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Abstract: We establish a fixed point theorem for Cirić contraction in the context of convex b-metric
spaces. Furthermore, we ensure that there is a fixed point for the maps satisfying the condition (B)
(a kind of almost contraction) in convex b-metric spaces and demonstrate its uniqueness as well.
Supporting examples to substantiate the generality of the proved results are given.
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1. Introduction and Preliminaries

The history of fixed point theory goes back a century, to the well-known work of
Banach. Since the introduction of this simple but very powerful result of nonlinear analysis,
the field of fixed-point theory has been expanded in several possible directions. Cirić [1]
introduced the notion of quasi-contraction in 1974 and set out a generalization of the Banach
contraction principle. In the sequel, many authors worked in this particular direction
and announced some new contractions as an extension of the Banach contraction. The
weak contraction defined by Berinde [2] is one of them, and it is vital to note that weak
contraction and quasi-contraction are independent of one another. However, the class of
weak contraction includes the large class of quasi-contraction. In 2008, Berinde [3] renamed
it almost contraction. Furthermore, Babu et al. [4] worked on the open problem posed by
Berinde [2] and consequently introduced the maps satisfying the condition (B).

In another direction, many authors extended this contraction principle by giving some
ambient structure to the space. In this series, Bakhtin [5] introduced the concept of b-metric
spaces, which was extensively defined by Czerwik [6] to enlarge the domain of the Banach
contraction. As b-metric is not continuous in the topology generated by its basis, many
researchers have been devoted to this space and established several fixed point theorems
(for example, see [7–19]). Takahashi [20] established the concept of a convex structure in
1970 and coined the term “convex metric space” to describe a metric space with a convex
structure. In the course of the last five decades, many scholars have investigated various
properties of convex metric spaces and discussed whether a fixed point for non-expansive
maps exists in these spaces (refer to [21–26]). Recently, Chen et al. [27] defined the notion
of convex b-metric spaces and proved Banach and Kannan’s type fixed point theorems in
those spaces. Here, motivated by this idea, we establish several fixed point theorems for
Cirić contraction as well as for the maps satisfying the condition (B) in a convex b-metric
space and present some supporting examples for the proved results.

First, we recall the basic definitions and results, which are required in the sequel
to prove our main results. Throughout, real number sets and natural number sets are
indicated, respectively, by R and N.
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Definition 1 ([5,6]). Let χ be a nonempty set and s ≥ 1 be a given real number. Suppose
bm : χ× χ→ [0, ∞) is a mapping satisfying the following axioms for all µ, η, ζ ∈ χ:

(1) bm(µ, η) = 0 if and only if µ = η;
(2) bm(µ, η) = bm(η, µ);
(3) bm(µ, η) ≤ s[bm(µ, ζ) + bm(ζ, η)].

Then, the mapping bm is said to be a b-metric and the pair (χ, bm) is called a b-metric space.

The convergent and Cauchy sequence in the context of b-metric spaces is defined as
follows:

Definition 2 ([14]). Let (χ, bm) be a b-metric space. A sequence {µn} in χ is said to be

(1) Convergent in χ, if there exists µ ∈ χ such that bm(µn, µ)→ 0 as n→ ∞.
(2) Cauchy in χ, if for each ε > 0 there exists p ∈ N such that bm(µn, µm) < ε for all n, m > p.

The b-metric space (χ, bm) is called complete if every Cauchy sequence {µn} ⊂ χ is
convergent in χ.

Definition 3 ([20]). Let (χ, bm) be a b-metric space and Ω : χ× χ× [0, 1]→ χ be a continuous
mapping. Then, Ω is called the convex structure on χ if

bm(µ, Ω(η, ζ, σ)) ≤ σbm(µ, η) + (1− σ)bm(µ, ζ). (1)

The b-metric space (χ, bm) equipped with a convex structure Ω on χ is called a convex
b-metric space, and it is denoted by the triplet (χ, bm, Ω). One can refer to [27] to see the
examples of convex b-metric spaces. We offer one more example:

Example 1. Let χ = R+n

0 be the set of all ordered n-tuples of non-negative real numbers,
and bm(µ, η) = ∑i∈I [(µi − ηi)

2 + |µi − ηi|] for all µ = (µ1, µ2, . . . , µn) ∈ χ and η =
(η1, η2, . . . , ηn) ∈ χ, where I = {1, 2, . . . , n}. Here, we observe that

1. bm(µ, η) = 0 iff µ = η;
2. bm(µ, η) = bm(η, µ);
3. bm(µ, η) ≤ 2[bm(µ, ζ) + bm(ζ, η)], ζ = (ζ1, ζ2, . . . , ζn) as

bm(µ, η) = ∑
i∈I

[(µi − ηi)
2 + |µi − ηi|]

= ∑
i∈I

[
((µi − ζi) + (ζi − ηi))

2 + |(µi − ζi) + (ζi − ηi)|
]

≤ ∑
i∈I

[
2
(
(µi − ζi)

2 + (ζi − ηi)
2
)
+ |(µi − ζi)|+ |(ζi − ηi)|

]
≤ 2 ∑

i∈I

[(
(µi − ζi)

2 + (ζi − ηi)
2
)
+ |(µi − ζi)|+ |(ζi − ηi)|

]
= 2

[
∑
i∈I

[(µi − ζi)
2 + |µi − ζi|] + ∑

i∈I
[(ζi − ηi)

2 + |ζi − ηi|]
]

= 2[bm(µ, ζ) + bm(ζ, η)].

Let Ω : χ× χ× [0, 1]→ χ stand for the mapping given by

Ω(µ, η; σ) = σµ + (1− σ)η,

for any µ, η ∈ χ and σ ∈ [0, 1]. Then, it follows,
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bm(ζ, Ω(µ, η; σ)) = ∑
i∈I

(ζi − (σµi + (1− σ)ηi))
2 + ∑

i∈I
|ζi − (σµi + (1− σ)ηi)|

≤ ∑
i∈I

(σ|ζi − µi|+ (1− σ)|ζi − ηi|)2 + ∑
i∈I
|σ|ζi − µi|+ (1− σ)|ζi − ηi||

≤ ∑
i∈I

σ2(ζi − µi)
2 + ∑

i∈I
(1− σ)2(ζi − ηi)

2 + 2σ(1− σ)∑
i∈I
|ζi − µi| · |ζi − ηi|

+∑
i∈I

σ|ζi − µi|+ ∑
i∈I

(1− σ)|ζi − ηi|

≤ ∑
i∈I

σ2(ζi − µi)
2 + ∑

i∈I
(1− σ)2(ζi − ηi)

2 + σ(1− σ)∑
i∈I

((ζi − µi)
2 + (ζi − ηi)

2)

+∑
i∈I

σ|ζi − µi|+ ∑
i∈I

(1− σ)|ζi − ηi|

= σ ∑
i∈I

[(ζi − µi)
2 + |ζi − µi|] + (1− σ)∑

i∈I
[(ζi − ηi)

2 + |ζi − ηi|]

= σbm(ζ, µ) + (1− σ)bm(ζ, η).

