15]. Other meta-heuristics include: The Firefly Algorithm

(FA), Cuckoo Search (CS) and the Bat Algorithm (BT), developed by Yang [16–18]; Grey

Wolf Optimizer (GWO) proposed by Mirjalili et al. [19] and later adapted for discrete

problems in [20]. Other meta-heuristics have been adapted to better suit specific problems;

one example is the recent variation of CS presented in [21].

One recent trend is the development of “hybrid” meta-heuristics. One oldest “hy-

brid” meta-heuristic is the Memetic Algorithm (MA), proposed in 1989 [22]. It combines

an evolutionary meta-heuristic with local search. In addition, the combination of meta-

heuristics with mathematical models, math-heuristics, have also been studied [23]. An-

other trend is the combination of meta-heuristics with other AI (Artificial Intelligence)

techniques, particularly, ML (Machine Learning). One unfortunate trend is the focus on

the inspiration in natural phenomenon [24], with multiple meta-heuristics with similar

procedures. In the meantime, the parametrization continues to be understudied.

While much could be said about the recent developments in meta-heuristics and their

applications, since the bulk of the literature review is presented in Section 3 any further

expansion of Second 2 would make the paper unnecessarily dense.

2.1. Discrete Artificial Bee Colony

Bees have inspired multiple meta-heuristics, including Queen-Bee Evolution (QBE)

[25], Marriage in Honey Bees Optimization (MBO) [26], Bee Colony Optimization (BCO)

[27], Virtual Bee Algorithm (VBA) [28] and others [29]. One of the best-known is Artificial

Bee Colony (ABC), developed by Karaboga [30] and Pham et al. [31]. ABC uses three cat-

egories of bees to search for solutions, worker bees, onlooker bees and scout bees. Alt-

hough ABC was developed for continuous problems, there are adaptations of ABC for

discrete problems, including the Discrete Artificial Bee Colony (DABC), proposed in [32].

DABC procedure is similar to the ABC, but bees explore discrete solutions. Food

sources represent solutions. Worker bees explore food sources, onlooker bees wait in the

hive and choose and explore the most promising food sources, and finally, scout bees look

for new food sources. As the most promising food sources will attract more onlooker bees,

they will be explored more meticulously than other food sources.

In detail, DABC, and ABC, repeat three phases until the search is interrupted. First,

each worker bee is allocated to a food source (s0), then the phases of worker, onlooker and

scout bees are repeated. In the worker bee phase, bees explore a solution (si’), in the vicin-

ity of the food source (si) to which they have been allocated. If the candidate solution (si’)

is better than the food source, then the new solution replaces the food source (si). In the

onlooker bee phase, bees will wait for the performance of each food source (si), before

selecting one. After selecting a food source, the bees will explore a solution (si’) in the

vicinity of the selected food source (si). If the candidate solution (si’) is better than the food

source, then it replaces that food source (si). Finally, the scout bee phase occurs when a

food source is abandoned. If a food source is abandoned, then, the worker bee is trans-

formed into a scout bee and searches for a new food source [16].

DABC parameters are the hive size (L) and the limit number (l). Hive size determines

how many bees there are, in other words, how many solutions are explored per iteration.

Mathematics 2022, 10, 475 4 of 23

An excessive L will make DABC inefficient. On the other hand, the limit number deter-

mines when a food source is abandoned, that is, the number of iterations without im-

provement until a food source is abandoned [16]. DABC is presented in Table 1.

Table 1. Discrete Artificial Bee Colony.

si = s0

While No Stoppage Criteria Do

For Each Worker Bee Do Generate si’

For Each si Do Calculate P(si)

Allocate Worker Bees to si

For Each Onlooker Bee Do Generate si’

If f(si’) ≤ f(si) Then si = si’

Else Increase li

If li = l

Transform Worker Bee in Scout Bee

Generate si

Transform Scout Bee in Worker Bee

End While

Output: Best Solution

Other versions of DABC have been developed. In [33–35] three versions of the DABC

can be examined, with variations in the procedure. In [36], an adapted version of the

DABC was used to address the TSP, and in [37], it was used to solve a manufacturing cell

design problem (MCDP). The performance of DABC and Simulated Annealing (SA), were

compared in a single machine scheduling problem [38]. DABC obtained better solutions

than SA, but it needed more computational time.

One of the variations of DABC is related to how onlooker bees choose food sources.

In [32], it is proposed that part of the probability is not impacted the by quality of the

solution. In other words, the onlooker bees will not only consider the amount of food in a

food source, which should increase the diversification.

3. Parametrization of Meta-Heuristics

For meta-heuristics, parameterization can be described as: for an optimization tech-

nique A, an instance of problem I, with a performance index C, which parameters of A

optimize C in I [39]. In other words, what are the parameters that will result in the best

performance of the meta-heuristic in an instance of a problem. It is inexplicable how par-

ametrization has been so understudied, when the performance of meta-heuristics depends

so much on it. Manual parametrization is still predominant, with parameters selected em-

pirically, when they are even reported [40]. It is common to report on the performance of

a meta-heuristics with “certain” parameters. Why or how were these parameters selected?

It is rarely explained [41]. To ensure the best performance from a meta-heuristic, it is nec-

essary to select the correct parameters for the problem, or even, the instance.

Parameterization can be offline or online. Offline is when the parameters of the meta-

heuristic are predetermined and online is when the parameters are updated as the meta-

heuristic is executed [4]. In other words, offline parametrization, which is the focus of this

paper, is performed a priori. It can be divided into: manual parametrization, parametri-

zation by analogy, parametrization by DOE and search-based parametrization [42].

3.1. Manual Parametrization

In manual parameterization the parameters are iteratively tweaked. Manual param-

eterization does not require a careful plan of experiments but needs a user who is familiar

with the meta-heuristic. It is a simple procedure: the user runs the meta-heuristics with

some initial parameters, which are tweaked one by one to improve the performance until

the user is satisfied with the performance of the meta-heuristic [42]. It is a laborious

Mathematics 2022, 10, 475 5 of 23

procedure that depends on the user’s acquaintance with the meta-heuristic. One repre-

sentation of manual parametrization is presented in Figure 1. Once the initial parameters

have been determined (1), the user evaluates the performance (2), the parameters are

tweaked (3) and the procedure is repeated (4). Manual parametrization is inconsistent,

since it does not consider the interactions between parameters, but it is still the most com-

mon parameterization technique [43].

Figure 1. Manual Parametrization.

3.2. Parametrization by Analogy

In parametrization by analogy users search for successful implementation of the

meta-heuristic and replicate the parameters. One representation of parametrization by

analogy is presented in Figure 2. Before the user runs the meta-heuristic (1), they will

search for successful implementations of the meta-heuristic (2), find what parameters

were used (3) and apply those parameters (4).

Figure 2. Parametrization by Analogy.

Mathematics 2022, 10, 475 6 of 23

3.3. Parametrization by DOE

In parametrization by DOE users choose the parameters in multiple experimental

trials. One representation of parametrization by DOE is presented in Figure 3. Before the

user runs the meta-heuristic, multiple parameterization trials are executed (1), then, the

user chooses the parameters with the best performance (2) and applies them to the meta-

heuristic (4).

Figure 3. Parametrization by DOE.