As a result, we can designate the triplet (χ, bm, Ω) a convex b-metric space. The metric triangle
inequality, however, is not satisfied by bm, for example,

bm(2, 4) = 6 > bm(2, 3) + bm(2, 4) = 4,

where q denotes the n-tuple (q, 1, 1, . . . , 1) ∈ χ = R+n

0 and thus, (χ, bm, Ω) is not a metric space.

2. Main Results

Theorem 1. Suppose Γ : (χ, bm, Ω)→ (χ, bm, Ω) is a quasi-contraction, that is, Γ satisfies

bm(Γµ, Γη) ≤ k max{bm(µ, η), bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(η, Γµ)}, (2)

for all µ, η ∈ χ and some k ∈ (0, 1), where (χ, bm, Ω) is a complete convex b-metric space with s >
1. Let µn = Ω(µn−1, Γµn−1; σn−1) be a sequence defined by choosing an initial point µ0 ∈ χ with
the property bm(µ0, Γµ0) < ∞, where 0 ≤ σn−1 < 1 for each n ∈ N. If k < min

{
1

s2(s+1) , 1
s4

}
and 0 ≤ σn−1 < min

{
1
s2 − (s + 1)k,

1
s4−k
1
s2−k

}
for each n ∈ N, then Γ has a fixed point in χ that is

unique.

Proof. As Ω is a convex structure, then

bm(µn, µn+1) = bm(µn, Ω(µn, Γµn; σn)) ≤ (1− σn)bm(µn, Γµn), n ∈ N,

and

bm(µn, Γµn) ≤ sbm(µn, Γµn−1) + sbm(Γµn−1, Γµn)

≤ sbm(Ω(µn−1, Γµn−1; σn−1), Γµn−1) + sk max{bm(µn−1, µn),

bm(µn−1, Γµn−1), bm(µn, Γµn), bm(µn−1, Γµn), bm(µn, Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk max{(1− σn−1)bm(µn−1, Γµn−1),

bm(µn−1, Γµn−1), bm(µn, Γµn), bm(µn−1, Γµn), bm(µn, Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk max{bm(µn−1, Γµn−1), bm(µn, Γµn),

sbm(µn−1, µn) + sbm(µn, Γµn), bm(Ω(µn−1, Γµn−1; σn−1), Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk max{bm(µn−1, Γµn−1), bm(µn, Γµn),

s(1− σn−1)bm(µn−1, Γµn−1) + sbm(µn, Γµn), σn−1bm(µn−1, Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk max{bm(µn−1, Γµn−1),
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s(1− σn−1)bm(µn−1, Γµn−1) + sbm(µn, Γµn)}
≤ sσn−1bm(µn−1, Γµn−1) + sk max{bm(µn−1, Γµn−1),

sbm(µn−1, Γµn−1) + sbm(µn, Γµn)}
= sσn−1bm(µn−1, Γµn−1) + s2kbm(µn−1, Γµn−1) + s2kbm(µn, Γµn)

= [sσn−1 + s2k]bm(µn−1, Γµn−1) + s2kbm(µn, Γµn).

This implies
(1− s2k)bm(µn, Γµn) ≤ [sσn−1 + s2k]bm(µn−1, Γµn−1)

bm(µn, Γµn) ≤
sσn−1 + s2k

1− s2k
bm(µn−1, Γµn−1)

<
1
s

bm(µn−1, Γµn−1),

with inequalities k < min
{

1
s2(s+1) , 1

s4

}
and 0 ≤ σn−1 < min

{
1
s2 − (s + 1)k,

1
s4−k
1
s2−k

}
holding

for all n ∈ N. Thus,

bm(µn, Γµn) <
1
s

bm(µn−1, Γµn−1)

<
1
s2 bm(µn−2, Γµn−2)

...

<
1
sn bm(µ0, Γµ0). (3)

Since bm(µ0, Γµ0) < ∞, then, by applying n→ ∞ in (3), we obtain

lim
n→∞

bm(µn, Γµn) = 0.

Thus,
bm(µn, µn+1) ≤ (1− σn)bm(µn, Γµn) =⇒ lim

n→∞
bm(µn, µn+1) = 0.

Moreover, we have to prove that the sequence {µn} is Cauchy. Conversely, assume that
{µn} is a non-Cauchy sequence, we can obtain a positive ε and the subsequences {µmλ

}
and {µnλ

} of {µn}, such that mλ is the smallest cardinal with mλ > nλ > λ,

bm(µmλ
, µnλ

) ≥ ε,

and
bm(µmλ−1, µnλ

) < ε.

Then, it follows that

ε ≤ bm(µmλ
, µnλ

) ≤ s
[
bm(µmλ

, µnλ+1) + bm(µnλ+1, µnλ
)
]
,

which gives
ε

s
≤ lim sup

λ→∞
bm(µmλ

, µnλ+1).

Moreover, we obtain

bm(µmλ
, µnλ+1) = bm

(
Ω(µmλ−1, Γµmλ−1; σmλ−1), µnλ+1

)
≤ σmλ−1bm(µmλ−1, µnλ+1) + (1− σmλ−1)bm(Γµmλ−1, µnλ+1)

≤ σmλ−1bm(µmλ−1, µnλ+1) + (1− σmλ−1)s[bm(Γµmλ−1, Γµnλ+1)

+bm(Γµnλ+1, µnλ+1)]
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≤ σmλ−1bm(µmλ−1, µnλ+1) + (1− σmλ−1)sbm(Γµnλ+1, µnλ+1)

+(1− σmλ−1)sk max{bm(µmλ−1, µnλ+1), bm(µmλ−1, Γµmλ−1),

bm(µnλ+1, Γµnλ+1), bm(µmλ−1, Γµnλ+1), bm(µnλ+1, Γµmλ−1)}
≤ sσmλ−1bm(µmλ−1, µnλ

) + sσmλ−1bm(µnλ
, µnλ+1)

+(1− σmλ−1)sbm(Γµnλ+1, µnλ+1)

+(1− σmλ−1)sk max{sbm(µmλ−1, µnλ
) + sbm(µnλ

, µnλ+1),

bm(µmλ−1, Γµmλ−1), bm(µnλ+1, Γµnλ+1), sbm(µmλ−1, µnλ+1)