Parametrization DOE is the methodical and statistical examination of experiments

[44]. Input variables are tweaked, and the output is evaluated [45]. OFAT (one factor at a

time) is when one input variable is tweaked per experiment. It does not consider the in-

teractions between the variables. DOE is the alternative, which examines the interaction

between the variables in the output. In [46] DOE is divided into classical experiments,

Taguchi experiments or Shainin experiments.

Classical experiments uses the concepts developed by Fisher [47] to evaluate the out-

put sensitivity to the input parameters. Complete factorial experiments, which are only

useful when there are few parameters, consider all the interaction between the inputs [46].

In order to reduce the number of experiments, fractional factorial experiments were de-

veloped. While complete factorial experiments will examine each combination of param-

eters, fractional factorial experiments will only perform a fraction of the experiment with

orthogonal arrays. Response surface methodology (RSM), developed by Box and Wilson

[48], is, for example, a form of classical experiment. On the other hand, Taguchi experi-

ments, which use orthogonal arrays, focus on the reduction in the variance of the outputs

[49]. In order to reduce variance in the response to the inputs, they are classified into con-

trol and noise inputs [50]. Control inputs are, for example, the parameters of a meta-heu-

ristic, while the noise inputs cannot be controlled, for example, the differences between

instances. Taguchi experiments search for the control inputs that allow the meta-heuristic

to withstand the uncontrollable variation of the noise inputs. Other parametrization by

DOE techniques such as F-Race and Sequential Parameter Optimization (SPO), can be

found in [51–64].

3.4. Search based Parametrization

In search-based parametrization, the parameterization is approached as a meta-opti-

mization problem [4]. In other words, the space of the parameters is explored by an ap-

proximate technique, such as local search or a meta-heuristic [42]. One representation of

Mathematics 2022, 10, 475 7 of 23

search-based parametrization is presented in Figure 4. Before the user runs the meta-heu-

ristics (1), they first use an approximate technique to explore the space of the parameters

(2) and then use those parameters in the meta-heuristics (3).

Figure 4. Search-based Parametrization.

One successful implementation of search-based parametrization was presented in

1986, when a Meta-GA was applied in the parameterization of the Genetic Algorithm

(GA). In that case, the Meta-GA was used to explore GA’s parameter space, which, in turn,

would explore the solution space [65]. Since the same meta-heuristics was used in the

parameterization and optimization, the user did not need to implement a technique de-

veloped specifically to solve the parameterization problem. It was a smart solution, which

inspired the proposed self-parametrization framework.

One similar approach is relevance estimation and value calibration (REVAC), pro-

posed by Nannen & Eiben [66]. REVAC uses an evolutionary algorithm (EA) to estimate

the parameters of another EA. It starts from a population of calibrations and will explore

the space of the parameters. Like all EAs, it will use the best solutions, in this case the best

calibrations, to find even better calibrations. The REVAC procedure is simple: It starts

with a population of parameter vectors, that is, calibrations for the EA used in the optimi-

zation problem. REVAC will then improve those vectors iteratively. At the start, the prob-

ability distribution is uniform, however, REVAC will increase the probability of the vec-

tors that result in better performance of the EA [67]. At the same time, REVAC will smooth

the probability distribution of the vectors, to reduce the variance in the performance of

the parameters.

Parameter iterated local search (ParamILS) is a search-based parametrization pro-

posed by Hutter et al. [39]. It is similar to manual parametrization, since it will manipulate

the parameters one-by-one, that is, ParamILS does not consider iterations between param-

eters but uses local search to explore the parameter space [42]. The ParamILS procedure

is simple: it will tweak one parameter and see if it results in a better solution for the opti-

mization problem. In order to overcome the local optimums, disturbance mechanisms

were introduced. ParamILS will repeat these two phases, local search and disturbances.

First it does a local search and once it reaches a local optimum it causes a disturbance to

restart the search. It more flexible than REVAC, since ParamILS is not limited to quantita-

tive parameters. In [39], two variations of ParamILS were proposed: BasicILS and Fo-

cusedILS.

Mathematics 2022, 10, 475 8 of 23

3.5. Other Parametrization Techniques

As an alternative approach, it is common to “mix” parameterization techniques. For

example, when the interruption criteria are determined by manual parametrization and

the other parameters are determined by parametrization by analogy. Another common

combination is parameterization by analogy with parameterization by DOE, since it is

necessary to determine levels for the parameters for the experiments. Even search-based

parameterization could need to levels for parameters, which can be selected by manual

parametrization or parametrization by analogy.

It is also important to mention Calibra, which is a parameterization technique that

combines parameterization by DOE and search-based parametrization [68]. It will refocus

the parametrization experiments in the best zones of the parameter space. It determines a

parameter interval and performs a complete factorial experiment of the values of the first

and third quartile of the parameter interval or it will perform 2k experiments, where k

represents the number of parameters. Once those experiments are completed, it will de-

fine three levels for each parameter and use local search to decrease the interval of each

parameter. One of the limitations of Calibra is the fact that it only calibrates up to four

parameters, since it was developed with a L9 orthogonal arrays.

4. Self-Parametrization Framework

In this section, the self-parametrization framework will be presented, but first, what

would be the purpose of self-parametrization framework? It should find the appropriate

parameters for all meta-heuristics, in all instances of all problems, without user interven-

tion. It would, also, remove the parameterization burden from the user of the meta-heu-

ristic which, in turn, would allow inexperienced users to solve problems that could not be

solved otherwise. Even the more experienced users could benefit from a self-parametri-

zation framework and avoid the laborious parametrization procedure. One could run the

self-parametrization module and tune the parameters of the meta-heuristic to the prob-

lem, or even to the instance, and avoid the all the experiments and the search in literature

for recommendations for the values of the parameters. Moreover, if the self-parameteri-

zation is implemented it can help in the development of decision support systems (DSS),

where the parameters are not pre-defined for a problem, or a specific instance of the prob-

lem.

With the self-parametrization framework parameters are tweaked as if the parame-

terization was an optimization problem. In order to automate the parameterization pro-

cedure, the self-parametrization framework will use two meta-heuristics. One is the meta-

heuristic of the solution space and the other is the meta-heuristic of the parameter space.

It is the second that will search for complete calibrations, which in turn are evaluated with

runs of the meta-heuristic of the solution space. In essence, the meta-heuristic of the pa-

rameter space searches for solutions for the parametrization problem and the meta-heu-

ristic of the solutions space evaluates the solutions. Solutions from the meta-heuristic of

the parameter space are complete calibrations of the meta-heuristic of the solution space,

whose performance is used to calculate the quality of those calibrations. Once the meta-

heuristic of the solution space receives a calibration, it runs in the optimization problem

before returning the solutions to the meta-heuristic of the parameters space, which will

tweak the parameters and repeat the whole procedure.

In Figure 5 the procedure of the self-parametrization framework is presented.

Mathematics 2022, 10, 475 9 of 23

Figure 5. Self-Parametrization Framework.

First, the problem’s data is sent to the meta-heuristic of the parameter space (1), then,

the meta-heuristic of the parameter space will examine the problem’s data and limit the

parameter space, before it starts to search for a calibration solution (2). Once it has found

a calibration solution, that calibration is sent to the meta-heuristic of the solution space

(3), which will search in the solution space with that calibration (4), before it returns the

solution of the problem to the meta-heuristic of the parameter space (5). Steps (2), (3), (4)

and (5) are repeated until the interruption criterion of the meta-heuristic of the parameter

space, and in 6, the meta-heuristic of the parameter space will recommend a calibration

for the problem to the user of the self-parametrization framework. In addition, the self-

parameterization framework will report the solution for the optimization problem.

One limitation of the self-parametrization framework is the representation of the pa-

rameters, since the parameters of a meta-heuristic can be continuous, discrete or a mixture

of discrete and continuous. If a discrete meta-heuristic was used as the meta-heuristic of

the parameters space, then, continuous parameters would need to be discretized. If a con-

tinuous meta-heuristic was used as the meta-heuristic of the parameters space it would

be the opposite. Of course, the discretization of parameters represents a decrease in the

resolution, but it’s a flexible solution that allows user to implement any meta-heuristic, as

the meta-heuristic of the parameter space.

Another limitation of the self-parametrization framework is the evaluation of the cal-

ibrations. As mentioned, the meta-heuristic of the parameters space will use the meta-

heuristic of the solution space to evaluate the performance of the calibrations, but since

meta-heuristics are stochastic, bad calibrations can still result in decent solutions. In order

to minimize this, the meta-heuristic of the parameters space needs to evaluate calibrations

in multiple runs of the meta-heuristic of the solutions space. The user would need to select

if the calibration solution is evaluated by the best, worst or the mean solution for the op-

timization problem.

In Figure 6 the structure of the self-parametrization prototype is presented. DABC is

as both the meta-heuristic of the parameters space and the meta-heuristic of the solutions

space.

Mathematics 2022, 10, 475 10 of 23

Figure 6. Self-Parametrization Prototype.

It can be divided into parameterization modules, which are: DABCP (); the neighbor-

hood structure, Par (), which the meta-heuristic of the parameters space uses to manipu-

late the calibration solutions and the evaluation module, DABCS (). On the other hand,

the optimization modules are: DABCS (); four neighborhood structure modules, Tran (),

Swap (), Inse () and Op-2 (), which the meta-heuristic of the solution space uses to manip-

ulate the solutions and the two evaluation modules, APP () and TSP (), since it will be

tested in two problems. Main reports the calibration to the user, in a txt file.

5. Computational Study

In order to validate the proposed self-parametrization framework, it will be com-

pared to conventionally parametrized frameworks, namely, parameterization by analogy

and parametrization by DOE, DABC in two optimization problems. First, the self-para-

metrization framework will be tested in a scheduling problem (SP), in this case, the mini-

mization of total weighted tardiness (TWT). TWT is often used to evaluate the perfor-

mance of meta-heuristics. It will, also, be tested in TSP, in the case, a Euclidean/symmet-

rical-TSP, which is also a well-known problem, often used to evaluate meta-heuristics.

For both TWT and TSP, the instances are from well-known databases of optimization

problems. In TWT, the proposed framework will be evaluated in 30 instances of 50 activ-

ities problem, available in the ORLibrary [69]. In the TSP, the proposed framework will

be evaluated in the instances KroA100, KroB100, KroC100, KroD100 and KroE100, availa-

ble in TSPLIB [70]. In both problems the proposed framework, will be compared to the

performance of a conventionally parametrized DABC. Moreover, in other to ensure both

the proposed framework and the conventionally parametrized DABC have found suitable

solutions, SA was also included in the computational study. SA’s resilience to subpar par-

ametrization is well-known [71–73]. Since SA is included as a baseline and it will not be

included in the statistical comparison, its parametrization process will not be described.

In the future, it would be important to compare the proposed framework with other

search-based and hybrid parameterization techniques. However, most search-based and

hybrid parameterization methods were developed for specific meta-heuristics and were

tested in the same instances as our framework. Such comparison would require imple-

mentation, and possible adaption of other complex techniques, which fall outside the

scope of this paper. Moreover, other search-based and hybrid parameterizations are often

inaccessible to users. Our framework does not require a separate parametrization algo-

rithm and can be applied to any meta-heuristic, without much effort.

Mathematics 2022, 10, 475 11 of 23

5.1. Parametrization

Before the parametrization of DABC it is necessary to mention the three parameters

that have been proposed but are not used in all implementations of DABC. The first is the

number of scout bees. In ABC [30] only one scout bee is allowed per iteration, but in [74]

from 10% to 30% of scout bees are recommended per iteration. The second is the number

of movements (NuMo) of a scout bee, before it turns back into a worker bee. In [34] at least

three movements are recommended. Lastly, another parameter is proposed in this article,

inspired by [32]. In [32], 10% of the probability of an onlooker bee selecting one food

source is not impacted the quality of the food source. In this article we consider the part

not impacted, hence the quality of the solution is 1-α, where α is the elitism percentage.

In the TWT problem the limit number (l), the neighborhood structure, the number of

movements (NuMo) and the elitism percentage (α) will be parametrization first by para-

metrization by analogy and then, fine-tuned with parametrization by DOE, in this case,

in three levels, with Taguchi experiments. On the other hand, hive size (L) and the inter-

ruption criteria, which will be the number of iterations, in order to ensure the fairness of

the comparison between the proposed framework, the conventionally parametrized

DABC and the conventionally parametrized SA, will be chosen in manual parametriza-

tion, before the other parameters are determined.

In [32], a hive size of 40 was used to solve a TS. In [33,34], a Hive Size of 20 was used

to solve a SP. In [75], it is concluded that the ABC is not very sensitive to the hive size. For

TWT problem will use a mean of the two values, in this case a hive size of 30. Since DABC

will explore 30 solutions per iteration and in order to ensure the fairness of the compari-

son, DABC will be interrupted after 1000 iterations and SA after 30,000 iterations.

In [32] a metric is presented to calculate the limit number. For a hive size of 30, the

levels of 450, 500 and 550 were chosen. For the elitist percentage, in [32], a value of 0.9 is

proposed, therefore levels of 0.85, 0.90 and 0.95 were chosen. For the number of move-

ments, in [34] at least three movements are recommended, so the levels of three four and

five were chosen. Finally, the neighborhood structures chosen were Transpose, Swap and

Insert. The Taguchi experiments, repeated for each of the first five instances of the prob-

lem, are presented in Table 2.

Table 2. Taguchi Experiments for TWT Problem.

Parameters Instance
S/N

l α NuMo EV 1 2 3 4 5

450 0.85 3 Tran 0.711 0.514 1.301 1.186 1.351 −0.564

450 0.90 5 Swap 0.000 0.008 0.000 0.000 0.007 46.995

450 0.95 4 Inse 0.000 0.001 0.000 0.000 0.000 66.972

500 0.85 5 Inse 0.000 0.001 0.000 0.000 0.000 66.972

500 0.90 4 Tran 0.682 1.421 0.264 0.742 1.960 −1.429

500 0.95 3 Swap 0.000 0.001 0.000 0.000 0.057 31.924

550 0.85 4 Swap 0.023 0.001 0.000 0.000 0.047 32.616

550 0.90 3 Inse 0.000 0.001 0.000 0.000 0.057 31.924

550 0.95 5 Tran 1.496 0.954 0.637 1.131 2.216 −2.898

S/Ns are presented in Figure 7. It seems the neighborhood structure is the parameter

with the most impact in the performance of DABC, due to the poor performance of

Transponse, which is unappropriated for instances of this size. The limit number, elitist

percentage and number of movements have more uniform results.