+sbm(µnλ+1, Γµnλ+1), sbm(µnλ+1, µmλ−1) + sbm(µmλ−1, Γµmλ−1)}
≤ sσmλ−1bm(µmλ−1, µnλ

) + sσmλ−1bm(µnλ
, µnλ+1)

+(1− σmλ−1)sbm(Γµnλ+1, µnλ+1)

+(1− σmλ−1)sk max{sbm(µmλ−1, µnλ
) + sbm(µnλ

, µnλ+1),

bm(µmλ−1, Γµmλ−1), bm(µnλ+1, Γµnλ+1), s2bm(µmλ−1, µnλ
)

s2bm(µnλ
, µnλ+1) + sbm(µnλ+1, Γµnλ+1), s2bm(µnλ+1, µnλ

)

+s2bm(µnλ
, µmλ−1) + sbm(µmλ−1, Γµmλ−1)}

< sσmλ−1ε + sk(1− σmλ−1)max{sε, s2ε}

= sε
(

σmλ−1(1− s2k) + s2k
)

< sε

(
1
s4 − k
1
s2 − k

(1− s2k) + s2k

)

= sε

(
1
s2 − s2k
1− s2k

(1− s2k) + s2k

)
=

ε

s
.

Thus, we obtain
ε

s
≤ lim sup

λ→∞
bm(µmλ

, µnλ+1) <
ε

s
,

and hence our supposition, {µn} is a non-Cauchy sequence, is wrong; so, {µn} is Cauchy
in χ. Then, due to the completeness of χ, there will be an element µ∗ ∈ χ such that
limn→∞ bm(µn, µ∗) = 0.

Now, we will verify that Γµ∗ = µ∗. For this,

bm(µ
∗, Γµ∗) ≤ sbm(µ

∗, µn) + sbm(µn, Γµ∗)

≤ sbm(µ
∗, µn) + s2bm(µn, Γµn) + s2bm(Γµn, Γµ∗)

≤ sbm(µ
∗, µn) + s2bm(µn, Γµn) + s2k max{bm(µn, µ∗), bm(µn, Γµn),

bm(µ
∗, Γµ∗), bm(µn, Γµ∗), bm(µ

∗, Γµn)}
≤ sbm(µ

∗, µn) + s2bm(µn, Γµn) + s2k max{bm(µn, µ∗), bm(µn, Γµn),

bm(µ
∗, Γµ∗), sbm(µn, µ∗) + sbm(µ

∗, Γµ∗), sbm(µ
∗, µn) + sbm(µn, Γµn)}.

Letting n→ ∞, we have

bm(µ
∗, Γµ∗) ≤ s2k max{bm(µ

∗, Γµ∗), sbm(µ
∗, Γµ∗)}

= s3kbm(µ
∗, Γµ∗)

< bm(µ
∗, Γµ∗).

So, bm(µ∗, Γµ∗) = 0 =⇒ Γµ∗ = µ∗.
Hence, µ∗ is a fixed point of Γ.
Now, it only remains to show that the fixed point µ∗ is unique. For this, take a fixed

point of Γ, say q ∈ χ different from µ∗, then

0 < bm(µ
∗, q) = bm(Γµ∗, Tq)
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≤ k max{bm(µ
∗, q), bm(µ

∗, Γµ∗), bm(q, Tq), bm(µ
∗, Tq), bm(q, Γµ∗)}

≤ k max{bm(µ
∗, q), sbm(µ

∗, q) + sbm(q, Tq), sbm(q, µ∗) + sbm(µ
∗, Γµ∗)}

= skbm(µ
∗, q)

<
1
s3 bm(µ

∗, q) < bm(µ
∗, q),

which is a contradiction. Therefore, µ∗ = q.
Hence, the proof.

Lemma 1. If s ≥ 2, then min
{

1
s2 − (s + 1)k,

1
s4−k
1
s2−k

}
=

1
s4−k
1
s2−k

, where k > 0.

Proof. To begin with,

1
s4 − k
1
s2 − k

=
1
s2 −

k
(

1− 1
s2

)
1
s2 − k

. (4)

As, s ≥ 2⇒ 1
s +

2
s2 ≤ 1 < 1 + (s + 1)k, which gives

1− 1
s2

1
s2−k

> s + 1, then by (4) we obtain

1
s4 − k
1
s2 − k

<
1
s2 − (s + 1)k.

Hence, the lemma.

In view of the above lemma, we obtain the following result, which is an extension of
Theorem 1 of [27].

Theorem 2. Suppose Γ : (χ, bm, Ω)→ (χ, bm, Ω) is a quasi-contraction, that is, Γ satisfies

bm(Γµ, Γη) ≤ k max{bm(µ, η), bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(η, Γµ)}, (5)

for all µ, η ∈ χ and some k ∈ (0, 1), where (χ, bm, Ω) is a complete convex b-metric space with
s ≥ 2. Let µn = Ω(µn−1, Γµn−1; σn−1) be a sequence defined by choosing an initial point µ0 ∈ χ

with the property bm(µ0, Γµ0) < ∞, where 0 ≤ σn−1 < 1 for each n ∈ N. If k < 1
s4 and

0 ≤ σn−1 <
1
s4−k
1
s2−k

for each n ∈ N; then, Γ has a fixed point in χ that is unique.

Proof. The proof follows the same lines as the proof of Theorem 1.

Now, we present an example in support of the generality of the proved result over the
existing one.

Example 2. Let χ = R+
0 be the set of all non-negative real numbers, and bm(µ, η) = (µ −

η)2 + |µ− η| for all µ, η ∈ χ, Ω : χ × χ × [0, 1] → χ stands for the mapping defined as
Ω(µ, η, σ) = σµ + (1− σ)η for all µ, η ∈ χ. Then, (χ, bm, Ω) is a convex b-metric space with
s = 2 (follows by taking n = 1 in Example 1). The map Γ : χ→ χ is defined as follows

Γ(µ) =

{
µ
17 , µ ∈ [0, 1)
µ
19 , µ ∈ [1, ∞).

Firstly, we prove that Γ satisfies the inequality (5). To prove this, we consider four cases.
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1. If µ, η ∈ [0, 1), then

bm(Γµ, Γη) =
( µ

17
− η

17

)2
+
∣∣∣ µ

17
− η

17

∣∣∣
≤ 1

17

[
1
17

(µ− η)2 + |µ− η|
]

≤ 1
17

[
(µ− η)2 + |µ− η|

]
≤ 1

17
bm(µ, η).