Mathematics 2022, 10, 475 12 of 23

Figure 7. Parametrization for TWT Problem.

For the TWT problem, SA will use an initial temperature (Tmax) of 45,000, an epoch

length (L) of 49, a geometric cooling factor (α) of 0.90, Insert as the neighborhood structure

and it will be interrupted after 30,000 iterations.

For the TSP, DABC will also have a hive size of 30. In this case, it will be interrupted

after 20,000 iterations and SA after 600,000 iterations. For the other parameters, since the

limit number (l) should consider the size of the instance [16], the levels of 900, 1000 and

1100 were chosen. On the other hand, the elitist percentage (α) and the number of move-

ments (NuMo) are independent of the size of the instance, so the values selected are the

same used in the TWT problem. In this case, 0.85, 0.90 and 0.95 for the elitist percentage

and three, four and five for the number of movements. A common neighborhood structure

for TSP was introduced, in this case Op-2, so the choice is between Swap, Insert and Op-

2. The Taguchi experiments, repeated for each instance of TSP, are presented in Table 3.

Table 3. Taguchi Experiments for TSP.

Parameters Instance
S/N

l α NuMo EV 1 2 3 4 5

900 0.85 3 Swap 0.507 0.476 0.641 0.604 0.604 4.882

900 0.90 5 Inse 0.168 0.252 0.263 0.307 0.147 12.570

900 0.95 4 Op-2 0.067 0.054 0.048 0.056 0.048 25.196

1000 0.85 5 Op-2 0.032 0.032 0.064 0.041 0.066 26.119

1000 0.90 4 Swap 0.604 0.529 0.524 0.499 0.475 5.546

1000 0.95 3 Inse 0.289 0.256 0.227 0.162 0.171 12.905

1100 0.85 4 Inse 0.207 0.259 0.292 0.222 0.233 12.231

1100 0.90 3 Op-2 0.032 0.044 0.053 0.042 0.048 27.030

1100 0.95 5 Swap 0.619 0.616 0.634 0.615 0.640 4.086

S/Ns are presented in Figure 8, in the TSP it seems the neighborhood structure is the

parameter with the most impact in the performance of the DABC, but this time, due to the

poor performance of meta-heuristic with Swap. The limit number, elitist percentage and

number of movements appear to have a limited impact on the performance.

Mathematics 2022, 10, 475 13 of 23

Figure 8. Parametrization for TSP.

For the TSP, SA will use an initial temperature (Tmax) of 95,000, an epoch length (L) of

4950, a geometric cooling factor (α) of 0.80, Insert as the neighborhood structure and in-

terrupted criterion is 600,000 iterations. For the self-parametrization, the meta-heuristic of

the parameters space will use a hive size of 10, a limit number of 50, an elitist percentage

of 0.9 and a number of movements of 3. It will be interrupted after 500 iterations. On the

other hand, the parameters of the meta-heuristic of the solutions space will be determined

automatically, with the exception of the hive size, which will be 30 and the interrupted

criterion, which will be 1000 for the TWT and 20,000 for the TSP.

5.2. Results of the Computational Study

For the TWT problem, the conventionally parametrized SA and DABC were run five

times, with the best solution reported. For the self-parametrization, each calibration was

evaluated in five runs of the meta-heuristic of the solutions space. In this case the min,

max and mean values are presented. The results are presented in Table 4.

For the TSP, the results can be examined in Table 5. Once more, the conventionally

parametrized SA and DABC were run five times and the best solution is presented. For

the self-parametrization, each calibration was evaluated in five runs of the meta-heuristic

of the solutions space and the min, max and mean are presented.

Table 4. Results for the TWT Problem.

Inst. SA DABC
Self-Parametrization

Optimum
Min Max Mean

1 2134 2134 2134 2134 2134.0 2134

2 1996 1996 1996 1998 1997.2 1996

3 2583 2583 2583 2583 2583.0 2583

4 2691 2691 2691 2691 2691.0 2691

5 1518 1518 1518 1518 1518.0 1518

6 26,276 26,358 26,276 26,359 26,304.8 26,276

7 11,733 11,403 11,403 11,415 11,404.2 11,403

8 8610 8499 8499 8597 8528.7 8499

9 9918 9892 9884 9918 9891.4 9884

10 10,655 10,661 10,655 10,684 10,660.9 10,655

11 43,504 43,513 43,504 43,580 43,533.5 43,504

Mathematics 2022, 10, 475 14 of 23

12 36,461 36,462 36,401 36,540 36,485.1 36,378

13 45,687 45,572 45,400 45,626 45,490.3 45,383

14 51,974 51,977 51,788 51,997 51,906.5 51,785

15 38,934 38,939 38,934 38,963 38,943.5 38,934

16 87,902 87,966 87,913 88,004 87,959.7 87,902

17 84,375 84,344 842,84 84,436 84,358.9 84,260

18 104,795 104,988 104,844 105,058 104,976.0 104,795

19 894,74 89,377 89,317 89,426 89,352.6 89,299

20 72,316 72,328 72,321 72,377 72,350.1 72,316

21 214,682 214,642 214,571 214,709 214,635.8 214,546

22 150,800 150,839 150,842 150,874 150,857.2 150,800

23 224,025 224,066 224,034 224,166 224,098.9 224,025

24 116,015 116,089 116,029 116,206 116,099.2 116,015

25 240,179 240,213 240,190 240,312 240,243.6 240,179

26 2 2 2 2 2.0 2

27 4 4 4 4 4.0 4

28 775 755 755 755 755.0 755

29 104 99 99 99 99.0 99

30 22 22 22 22 22.0 22

Table 5. Results for the TSP Problem.

Inst. SA DABC
Self-Parametrization

Optimum
Min Max Mean

KroA 21,560 21,508 21,502 22,203 21,843.6 21,282

KroB 22,405 22,703 22,358 23,400 22,888.8 22,141

KroC 21,126 21,166 20,871 21,871 21,442.7 20,749

KroD 21,720 21,560 21,572 22,420 22,070.9 21,294

KroE 22,823 22,519 22,193 23,046 22,800.3 22,068

In Table 6 computational cost of the conventionally parametrized SA and DABC and

the auto-parameterization framework can be analyzed in Table 6 for the TWT problem

and in Table 7 for the TSP problem. As expected, the auto-parameterization framework

computational cost is much higher than those of the conventionally parametrized SA and

DABC, because the auto-parameterization framework performs multiple searches of the

solutions space, for each solution of the parameter space, namely, five runs of the meta-

heuristic of the solution space for each parameterization solution. It is important to men-

tion that the comparison of the computational cost is not equitable, since time spent in the

parameterization cannot be not counted for conventionally parametrized SA and DABC.

The difference in the results are reduced when one considers that the parameterization is

often a laborious process that requires a considerable know-how and effort by the user.

Table 6. Computational Cost for the TWT Problem.