2. If µ ∈ [0, 1) and η ∈ [1, ∞), then

bm(Γµ, Γη) = (Tµ− Tη)2 + |Tµ− Tη|

=
( µ

17
− η

19

)2
+
∣∣∣ µ

17
− η

19

∣∣∣
=

1
17

[
1

17

(
µ− 17

19
η

)2
+

∣∣∣∣µ− 17
19

η

∣∣∣∣
]

.

If µ > 17
19 η, then

bm(Γµ, Γη) =
1
17

[
1

17

(
µ− 17

19
η

)2
+

(
µ− 17

19
η

)]

<
1
17

[(
µ− 17

19
η

)2
+

(
µ− 17

19
η

)]

≤ 1
17

[(
µ− η

19

)2
+
(

µ− η

19

)]
=

1
17

bm(µ, Γη).

If µ < 17
19 η, then

bm(Γµ, Γη) =
1
17

[
1

17

(
17
19

η − µ

)2
+

(
17
19

η − µ

)]

<
1
17

[
1

17
(η − µ)2 + (η − µ)

]
<

1
17

[
(η − µ)2 + (η − µ)

]
=

1
17

bm(η, µ) =
1
17

bm(µ, η).

3. If µ ∈ [1, ∞) and η ∈ [0, 1), then as in the above case, we obtain

bm(Γµ, Γη) ≤ 1
17

bm(η, Γµ), i f η >
17
19

µ

and bm(Γµ, Γη) ≤ 1
17

bm(µ, η), i f η <
17
19

µ.

4. If µ, η ∈ [1, ∞)

bm(Γµ, Γη) =
( µ

19
− η

19

)2
+
∣∣∣ µ

19
− η

19

∣∣∣
≤ 1

19

[
1
19

(µ− η)2 + |µ− η|
]
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≤ 1
19

[
(µ− η)2 + |µ− η|

]
≤ 1

19
bm(µ, η) <

1
17

bm(µ, η),

which shows that

bm(Γµ, Γη) ≤ 1
17

max{bm(µ, η), bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(η, Γµ)},

for all µ, η ∈ H. Thus, Γ is satisfying the inequality (5) for k = 1
17 < 1

s4 .

Now, choose an initial point µ0 ∈ χ and generate µn = Ω(µn, Γµn−1; σn−1) with σn−1 =

1
53 <

1
s4−k
1
s2−k

. There are two possibilities for µ0

1. If µ0 < 1, then

Tµ0 =
µ0

17

µ1 =
1

53
µ0 +

52
53

Tµ0 =
69
901

µ0

µ2 =
1

53
µ1 +

52
53

Tµ1 =

(
69

901

)2
µ0

...

µn =
1

53
µn−1 +

52
53

Tµn−1 =

(
69
901

)n
µ0.

Clearly, µn → 0 as n→ ∞.
2. If µ0 ≥ 1, then

Tµ0 =
µ0

19

µ1 =
1

53
µ0 +

52
53

Tµ0 =
71

1007
µ0.

If µ1 ∈ [0, 1), then as in the above case, µn → 0 as n → ∞. If µ1 ∈ [1, ∞), then µ2
µ1

=

1
53 + 52

53 ·
Tµ1
µ1

= 71
1007 . Proceeding in a similar fashion, we can assume that µn−1 ∈ [1, ∞),

then we obtain,
µn

µn−1
=

1
53

+
52
53
· Tµn−1

µn−1
=

71
1007

,

and
µn

µ0
=

µ1

µ0
· µ2

µ1
· · · µn

µn−1
=

(
71

1007

)n
.

Hence limn→∞ µn = 0. Thus, Γ has a unique fixed point since all of the assumptions of
Theorem 2 are fulfilled. It is worth mentioning that 0 would be the only fixed point of Γ in χ. The
map Γ, on the other hand, fails to follow the contraction condition used in Theorem 1 of [27] at the
point µ = 999

1000 , η = 1001
1000 , as we observe that

bm(µ, η) =

(
999
1000

− 1001
1000

)2
+

∣∣∣∣ 999
1000

− 1001
1000

∣∣∣∣ = 501
250000

= 0.002004,
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and

bm(Γµ, Γη) =

(
1

17
· 999

1000
− 1

19
· 1001

1000

)2
+

∣∣∣∣ 1
17
· 999

1000
− 1

19
· 1001

1000

∣∣∣∣
=

39889331
6520562500

= 0.006117 > bm(µ, η).

Therefore, Theorem 1 of [27] is not applicable to guarantee the existence of fixed point of map Γ.

The following result is a Chatterjea type fixed point theorem in the context of a convex
b-metric space, which is a direct consequence of Theorem 2.

Corollary 1. Suppose Γ : (χ, bm, Ω)→ (χ, bm, Ω) is a Chatterjea-contraction, that is, Γ satisfies

bm(Γµ, Γη) ≤ k[bm(µ, Γη) + bm(η, Γµ)], (6)

for all µ, η ∈ χ and some k ∈
(

0, 1
2

)
, where (χ, bm, Ω) is a complete convex b-metric space with

s ≥ 2. Let µn = Ω(µn−1, Γµn−1; σn−1) be a sequence defined by choosing an initial point µ0 ∈ χ

with the property bm(µ0, Γµ0) < ∞, where 0 ≤ σn−1 < 1 for each n ∈ N. If k < 1
2s4 and

0 ≤ σn−1 <
1
s4−2k
1
s2−2k

for each n ∈ N, then Γ has a fixed point in χ that is unique.

Next, we present an example for the applicability of the above corollary.

Example 3. Take the triplet (χ, bm, Ω) as given in Example 2. Suppose Γ : χ→ χ is defined as

T(µ) =

{
µ
33 , µ ∈ [0, 1)

1
35µ , µ ∈ [1, ∞).

Now, we prove that Γ satisfies the inequality (6) for k = 1
33 . For this, we discuss the following

possible cases

1. If µ, η ∈ [0, 1), then the inequality (6) holds.
2. If µ ∈ [0, 1) and η ∈ [1, ∞), then

bm(Γµ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)] =
[
(Γµ− Γη)2 + |Γµ− Γη|

]
− 1

33
[bm(µ, Γη) + bm(η, Γµ)]

=

[(
µ

33
− 1

35η

)2
+

∣∣∣∣ µ

33
− 1

35η

∣∣∣∣
]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

=
1

33

[
1
33

(
µ− 33

35η

)2
+

∣∣∣∣µ− 33
35η

∣∣∣∣
]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)].