Inst. SA DABC Self-Parametrization

1 0.025 s 0.030 s 913.27 s

2 0.027 s 0.031 s 974.78 s

3 0.021 s 0.021 s 959.85 s

4 0.027 s 0.030 s 946.80 s

5 0.025 s 0.026 s 989.46 s

6 0.072 s 0.044 s 1035.48 s

7 0.030 s 0.030 s 1027.52 s

8 0.031 s 0.033 s 1016.76 s

9 0.029 s 0.030 s 1014.64 s

10 0.029 s 0.029 s 1018.50 s

11 0.032 s 0.028 s 1065.04 s

Mathematics 2022, 10, 475 15 of 23

12 0.027 s 0.028 s 1074.78 s

13 0.029 s 0.026 s 1062.92 s

14 0.051 s 0.031 s 1058.88 s

15 0.032 s 0.028 s 1056.22 s

16 0.030 s 0.029 s 1115.44 s

17 0.032 s 0.026 s 1110.18 s

18 0.031 s 0.029 s 1130.90 s

19 0.029 s 0.033 s 1101.02 s

20 0.033 s 0.032 s 1107.18 s

21 0.033 s 0.028 s 1130.67 s

22 0.026 s 0.035 s 1118.68 s

23 0.033 s 0.031 s 1132.82 s

24 0.032 s 0.029 s 1144.90 s

25 0.027 s 0.030 s 1130.84 s

26 0.026 s 0.024 s 975.74 s

27 0.026 s 0.028 s 969.30 s

28 0.021 s 0.022 s 1010.93 s

29 0.064 s 0.037 s 999.68 s

30 0.024 s 0.022 s 962.64 s

Table 7. Computational Cost for the TSP Problem.

Inst. SA DABC Self-Parametrization

KroA 1.627 s 1.826 s 89,010.53 s

KroB 1.678 s 1.823 s 90,959.96 s

KroC 1.589 s 1.816 s 88,536.49 s

KroD 1.680 s 1.815 s 88,907.57 s

KroE 1.684 s 1.874 s 88,823.83 s

6. Statistical Analyzes

In order to compare the performance of the self-parametrization framework and the

conventionally parametrized DABC and SA in the TWT problem and TSP, it is indispen-

sable to normalize the results. For example, a 2134 solution in the first instance of the TWT

problem is better than a 2000 solution in the second. Solution from self-parametrization

framework and the conventionally parametrized DABC and SA were normalized by the

relative deviation to the optimal solution. An alternative would be to normalize by the

absolute deviation, but this would not consider the value of the optimal solution. For ex-

ample, a deviation of 10 is different in a problem where the value of the optimal solution

is 2134 or 22. To calculate the relative deviation was used expression (1). F(S)MH represents

the solutions of the self-parametrization framework or the conventionally parametrized

DABC and SA, and F(S)OTM the optimal solution. Relative deviation to the optimal solu-

tion, or when the optimum is unknown, to the best-known solution, is considered the best

metric to compare meta-heuristics [76].
𝐹(𝑆)𝑀𝐻 − 𝐹(𝑆)𝑂𝑇𝑀

𝐹(𝑆)𝑂𝑇𝑀
 (1)

6.1. TWT Problem

For the TWT problem the performance of the self-parametrization framework is ex-

ceptional, in fact, it presented the user with near optimal solution in all 30 instances. The

same was true with the conventionally parametrized DABC, which also found the near

optimal solution in all 30 instances. In short, the self-parametrization framework was able

to replicate, if not improve on, the conventionally parametrized DABC with complete au-

tomatized parametrization procedure. Even the max and mean solutions of the self-para-

metrization framework are nearly optimal in all instances.

Mathematics 2022, 10, 475 16 of 23

Figure 9 shows the frequency of relative deviation to the optimum of the self-para-

metrization framework and the conventionally parametrized DABC and SA. It shows the

excellent performance of the proposed framework.

Table 8 shows the values of the mean, median, standard deviation and variance, of

the relative deviation to the optimal solution of the self-parametrization framework and

the conventionally parametrized DABC and SA. It is clear the proposed framework out-

performed the conventionally parametrized DABC.

Figure 9. Relative Deviations for the TWT Problem.

Table 8. Statistic of the TWT Problem.

 SA DABC
Self-Parametrization

Min Max Mean

Mean 0.463% 0.071% 0.009% 0.171% 0.073%

Median 0.000% 0.018% 0.000% 0.092% 0.044%

Standard Deviation 1.129% 0.115% 0.016% 0.238% 0.093%

Variance 1.275% 0.013% 0.000% 0.057% 0.009%

In order to conclude about the performance of the self-parameterization framework,

when compared with the conventionally parametrized DABC, a one-way ANOVA (anal-

ysis of variance) was used [61]. μMin, μMax and μMed are the mean of the relative deviation

from the optimum from the self-parameterization framework and μDABC is the mean of the

Mathematics 2022, 10, 475 17 of 23

relative deviation from conventionally parametrized DABC. The ANOVA’s hypotheses

are:

• H0: 𝜇𝐷𝐴𝐵𝐶 = 𝜇𝑀𝑖𝑛 = 𝜇𝑀𝑎𝑥 = 𝜇𝑀𝑒𝑑

• H1: Means all not all equal.

In Table 9 it is possible to examine the ANOVA. It found statistical evidence to reject

the H0, with 95% confidence. In other words, it is not possible to conclude the performance

of the min, max and mean solutions from the self-parameterization framework and the

conventionally parametrized DABC are equal (p-Value of 0.000).

Table 9. ANOVA for TWT Problem.

 S. of Squares df Mean Square F Sig.

Between Groups 0.403 3 0.134 6.821 0.000

Within Groups 2.285 116 0.020

Total 2.688 119

At least one population did not have an identical performance. In order to identify

which, it is necessary to perform the Scheffe test [77]. The Scheffe test is shown in Table

10.

Table 10. Scheffe Test for TWT Problem.

 Mean Difference Std. Error Sig.

Min

Max −0.161867* 0.036239 0.000

Med −0.063700 0.036239 0.382

DABC −0.061567 0.036239 0.413

Max

Min 0.161867* 0.036239 0.000

Med 0.098167 0.036239 0.067

DABC 0.100300 0.036239 0.059

Med

Min 0.063700 0.036239 0.382

Max −0.098167 0.036239 0.067

DABC 0.002133 0.036239 1.000

DABC

Min 0.061567 0.036239 0.413

Max −0.100300 0.036239 0.059

Med −0.002133 0.036239 1.000

It is impossible, with 95% confidence, to confirm that the self-parameterization

framework performs better than the conventionally parametrized DABC in the TWT

problem (p-Value of 0.413). It seems the only difference is between the min and the max

solutions of the self-parameterization framework (p-Value of 0.000).

6.2. TSP

In TSP, the self-parametrization framework also outperformed both the convention-

ally parametrized DABC and SA, but in this case, the disparities between them are notice-

able in the examination of Table 5.

Figure 10 shows the frequency of relative deviation to the optimum of the self-para-

metrization framework and the conventionally parametrized DABC and SA. It shows that

proposed framework outperformed DABC and SA.

Mathematics 2022, 10, 475 18 of 23

Figure 10. Relative Deviations for the TSP.

In Table 11 shows the values of the mean, median, standard deviation and variance,

of the relative deviation to the optimal solution of the self-parametrization framework and

the conventionally parametrized DABC and SA. It is even more obvious the self-para-

metrization framework outperformed the conventionally parametrized DABC.

Table 11. Statistic of the TSP.