If µ > 33
35η , then
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bm(Γµ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)] =
1

33

[
1

33

(
µ− 33

35η

)2
+

(
µ− 33

35η

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

33

[(
µ− 33

35η

)2
+

(
µ− 33

35η

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

33

[(
µ− 1

35η

)2
+

(
µ− 1

35η

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

=
1

33
bm(µ, Γη)− 1

33
[bm(µ, Γη) + bm(η, Γµ)]

= − 1
33

bm(η, Γµ) ≤ 0.

If µ < 33
35η , then

bm(Γµ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)] =
1

33

[
1

33

(
33

35η
− µ

)2
+

(
33

35η
− µ

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

=
1

33

[
1

33

(
1
η
− µ

)2
+

(
1
η
− µ

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

33

[
1

33
(η − µ)2 + (η − µ)

]
− 1

33
[bm(µ, Γη) + bm(η, Γµ)]

<
1

33

[(
η − µ

33

)2
+
(

η − µ

33

)]
− 1

33
[bm(µ, Γη) + bm(η, Γµ)]

=
1

33
bm(η, Γµ)− 1

33
[bm(µ, Γη) + bm(η, Γµ)]

= − 1
33

bm(µ, Γη) ≤ 0.

which implies that bm(Γµ, Γη) ≤ 1
33 [bm(µ, Γη) + bm(η, Γµ)] holds ∀ µ ∈ [0, 1), η ∈ [1, ∞).

3. If µ ∈ [1, ∞) and η ∈ [0, 1), then as in the above case, we obtain that the inequality (6) holds.



Mathematics 2022, 10, 466 11 of 21

4. If µ, η ∈ [1, ∞), then

bm(Γµ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)] =

[(
1

35µ
− 1

35η

)2
+

∣∣∣∣ 1
35µ
− 1

35η

∣∣∣∣
]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

≤ 1
35

[
1
35

(
1
µ
− 1

η

)2
+

∣∣∣∣ 1
µ
− 1

η

∣∣∣∣
]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)].

If η > µ, then

bm(Γµ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)] ≤ 1
35

[
1

35

(
µ− 1

η

)2
+

(
µ− 1

η

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

35

[
1

35

(
µ− 1

35η

)2
+

(
µ− 1

35η

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

35

[(
µ− 1

35η

)2
+

(
µ− 1

35η

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

≤ 1
35

bm(µ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

33
bm(µ, Γη)− 1

33
[bm(µ, Γη) + bm(η, Γµ)]

= − 1
33

bm(η, Γµ) ≤ 0.

If µ > η, then

bm(Γµ, Γη)− 1
33

[bm(µ, Γη) + bm(η, Γµ)] ≤ 1
35

[
1

35

(
η − 1

µ

)2
+

(
η − 1

µ

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

35

[
1

35

(
η − 1

35µ

)2
+

(
η − 1

35µ

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

35

[(
η − 1

35µ

)2
+

(
η − 1

35µ

)]

− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

≤ 1
35

bm(η, Γµ)− 1
33

[bm(µ, Γη) + bm(η, Γµ)]

<
1

33
bm(η, Γµ)− 1

33
[bm(µ, Γη) + bm(η, Γµ)]
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= − 1
33

bm(µ, Γη) ≤ 0,

which shows that
bm(Γµ, Γη) ≤ 1

33
[bm(µ, Γη) + bm(η, Γµ)],

for all µ, v ∈ χ. Let us choose an initial point µ0 ∈ χ and generate µn = Ω(µn, Γµn−1; σn−1) with

σn−1 = 1
101 <

1
s4−2k
1
s2−2k

. Now, to ensure the uniqueness of a fixed point, we will consider the following

choices of µ0.

1. If µ0 < 1, then

Γµ0 =
µ0

33

µ1 =
1

101
µ0 +

100
101

Γµ0 =
133

3333
µ0

µ2 =
1

101
µ1 +

100
101

Γµ1 =

(
133

3333

)2
µ0

...

µn =
1

101
µn−1 +

100
101

Γµn−1 =

(
133

3333

)n
µ0.

Letting n→ ∞ , we have µn → 0.
2. If µ0 ≥ 1, then

Γµ0 =
1

35µ0

µ1 =
1

101
µ0 +

100
101

Γµ0

=
1

101
µ0 +

100
101
· 1

35µ0

µ1

µ0
=

1
101

+
100

3535
· 1

µ2
0
≤ 135

3535
.

If µ1 ∈ [0, 1), then as in the above case, µn → 0 as n→ ∞. If µ1 ∈ [1, ∞), then
µ2
µ1

= 1
101 + 100

3535 ·
1

µ2
1
≤ 135

3535 . Proceeding in a similar fashion, we can assume that µn−1 ∈
[1, ∞), then we obtain,

µn

µn−1
=

1
101

+
100

3535
· 1

µ2
n−1
≤ 135

3535
,

and
µn

µn−1
=

µ1

µ0
· µ2

µ1
· · · µn

µn−1
≤
(

135
3535

)n
.

Here, also µn → 0 as n→ ∞.

Thus, the sequence µn → 0 and hence by Corollary 1, the map Γ has a unique fixed point in
χ. Notice that 0 is a fixed point of Γ in χ, and this fixed point is unique as well. To examine the
uniqueness, suppose that there is a fixed point of Γ different from 0, say q ∈ [1, ∞). Then,

q = Tq =
1

35q
=⇒ q =

1√
35

< 1,

which is an anomaly. Therefore, the only fixed point of Γ in χ is 0.
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The following theorem ensures the existence and uniqueness of a fixed point for the
map Γ satisfying the condition (B) in a convex b-metric space.

Theorem 3. Suppose Γ : (χ, bm, Ω)→ (χ, bm, Ω) is a map satisfying the condition (B), that is, Γ
satisfies

bm(Γµ, Γη) ≤ kbm(µ, η) + L min{bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(η, Γµ)}, (7)

for all µ, η ∈ χ and some k ∈ (0, 1) with L ≥ 0, where (χ, bm, Ω) is a complete convex b-metric
space with s > 1. Let µn = Ω(µn−1, Γµn−1; σn−1) be a sequence defined by choosing an initial
point µ0 ∈ χ with the property bm(µ0, Γµ0) < ∞, where 0 ≤ σn−1 < 1 for each n ∈ N. If k < 1

s3

and 0 ≤ σn−1 <
1
s3−k

1−k+L for each n ∈ N, then Γ has a fixed point in χ that is unique.

Proof. As Ω is a convex structure, then

bm(µn, µn+1) = bm(µn, Ω(µn, Γµn; σn)) ≤ (1− σn)bm(µn, Γµn), n ∈ N,

and

bm(µn, Γµn) ≤ sbm(µn, Γµn−1) + sbm(Γµn−1, Γµn)

≤ sbm(Ω(µn−1, Γµn−1; σn−1), Γµn−1) + skbm(µn−1, µn)

+sL min{ bm(µn−1, Γµn−1), bm(µn, Γµn), bm(µn−1, Γµn), bm(µn, Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk(1− σn−1)bm(µn−1, Γµn−1)

+sL min{ bm(µn−1, Γµn−1), sbm(µn, µn−1) + sbm(µn−1, Γµn),

bm(µn−1, Γµn), bm(Ω(µn−1, Γµn−1; σn−1), Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk(1− σn−1)bm(µn−1, Γµn−1)

+sL min{bm(µn−1, Γµn−1), bm(µn−1, Γµn), σn−1bm(µn−1, Γµn−1)}
≤ sσn−1bm(µn−1, Γµn−1) + sk(1− σn−1)bm(µn−1, Γµn−1)

+sL min{sbm(µn−1, Γµn−1) + sbm(Γµn−1, Γµn), σn−1bm(µn−1, Γµn−1)}
= sσn−1bm(µn−1, Γµn−1) + sk(1− σn−1)bm(µn−1, Γµn−1)

+sLσn−1bm(µn−1, Γµn−1)

= [σn−1(s− sk + sL) + sk]bm(µn−1, Γµn−1)

<
1
s2 bm(µn−1, Γµn−1),

with inequalities k < 1
s3 and 0 ≤ σn−1 <

1
s3−k

1−k+L holding for all n ∈ N. Thus,

bm(µn, Γµn) <
1
s2 bm(µn−1, Γµn−1) < bm(µn−1, Γµn−1). (8)

This implies that {bm(µn, Γµn)} is a sequence of non-negative real numbers that is non-
increasing. Consequently, there exists a non-negative real number δ such that

lim
n→∞

bm(µn, Γµn) = δ.

Now, it is to be shown that δ = 0. On the contrary if δ > 0, then by applying n→ ∞ in (8),
we obtain

δ ≤ 1
s2 δ,

which is a contradiction as s > 1 and hence δ is zero, that is,

lim
n→∞

bm(µn, Γµn) = 0.
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Thus,
bm(µn, µn+1) ≤ (1− σn)bm(µn, Γµn) =⇒ lim

n→∞
bm(µn, µn+1) = 0.

Moreover, we have to prove that the sequence {µn} is Cauchy. Conversely, assume that
{µn} is a non-Cauchy sequence, we can obtain a positive ε and and the subsequences
{µmλ

} and {µnλ
} of {µn}, such that mλ is the smallest cardinal with mλ > nλ > λ,

bm(µmλ
, µnλ

) ≥ ε,

and
bm(µmλ−1, µnλ

) < ε.

Then, we conclude that

ε ≤ bm(µmλ
, µnλ

) ≤ s
[
bm(µmλ

, µnλ+1) + bm(µnλ+1, µnλ
)
]
,

⇒ ε

s
≤ lim sup

λ→∞
bm(µmλ

, µnλ+1).

Now, we consider that

bm(µmλ
, µnλ+1) = bm

(
Ω(µmλ−1, Γµmλ−1; σmλ−1), µnλ+1

)
≤ σmλ−1bm(µmλ−1, µnλ+1) + (1− σmλ−1)bm(Γµmλ−1, µnλ+1)

≤ σmλ−1bm(µmλ−1, µnλ+1) + (1− σmλ−1)s[bm(Γµmλ−1, Γµnλ+1)

+bm(Γµnλ+1, µnλ+1)]

≤ σmλ−1bm(µmλ−1, µnλ+1) + (1− σmλ−1)sbm(Γµnλ+1, µnλ+1)

+(1− σmλ−1)s[kbm(µmλ−1, µnλ+1) + L min{bm(µmλ−1, Γµmλ−1),

bm(µnλ+1, Γµnλ+1), bm(µmλ−1, Γµnλ+1), bm(µnλ+1, Γµmλ−1)}]
≤ sσmλ−1bm(µmλ−1, µnλ

) + sσmλ−1bm(µnλ
, µnλ+1)

+(1− σmλ−1)sbm(Γµnλ+1, µnλ+1)

+(1− σmλ−1)s[k{sbm(µmλ−1, µnλ
) + sbm(µnλ

, µnλ+1)}
+min{bm(µmλ−1, Γµmλ−1), bm(µnλ+1, Γµnλ+1), sbm(µmλ−1, µnλ+1)

+sbm(µnλ+1, Γµnλ+1), sbm(µnλ+1, µmλ−1) + sbm(µmλ−1, Γµmλ−1)}]
≤ sσmλ−1bm(µmλ−1, µnλ

) + sσmλ−1bm(µnλ
, µnλ+1)

+(1− σmλ−1)sbm(Γµnλ+1, µnλ+1)

+(1− σmλ−1)s[k{sbm(µmλ−1, µnλ
) + sbm(µnλ

, µnλ+1)}
+min{bm(µmλ−1, Γµmλ−1), bm(µnλ+1, Γµnλ+1), s2bm(µmλ−1, µnλ

)

+s2bm(µnλ
, µnλ+1) + sbm(µnλ+1, Γµnλ+1), s2bm(µnλ+1, µnλ

)

+s2bm(µnλ
, µmλ−1) + sbm(µmλ−1, Γµmλ−1)}]

< sσmλ−1ε + s(1− σmλ−1)[ksε + L min{0, 0, s2ε, s2ε}]
= sε

(
σmλ−1(1− sk) + sk

)
< sε

(
1
s3 − k

1− k + L
(1− sk) + sk

)

= sε

(
1
s2 − sk

s− sk + sL
(1− sk) + sk

)

≤ sε

(
1
s2 − sk
1− sk

(1− sk) + sk

)
=

ε

s
.
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Thus, we obtain
ε

s
≤ lim sup

λ→∞
bm(µmλ

, µnλ+1) <
ε

s
,

and hence, our supposition, µn is a non-Cauchy sequence, is wrong and so {µn} is Cauchy
in χ.
Due to the completeness of χ, there will be an element u∗ ∈ χ such that

lim
n→∞

bm(µn, µ∗) = 0

Now, we will verify that Γµ∗ = µ∗. For this,

bm(µ
∗, Γµ∗) ≤ sbm(µ

∗, µn) + sbm(µn, Γµ∗)

≤ sbm(µ
∗, µn) + s2bm(µn, Γµn) + s2bm(Γµn, Γµ∗)

≤ sbm(µ
∗, µn) + s2bm(µn, Γµn) + s2[kbm(µn, µ∗) + L min{bm(µn, Γµn),

bm(µ
∗, Γµ∗), bm(µn, Γµ∗), bm(µ

∗, Γµn)}]
≤ sbm(µ

∗, µn) + s2bm(µn, Γµn) + s2[kbm(µn, µ∗) + L min{bm(µn, Γµn),

bm(µ
∗, Γµ∗), sbm(µn, µ∗) + sbm(µ

∗, Γµ∗), sbm(µ
∗, µn) + sbm(µn, Γµn)}].