 SA DABC
Self-Parametrization

Min Max Mean

Mean 1.947% 1.781% 0.895% 5.028% 3.265%

Median 1.817% 2.010% 0.980% 5.288% 3.343%

Standard Deviation 0.891% 0.611% 0.315% 0.610% 0.374%

Variance 0.793% 0.374% 0.099% 0.372% 0.140%

In order to conclude about the performance of the self-parameterization framework,

since it is not possible to assume the normality by the central limit theorem (CLT), it is

necessary to use a normality test. The Shapiro–Wilk test will analyze the hypothesis that

a sample comes from a normally distributed population when that sample is smaller than

30. Shapiro–Wilk’s hypotheses are:

• H0: The sample is from a population that follows a normal distribution.

• H1: The sample is not from a population that follows a normal distribution.

Mathematics 2022, 10, 475 19 of 23

In Table 12 it possible to examine the Shapiro–Wilk. It found no statistical evidence

to discard the H0. In other words, it is not possible to conclude that the sample is not from

a normal distributed population (p-value of 0.427).

Table 12. Shapiro–Wilk for the TSP.

Kolmogorov–Smirnov Shapiro–Wilk

Statistic df Sig. Statistic df Sig.

Min 0.235 5 0.200 0.903 5 0.427

Since it was not possible to demonstrate that the sample does not come from a normal

distributed, the self-parametrization framework and conventionally parametrized DABC

will be compared with the Student’s. It compares the means of normal distributions sam-

ples [61]. Student’s t-test hypotheses are:

• H0: 𝜇𝑀𝑖𝑛 − 𝜇𝐷𝐴𝐵𝐶 = 0

• H1: 𝜇𝑀𝑖𝑛 − 𝜇𝐷𝐴𝐵𝐶 ≠ 0

Table 13 shows the Student’s t-test. It found statistical evidence to reject the H0, with

95% confidence. In other words, it is not possible to assume the performance of the self-

parameterization framework and the conventionally parametrized DABC are equal for

the TSP (p-value of 0.021). Since the sample points to the better performance of the self-

parametrization framework, it is possible to conclude it performs better.

Table 13. Student’s t-test for the TSP.

Levene’s Test of

Equality Variances
t-test for Equality of Means

F Sig. t df
Sig. (2-

tailed)

Mean Dif-

ference

Std. Error

Difference

Equal variances

assumed
3.789 0.087 −2.880 8.000 0.021 −0.885800 0.307620

Equal variances

not assumed
 −2.880 5.989 0.028 −0.885800 0.307620

Since the Shapiro–Wilk test is unprecise for small samples [78], the results were val-

idated with the Mann–Whitney test. The result of the Mann–Whitney was similar to those

shown in Table 13, that is, it is not possible to determine the performance of the solutions

of the self-parameterization framework and the conventionally parametrized DABC are

equal (p-value of 0.032). Since the sample points to the better performance of the self-par-

ametrization framework, it is possible to conclude it performs better.

In short, the statistical inference showed disparities in the performance of the self-

parameterization framework and the conventionally parametrized DABC. Even if the self-

parameterization framework presented better solutions in both problems, the smaller size

of the instances of the TWT problem, ended up mitigating the variance in performance.

Overall, the self-parametrization framework, not only found calibrations of the same qual-

ity as those found by conventionally parameterization, it was possible to infer that the

performance of the self-parameterization framework is superior to that of conventionally

parametrization in the TSP.

7. Conclusions

Meta-heuristics can be described as a compromise between the effectiveness of enu-

merative techniques and the efficiency of approximate techniques, that is, meta-heuristics

are able to find “acceptable” solutions. However, the parametrization procedure cannot

be disassociated from their performance It is the parameterization procedure that will

adapt the meta-heuristics to the problem, or even to the instance of the problem.

Mathematics 2022, 10, 475 20 of 23

In order to streamline the parameterization and, at the same time, allow more inex-

perienced users to implement meta-heuristics, a self-parametrization framework was de-

veloped. It approaches the parameterization procedure as an optimization problem and

finds the parameters without user intervention. It uses two meta-heuristics, a meta-heu-

ristic of the parameter space and a meta-heuristic of the solution space. It is the meta-

heuristic of the parameter space that searches for calibrations, which are then evaluated

by the meta-heuristic of the solution space. Each calibration is evaluated multiple times in

order to overcome the stochastic nature of meta-heuristics.

To evaluate the performance of the self-parameterization framework, it was com-

pared with a conventionally parametrized meta-heuristic in 30 instances of the TWT Prob-

lem and in five instances of the TSP. The purpose of the comparison was to see if self-

parameterization framework would reproduce the results from a conventionally para-

metrized meta-heuristic, but it exceeded expectations. It outperformed the conventionally

parametrized meta-heuristic in both the TWT problem and in TSP. In the TWT, mean rel-

ative deviation from the optimum of the framework was 0.009%, compared to the 0.071%

for the conventionally parametrized meta-heuristic. In the TSP instances, the self-param-

eterization framework also obtained a better mean relative deviation from the optimal

solutions, but in this case, the statistical inference showed disparities (p value of 0.016).

Some of the limitations of proposed framework are the increase in the computational

cost. Such an increase was predictable and is minimized by the total automatization of the

parametrization procedure. Moreover, the self-parameterization framework is limited by

the characteristics of the meta-heuristic of the parameter space and will require the dis-

cretization of the parameters whenever a discrete meta-heuristic is applied.

Future work should validate the proposed framework and compare it with other

search-based and hybrid parameterization techniques presented in literature. However,

such comparison should consider that other search-based and hybrid parameterization

techniques are often inaccessible to users, while the proposed framework does not require

a separate parametrization algorithm and can apply to any meta-heuristic, without much

effort. Furthermore, the self-parametrization could be incorporated into a scheduling sys-

tem. It would be able to adapt the parameters of the meta-heuristic to any change, planned

or not, in the production environment.

Author Contributions: Conceptualization: A.S.S., A.M.M. and L.R.V.; methodology: A.S.S., A.M.M.

and L.R.V.; software: A.S.S., A.M.M. and L.R.V.; validation: A.S.S., A.M.M. and L.R.V.; formal Anal-

ysis: A.S.S., A.M.M. and L.R.V.; investigation: A.S.S., A.M.M. and L.R.V.; writing: A.S.S., A.M.M.

and L.R.V.; review and editing: A.S.S., A.M.M. and L.R.V. All authors have read and agreed to the

published version of the manuscript.

Funding: This work was supported by national funds through the FCT—Fundação para a Ciência

e Tecnologia through the R&D Units Project Scopes: UIDB/00319/2020, and EXPL/EME-

SIS/1224/2021.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the problems and instances used in the computational study are

available at: http://people.brunel.ac.uk/~mastjjb/jeb/info.html and https://comopt.ifi.uni-heidel-

berg.de/software/TSPLIB95/ (accessed on 22 November 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xhafa, F.; Abraham, A. Metaheuristics for Scheduling in Industrial and Manufacturing Applications. In Studies in Computational

Intelligence; Springer: Berlin/Heidelberg, Germany, 2008; 128.

2. Osman, I.; Laporte, G. Metaheuristics: A Bibliography. Ann. Oper. Res. 1996, 63, 511–623.

3. Luke, S. Essential of Metaheuristics, 2nd ed.; Lulu: Morrisville, NC, USA, 2013.

4. Talbi, E. Meta-Heuristics: From Design to Implementation; Wiley: Hoboken, NJ, USA, 2009.

Mathematics 2022, 10, 475 21 of 23

5. Blum, C.; Roli, A. Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison. ACM Comput. Surv.

2003, 35, 268–308.