Letting n→ ∞, we obtain

bm(µ
∗, Γµ∗) ≤ s2 min{0, bm(µ

∗, Γµ∗), sbm(µ
∗, Γµ∗)} = 0.

So, bm(µ∗, Γµ∗) = 0 =⇒ Γµ∗ = µ∗.
Hence, µ∗ is a fixed point of Γ.
Now, we shall show that µ∗ is unique. For this, take a fixed point of Γ, say q( 6= µ∗) ∈ χ,
then

0 < bm(µ
∗, q) = bm(Γµ∗, Tq)

≤ kbm(µ
∗, q) + L min{bm(µ

∗, Γµ∗), bm(q, Tq), bm(µ
∗, Tq), bm(q, Γµ∗)}

≤ kbm(µ
∗, q) + L min{0, 0, sbm(µ

∗, q) + sbm(q, Tq), sbm(q, µ∗) + sbm(µ
∗, Γµ∗)}

= kbm(µ
∗, q)

<
1
s3 bm(µ

∗, q) < bm(µ
∗, q),

which is a contradiction. Therefore, µ∗ = q.
Hence, the proof.

If we take L = 0 in Theorem 3, then we obtain the following result.

Corollary 2. Suppose Γ : (χ, bm, Ω)→ (χ, bm, Ω) is a contraction mapping, that is, Γ satisfies

bm(Γµ, Γη) ≤ kbm(µ, η), (9)

for all µ, η ∈ χ and some k ∈ (0, 1), where (χ, bm, Ω) is a complete convex b-metric space with
s > 1. Let µn = Ω(µn−1, Γµn−1; σn−1) be a sequence defined by choosing an initial point µ0 ∈ χ

with the property bm(µ0, Γµ0) < ∞, where 0 ≤ σn−1 < 1 for each n ∈ N. If k < 1
s3 and

0 ≤ σn−1 <
1
s3−k
1−k for each n ∈ N, then Γ has a fixed point in χ that is unique.

The following example illustrates the generality of Corollary 2 over Theorem 1 of [27].



Mathematics 2022, 10, 466 16 of 21

Example 4. Let (χ, bm, Ω) be a triplet as defined in Example 2 and Γ(µ) = µ
9 for each µ ∈ χ.

Now, we prove that Γ satisfies the inequality (9) for k = 1/9. For this, take

bm(Γµ, Γη) = [(Γµ− Γη)2 + |Γµ− Γη|]

=

[(µ

9
− η

9

)2
+
∣∣∣µ

9
− η

9

∣∣∣]

=
1
9

[
1
9
(µ− η)2 + |µ− η|

]

≤ 1
9

[
(µ− η)2 + |µ− η|

]
=

1
9

bm(µ, η),

for all µ, η ∈ χ. We choose an initial point µ0 ∈ χ and generate µn = Ω(µn, Γµn−1; σn−1) with

σn−1 = 1
65 <

1
s3−k
1−k as follows

Γµ0 =
µ0

9

µ1 =
1

65
µ0 +

64
65

Γµ0 =
73

585
µ0

µ2 =
1

65
µ1 +

64
65

Γµ1 =

(
73

585

)2
µ0

...

µn =
1

65
µn−1 +

64
65

Γµn−1 =

(
73

585

)n
µ0.

Thus, limn→∞ µn = 0. As the map Γ satisfies all the hypotheses of Corollary 2, hence, Γ has a
unique fixed point 0 in χ. To investigate the uniqueness, let us take a fixed point say q ∈ χ of Γ,
which is different from zero, then

0 < bm(µ
∗, q) = bm(Γµ∗, Tq)

= [(Γµ∗ − Tq)2 + |Γµ∗ − Tq|]

=

[(
µ∗

9
− q

9

)2
+

∣∣∣∣µ∗9 − q
9

∣∣∣∣
]

=
1
9

[
1
9
(µ∗ − q)2 + |µ∗ − q|

]
≤ 1

9

[
(µ∗ − q)2 + |µ∗ − q|

]
=

1
9

bm(µ
∗, q),

which is a contradiction. Thus, µ∗ = q.
Therefore, 0 is the only fixed point of Γ in χ. However, the contraction condition (9) is not satisfied
by the mapping Γ for any k < 1

s4 = 1
16 . Indeed, if we take µ = 1

5 and η = 1
10 , then

bm(µ, η) =

(
1
5
− 1

10

)2
+

(
1
5
− 1

10

)
=

11
100

,
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and

bm(Γµ, Γη) =

(
1

45
− 1

90

)2
+

(
1

45
− 1

90

)
=

91
8100

>
81

8100
=

1
100

=
1

11
· 11

100
=

1
11

bm(µ, η).

Thus, Theorem 1 of [27] is not applicable to ensure the existence and uniqueness of
the fixed point of map Γ.

Proposition 1. Let (χ, bm) be a b-metric space. Then, any map Γ : χ→ χ satisfying the Chatterjea
contraction satisfies the condition(B) if k < 1

s(s+1) .

Proof. Using the Chatterjea contractive condition and the property of b-metric, we observe
that

bm(Γµ, Γη) ≤ k[bm(µ, Γη) + bm(η, Γµ)]

≤ k[sbm(µ, η) + sbm(η, Γη) + bm(η, Γµ)]

≤ k
[
sbm(µ, η) + s2bm(η, Γµ) + s2bm(Γµ, Γη) + bm(η, Γµ)

]
.

It follows that

bm(Γµ, Γη) ≤ ks
1− ks2 bm(µ, η) +

k(s2 + 1)
1− ks2 bm(η, Γµ). (10)

In the similar manner, we also obtain

bm(Γµ, Γη) ≤ k[bm(µ, Γη) + bm(η, Γµ)]

≤ k[sbm(µ, Γη) + sbm(η, µ) + bm(µ, Γµ)]

≤ k
[
sbm(µ, Γη) + s2bm(η, µ) + s2bm(µ, Γη) + bm(Γη, Γµ)

]
,

which yields

bm(Γµ, Γη) ≤ ks
1− ks2 bm(µ, η) +

k(s2 + 1)
1− ks2 bm(µ, Γη). (11)

Again, using the Chatterjea contraction and the property of b-metric, we have the inequality

bm(Γµ, Γη) ≤ k[bm(µ, Γη) + bm(η, Γµ)]

≤ k[sbm(µ, η) + sbm(η, Γη) + sbm(η, Γη) + bm(Γη, Γµ)].

That implies

bm(Γµ, Γη) ≤ ks
1− ks

bm(µ, η) +
2ks

1− ks
bm(η, Γη)

≤ ks
1− ks2 bm(µ, η) +

k(s2 + 1)
1− ks2 bm(η, Γη). (12)

With the similar argument, we obtain

bm(Γµ, Γη) ≤ k[bm(µ, Γη) + bm(η, Γµ)]

≤ k[sbm(µ, Γµ) + sbm(Γµ, Γη) + sbm(η, Γµ) + bm(µ, Γµ)],



Mathematics 2022, 10, 466 18 of 21

which gives

bm(Γµ, Γη) ≤ ks
1− ks

bm(µ, η) +
2ks

1− ks
bm(µ, Γµ)

≤ ks
1− ks2 bm(µ, η) +

k(s2 + 1)
1− ks2 bm(µ, Γµ). (13)

Now, by using Equations (10)–(13), we have

bm(Γµ, Γη) ≤ ks
1− ks2 bm(µ, η) +

k(s2 + 1)
1− ks2 min{bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(η, Γµ)}

≤ pbm(µ, η) + L min{bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(η, Γµ)},

where p = ks
1−ks2 < 1

(
as k < 1

s(s+1)

)
and L = k(s2+1)

1−ks2 ≥ 0. Thus, the map Γ satisfies
condition (B).

Proposition 2. If s ≥ 1 and k ∈ [0, 1/2) such that σ <
1
s4−

k
s2−k

1+k
s −k

, then σ <
1
s3−p

1−p+L , where

p = ks
1−ks2 and L = k(s2+1)

1−ks2 .

Proof. It is observed that

σ <
1
s4 − k

s2 − k
1+k

s − k

=

1−ks2−ks4

s4(1−ks2)

1+k−sk
s(1−ks2)

=

(1−ks2)−ks4

s3(1−ks2

(1−ks2)−ks+ks2+k
1−ks2

,

which yields that

σ <
1
s3 − ks

1−ks2

1− ks
1−ks2 +

k(s2+1)
1−ks2

⇒ σ <
1
s3 − p

1− p + L
.

The following result is another description of Chatterjea fixed point theorem in a
convex b-metric space.

Corollary 3. Suppose Γ : (χ, bm, Ω)→ (χ, bm, Ω) is a Chatterjea contraction mapping, that is, Γ
satisfies

bm(Γµ, Γη) ≤ k[bm(µ, Γη) + bm(η, Γµ)], (14)

for all µ, η ∈ χ and some k ∈
(

0, 1
2

)
, where (χ, bm, Ω) is a complete convex b-metric space with

s > 1. Let µn = Ω(µn−1, Γµn−1; σn−1) be a sequence defined by choosing an initial point µ0 ∈ χ

with the property bm(µ0, Γµ0) < ∞, where 0 ≤ σn−1 < 1 for each n ∈ N. If k < 1
s2(s2+1) and

0 ≤ σn−1 <
1
s4−

k
s2−k

1+k
s −k

for each n ∈ N, then Γ has a fixed point in χ that is unique.

Proof. As Γ satisfies Equation (14), then on account of Proposition 1, it will be satisfying
condition (B); that is, Γ satisfies

bm(Γµ, Γη) ≤ pbm(µ, η) + L min{bm(µ, Γµ), bm(η, Γη), bm(µ, Γη), bm(v, Γµ)},
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where p = ks
1−ks2 and L = k(s2+1)

1−ks2 .

Since σn−1 <
1
s4−

k
s2−k

1+k
s −k

for each n ∈ N, then Proposition 2 implies σn−1 <
1
s3−p

1−p+L . Thus,

Theorem 3 yields that Γ has a unique fixed point in χ.

Example 5. In Example 3, if we replace the map Γ : χ→ χ with

T(µ) =

{
µ
21 , µ ∈ [0, 1)

1
23µ , µ ∈ [1, ∞).

Then, by following the steps as in example 3, it can be verified that the map Γ satisfies the inequal-
ity (14) for k = 1

21 < 1
s2(s2+1) . Now, we take µ0 ∈ χ and generate µn = Ω(µn, Γµn−1; σn−1) with

σn−1 = 1
161 <

1
s4−

k
s2−k

1+k
s −k

as

1. If µ0 < 1, then

Γµ0 =
µ0

21

µ1 =
1

161
µ0 +

160
161

Γµ0 =
181

3881
µ0

µ2 =
1

161
µ1 +

160
161

Γµ1 =

(
181

3881

)2
µ0

...

µn =
1

161
µn−1 +

160
161

Γµn−1 =

(
181

3881

)n
µ0.

That implies µn → 0 as n→ ∞.
2. If µ0 ≥ 1, then

Γµ0 =
1

23µ0

µ1 =
1

161
µ0 +

160
161

Γµ0

=
1

161
µ0 +

160
161
· 1

23µ0

µ1

µ0
=

1
161

+
160

3703
· 1

µ2
0
≤ 183

3703
.

If µ1 ∈ [0, 1), then as in above case, µn → 0 as n → ∞. If µ1 ∈ [1, ∞), then µ2
µ1

=
1

161 + 160
3703 ·

1
µ2

1
≤ 183

3703 . Proceeding in a similar fashion, we can assume that µn−1 ∈ [1, ∞),

then we obtain,
µn

µn−1
=

1
161

+
160

3703
· 1

µ2
n−1
≤ 183

3703
,

and
µn

µ0
=

µ1

µ0
· µ2

µ1
· · · µn

µn−1
≤
(

183
3703

)n
.

So, the sequence µn tends to zero as n → ∞. Thus, all the hypotheses of Corollary 3 are satisfied,
and hence, the map Γ has only one fixed point in χ, which is µ = 0.

Remark 1. It is clear from Examples 3 and 5 that Corollaries 1 and 3 are independent to each other.
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3. Conclusions

Recently, Chen et al. [27] defined the notion of convex b-metric spaces and proved
Banach and Kannan’s type fixed point theorems in convex b-metric spaces. Here, motivated
by this idea, we established several fixed point theorems for Cirić contraction as well as
for the maps satisfying the condition (B) in the context of a convex b-metric space and
presented some supporting examples for the proved results.
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