6. Holland, J.H. Adaptation in Natural and Artificial Systems: And Introduction Analysis with Application to Biology, Control and Artificial

Intelligence; University of Michigan Press: Cambridge, MA, USA, 1975.

7. Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680.

8. Černý, V. A Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulated Annealing Algorithm. J.

Optim. Theory Appl. 1985, 45, 41–51.

9. Glover, F. Future Paths for Integer Programming and Links to Artificial Intelligence. Comput. Oper. Res. 1986, 13, 533–549.

10. Feo, T.A.; Resende, M.G.C. A Probabilistic Heuristic for a Computationally Difficult Set Covering Problem. Oper. Res. Lett. 1989,

8, 67–77.

11. Mladenocić, N.; Hansen, P. Variable Neighborhood Search. Comput. Oper. Res. 1997, 24, 1097–1100.

12. Stützle, T.G. Local Search Algorithms for Combinatorial Problems: Analysis, Improvements, and New Applications.

Ph.D. Thesis, Department of Computer Science, Darmstadt University of Technology, 1998.

13. Dorigo, M. Optimization, Learning and Natural Algorithms. Ph.D. Thesis, DEI, Politecnico di Milano, Italy, 1992.

14. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the 1995 IEEE International Conference on Neural

Network (ICNN’95), Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948.

15. Passino, K.M. Biomimicry of Bacterial Foraging for Distributed Optimization and Control. IEEE Control. Syst. Mag. 2002, 22, 52–

67.

16. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Frome, UK, 2008.

17. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214.

18. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NISCO 2010).

Studies in Computational Intelligence; Springer, Berlin/Heidelberg, Germany, 2016; volume 284, pp. 65–74.

19. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61.

20. Abed-Alguni, B.H.; Alawad, N.A. Distributed Grey Wolf Optimizer for Scheduling of Workflow Applications in Cloud Envi-

ronments. Appl. Soft Comput. 2021, 102, 107113.

21. Abed-Alguni, B.H.; Alawad, N.A.; Barhoush, M.; Hammed, R. Exploratory cuckoo search for solving single-objective optimi-

zation problems. Soft Comput. 2021, 25, 10167–10180.

22. Moscato, P. On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts—Towards Memetic Algorithms; Technical Re-

port 826; Caltech Concurrent Computation Program, California Institute of Technology: Pasadena, CA, USA, 1989.

23. So ̈rensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics. In Handbook of Heuristics; Springer: Berlin/Heidelberg, Ger-

many, 2018; pp. 1–8.

24. So ̈rensen, K. Metaheuristics: The Metaphor Exposed. Int. Trans. Oper. Res. 2018, 22, 3–18.

25. Jung, S.H. Queen-Bee Evolution for Genetic Algorithm. Electron. Lett. 2003, 39, 575–576.

26. Abbass, H.A. MBO: Marriage in Honey Bees Optimization—A Haplometrosis Polygynous Swarming Approach. In Proceedings

of the 2001 Congress on Evolutionary Computation (CEC), Seoul, Korea, 27–30 May 2001; pp. 207–214.

27. Luc ̌ić, P.; Teodorović, D. Computing with Bees: Attacking Complex Transportation Engineering Problems. Int. J. Artif. Intell.

Tools 2003, 12, 375–394.

28. Yang, X.S. Engineering Optimization via Nature-Inspired Virtual Bee Algorithms. In Artificial Intelligence and Knowledge Engi-

neering Applications: A Bioinspired Approach; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005;

Volume 3562, pp. 317–323.

29. Boussaï, I.; Lepagnot, J.; Siarry, P. A Survey on Optimization Metaheuristics. Inf. Sci. 2013, 237, 82–117.

30. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report TR06, 2005; Erciyes University,

Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005.

31. Pham, D.T.; Ghanbarzadeh, A.; Koc, E.; Otri, S.; Rahim, S.; Zaidi, M. 2005. Bee Algorithm: A Novel Approach to Function Optimisa-

tion; Technical Note: MEC 0501, 2005; Cardiff University, The Manufacturing Engineering Center: Cardiff, UK, 2005.

32. Karaboga, D.; Gorkemli, B. A Combinatorial Artificial Bee Colony Algorithm for Traveling Salesman Problem. In Proceedings

of the 2011 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Istanbul, Turkey, 15–18

June 2011; pp. 50–53.

33. Liu, Y.; Liu, S. A Hybrid Discrete Artificial Bee Colony Algorithm for Permutation Flowshop Scheduling Problem. Appl. Soft

Comput. 2013, 13, 1459–1463.

34. Pan, Q.; Tasgetiren, M.F.; Suganthan, P.N.; Chua, T.J. 2011. A Discrete Artificial Bee Colony Algorithm for the Lot-Streaming

Flow Shop Scheduling Problem. Inf. Sci. 2011, 181, 2455–2468.

35. Shyam Sunder, S.; Suganthan, P.N.; Jin, C.T.; Xiang, C.T.; Soon, C.C. A Hybrid Artificial Bee Colony Algorithm for the Job-Shop

Scheduling Problem with No-Wait Constraint. Soft Comput. 2017, 21, 1193–1202.

36. Choong, S.S.; Wong, L.; Lim, C.P. An Artificial Bee Colony Algorithm with a Modified Choice Function for the Traveling Sales-

man Problem. In Proceedings of the 2011 IEEE International Conference on Systems, Man and Cybernetics (SMC), Anchorage,

AK, USA, 9–12 October 2011; pp. 357–362.

Mathematics 2022, 10, 475 22 of 23

37. Soto, R.; Crawford, B.; Vásquez, L.; Zulantay, R.; Jaime, A.; Ramírez, M.; Almonacid, B. Solving the Manufacturing Cell Design

Problem Using the Artificial Bee Colony Algorithm. In Multi-Disciplinary Trends in Artificial Intelligence, Lecture Notes in Computer

Science; Springer: Cham, Switzerland, 2017; Volume 10607, pp. 473–484.

38. Santos, A.S.; Madureira, A.M.; Varela, M.R. Evaluation of the Simulated Annealing and the Discrete Artificial Bee Colony in the

Weight Tardiness Problem with Taguchi Experiments Parameterization. In Intelligent Systems Design and Applications, Advances

in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; Volume 557, pp. 718–727.

39. Hutter, F.; Hoss, H.H.; Stützle, T. Automatic Algorithm Configuration Based on Local Search. In Proceedings of the 2nd Na-

tional Conference on Artificial Intelligence, Vancouver, BC, Canada, 22–26 July 2007; pp. 1152–1157.

40. Eiben, A.E.; Hinterding, R.; Michalewicz, Z. Parameter Control in Evolutionary Algorithms. IEEE Trans. Evol. Comput. 1999, 3,

124–141.

41. Johnson, D.S. A Theoretician’s Guide to the Experimental Analysis of Algorithms. Available online:

https://web.cs.dal.ca/~eem/gradResources/A-theoreticians-guide-to-experimental-analysis-of-algorithms-2001.pdf (accessed

on 22 November 2021).

42. Montero, E.; Riff, M.C.; Neveu, B. A Beginner’s Guide to Tuning Methods. Appl. Soft Comput. 2014, 17, 39–51.

43. Eiben, G.; Schut, M.C. New Ways to Calibrate Evolutionary Algorithms. In Advances in Metaheuristics for Hard Optimization;

Springer: Berlin/Heidelberg, Germany, 2007; pp. 153–177.

44. Lye, L.M. Tools and Toys for Teaching Design of Experiments Methodology. In Proceedings of the 33rd Annual General Con-

ference of the Canadian Society for Civil Engineering, Toronto, ON, Canada, 2–4 June 2005.

45. Montgomery, D.G. Design and Analysis of Experiments, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2005.

46. Tanco, M.; Viles, E.; Pozueta, L. Comparing Different Approaches for Design of Experiments (DOE). In Advances in Electrical

Engineering and Computational Science, Lecture Notes in Electrical Engineering; Springer: Berlin/Heidelberg, Germany, 2009;

Volume 39, pp. 611–621.

47. Hinkelmann, K. History and Overview of Design and Analysis of Experiments. In Handbook of Design and Analysis of Experiments;

Chapman and Hall/CRC: New York, NY, USA, 2015; pp. 3–62.

48. Box, G.E.P.; Wilson, K.B. On Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45.

49. Roy, R.K. Design of Experiments Using the Taguchi Approach: 16 Steps to Product and Process Improvement; Wiley: New York, NY,

USA, 2001.

50. Durakovic, B. Design of Experiments Application, Concepts, Examples: State of the Art. Period. Eng. Nat. Sci. 2017, 5, 421–439.

51. Birattari, M.; Stützle, T.; Paquete, L.; Varrentrapp, K. A Racing Algorithm for Configuring Metaheuristics. In Proceedings of the

4th Annual Conference on Genetic and Evolutionary Computation (GECCO’02), New York, NY, USA, 9–13 July 2002; pp. 11–

18.

52. Hoeffding, W. Probability Inequalities for Sum of Bounded Random Variables. J. Am. Stat. Assoc. 1963, 58, 13–30.

53. Montero, E.; Riff, M.C.; Neveu, B. New Requirements for Off-Line Parameter Calibration Algorithms. In Proceedings of the

2010 IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18–23 July 2010; pp. 1–8.

54. Balaprakash, P.; Birattari, M.; Stützle, T. Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Re-

finement. In Hybrid Metaheuristics, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4771,

pp. 108–122.

55. Bartz-Beislstein, T.; Lasarczyk, C.W.G.; Preuss, M. Sequential Parameter Optimization. In Proceedings of the 2005 IEEE Con-

gress on Evolutionary Computation (CEC 2005), Edinburgh, Scotland, 2–5 September 2005; pp. 773–780.

56. Mckay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the

Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245.

57. Huang, D.; Allen, T.T.; Notz, W.I.; Zeng, N. Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-

Models. J. Glob. Optim. 2006, 34, 441–466.

58. Hutter, F.; Hoos, H.H.; Leyton-Brown, K.; Murphy, K.P. An Experimental Investigation of Model-Based Parameter Optimisa-

tion: SPO and Beyond. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation (GECCO’09),

Montreal, QC, Canada, 8–12 July 2009; pp. 271–278.

59. Pereira, I.; Madureira, A.; Costa e Silva, E.; Abraham, A. A Hybrid Metaheuristics Parameter Tuning Approach for Scheduling

through Racing and Case-Based Reasoning. Appl. Sci. 2021, 11, 3325.

60. Pereira, I.; Madureira, A.; Cunha, B. Metaheuristics Parameter Tuning using Racing and Case-based Reasoning. In Intelligent

Systems Design and Applications, Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2017; Volume 557,

pp. 911–920.

61. Pereira, I.; Madureira, A. Self-Optimizing A Multi-Agent Scheduling System: A Racing Based Approach. In Intelligent Distrib-

uted Computing IX. Studies in Computational Intelligence; Springer: Cham, Switzerland, 2016; Volume 616, pp. 275–284.

62. Pereira, I.; Madureira, A.; Moura Oliveira, P.; Abraham, A. Tuning Meta-Heuristics Using Multi-Agent Learning in a Scheduling

System. In LNCS Transactions on Computational Science; Springer: Berlin/Heidelberg, Germany, 2013.

63. Madureira, A.; Pereira, I.; Falcão, D. Cooperative Scheduling System with Emergent Swarm Based Behavior. In Information

Systems and Technologies, Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2013; Volume

206, pp. 661–671.

Mathematics 2022, 10, 475 23 of 23

64. Pereira, I.; Madureira, A.; Moura Oliveira, P. Meta-heuristics Self-Parameterization in a Multi-agent Scheduling System Using

Case-Based Reasoning. In Computational Intelligence and Decision Making—Trends and Applications, Intelligent Systems, Control and

Automation: Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2013; Volume 61, pp. 99–109.

65. Grefenstette, J.J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. Syst. Man Cybern. 1986, 16, 122–128.

66. Nannen, V.; Eiben, A.E. Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. In Proceedings of

the 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India, 6–12 January 2007; pp. 1034–1039.

67. Nannen, V.; Eiben, A.E. Efficient Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. In Pro-

ceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp.103–110.

68. Adenso-Díaz, B.; Laguna, M. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search. Oper. Res.

2006, 54, 99–144.

69. Beasley, J.E. ORLibrary. 1990. Available online: http://people.brunel.ac.uk/~mastjjb/jeb/info.html (accessed on the 22 of Novem-

ber of 2021).

70. Reinelt, G. TSPLIB. 1991. Available online: https://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ (accessed on the 22 of No-

vember of 2021).

71. Anily, S.; Federgruen, A. Simulated Annealing Methods with General Acceptance Probabilities. J. Appl. Probab. 1987, 24, 657–

667.

72. Park, M.W.; Kim, Y.D. A Systematic Procedure for Setting Parameters in Simulated Annealing Algorithms. Comput. Oper. Res.

1998, 25, 207–217.

73. Santos, A.S.; Madureira, A.M.; Varela, M.L.R. The Influence of Problem Specific Neighborhood Structures in Metaheuristics

Performance. J. Math. 2018, 2018, https://doi.org/10.1155/2018/8072621.

74. Kiran, M.S.; Gündüz, M. The Analysis of Peculiar Control Parameters of Artificial Bee Colony Algorithm on the Numerical

Optimization Problems. J. Comput. Commun. 2014, 2, 127–136.

75. Akay, B.; Karaboga, D. Parameter Tuning for the Artificial Bee Colony Algorithm. In Computational Collective Intelligence: Seman-

tics Web, Social Networks and Multiagent Systems, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009,

Volume 5796, pp. 608–619,

76. Silberholz, J.; Golden, B. Comparison of Metaheuristics. In Handbook of Metaheuristics; International Series in Operation Research

& Management Sciences Springer: Berlin/Heidelberg, Germany, 2010; Volume 146, pp. 625–640.

77. Ross, S.M. Introductory Statistics, 4th ed.; Elsevier Science, Academic Press: Cambridge, MA, USA, 2017.

78. Rochon, J.; Gondan, M.; Kieser, M. To Test or Not to Test: Preliminary Assessment of Normality when Comparing Two Inde-

pendent Samples. BMC Med. Res. Methodol. 2012, 12, 81.

