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Abstract: In high-dimensional regression models, the Bayesian lasso with the Gaussian spike and slab
priors is widely adopted to select variables and estimate unknown parameters. However, it involves
large matrix computations in a standard Gibbs sampler. To solve this issue, the Skinny Gibbs sampler
is employed to draw observations required for Bayesian variable selection. However, when the sample
size is much smaller than the number of variables, the computation is rather time-consuming.
As an alternative to the Skinny Gibbs sampler, we develop a variational Bayesian approach to
simultaneously select variables and estimate parameters in high-dimensional linear mixed models
under the Gaussian spike and slab priors of population-specific fixed-effects regression coefficients,
which are reformulated as a mixture of a normal distribution and an exponential distribution.
The coordinate ascent algorithm, which can be implemented efficiently, is proposed to optimize
the evidence lower bound. The Bayes factor, which can be computed with the path sampling
technique, is presented to compare two competing models in the variational Bayesian framework.
Simulation studies are conducted to assess the performance of the proposed variational Bayesian
method. An empirical example is analyzed by the proposed methodologies.

Keywords: Bayesian lasso; evidence lower bound; high-dimensional linear mixed model; spike and
slab priors; variational Bayesian inference

1. Introduction

Linear mixed models are widely used to analyze longitudinal and correlated data by
considering the between-subject and within-subject variations and incorporating the ran-
dom effects to account for heterogeneity among the subjects in many fields, such as psy-
chology, medicine, epidemiology and econometrics. Various methods have been developed
to estimate fixed-effects parameters and variance–covariance matrices for unobservable
random effects and noises or select fixed-effects and random-effects components, even
if it is quite challenging for the problem of variable selection and parameter estimation
in linear mixed models. For example, see [1] for restricted maximum likelihood estimation
of parameters, ref [2] for EM algorithm of parameter estimation, refs [3,4] for Bayesian
parameter estimation, ref [5] for Bayesian random effects selection and [6] for moment-
based method for random effects selection. The aforementioned methods mainly focus
on low-dimensional linear mixed models, while high-dimensional data have become in-
creasingly common with the rapid development of modern information technologies that
facilitate data collection. Thus, the aforementioned methods do not work well in high-
dimensional linear mixed models, and so some penalized methods have developed to
simultaneously estimate parameters and select variables in high-dimensional linear mixed
models. For example, Bondell, Krishna and Ghosh [7] and Ibrahim et al. [8] proposed
the penalized likelihood methods for joint selection of fixed and random effects; Schelldor-
fer, Buhlmann and van De Geer [9] proposed an `1–penalized estimation procedure; Fan
and Li [10] investigated the problem of fixed and random effects selection when the cluster
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sizes are balanced; Li et al. [11] presented a doubly regularized approach to simultaneously
select fixed and random effects; Bradic, Claeskens and Gueuning [12] considered testing
a single parameter of fixed effects in high-dimensional linear mixed models with fixed
cluster sizes, fixed numbers of random effects and sub-Gaussian designs; Li, Cai and
Li [13] proposed a penalized quasi-likelihood method for statistical inference on unknown
parameters in high-dimensional linear mixed-effects models. However, the aforementioned
regularization methods are computationally complex and unstable and they do not con-
sider the prior information of fixed-effects parameters and variance–covariance matrices,
which may lead to unsatisfactory estimation accuracy of parameters or variance–covariance
matrices. Bayesian approaches for variable selection and parameter estimation have re-
ceived much attention over the past years because they can largely improve the accuracy
and efficiency of parameter estimation, consistently select important variables and provide
more information for variable selection than the corresponding penalization method with
a highly non-convex optimization problem by imposing various priors on model param-
eters. For example, see [14] for reference prior, ref [15] for normal mixture prior, ref [16]
for spike and slab prior, ref [17] for horseshoe prior and [18] for shrinking and diffusing
prior. In the high-dimensional setting, Bayesian lasso, Bayesian adaptive lasso or the indi-
cator model method, together with the Markov chain Monte Carlo (MCMC) algorithm, are
widely used to select important variables. For example, see [19] for Bayesian lasso, ref [20]
for Bayesian adaptive lasso and [21,22] for the EM approach in the Bayesian framework.
The above-mentioned literature involves the implementation of the standard Gibbs sampler
for posterior computation, which is not so scalable for large numbers of fixed-effects com-
ponents [23]. To address the issue, Narisetty, Shen and He [23] proposed a Skinny Gibbs
algorithm by using a sparse matrix to replace the high-dimensional variance–covariance
matrix, which avoids large matrix operations. However, implementing the above MCMC
algorithm in the presence of high-dimensional data may still be subject to the well-known
ill-posed problems, i.e., low efficiency, slow convergence and huge memory being required.

As an alternative to the MCMC, the variational Bayesian method, also called ensemble
learning, is widely adopted to approximate intractable integrals involved in Bayesian
inference or machine learning due to its good properties, such as high-speed computation.
Its basic idea is to transform the high-dimensional integration problem into an optimization
problem in making Bayesian inference and then optimize the evidence lower bound (ELB),
which is efficiently computed, and finally utilize the ELB to obtain a variational approxima-
tion to the posterior distribution in Bayesian analysis. The variational Bayesian approach
has been applied to some familiar models, for example, latent variable models [24], mix-
tures of factor analysis [25], graphical models [26] and partially linear mean shift models
with high-dimensional data [27].

Motivated by the aforementioned variational Bayesian studies, we develop a novel
variational Bayesian approach to estimate model parameters and select important variables
under the Skinny Gibbs sampling framework in a linear mixed model with low-dimensional
random effects and high-dimensional fixed effects. We specify the spike and slab priors
for the population-specific fixed-effects regression coefficients with completely different
shrinkage parameters, which overcomes the problem of selecting a high-dimensional vector
of the shrinkage parameters. We reformulate the spike and slab priors of parameter as
a mixture of a normal distribution and an exponential distribution, which avoids the high-
dimensional integral problem. The coordinate ascent algorithm, which can be implemented
efficiently, is proposed to optimize the ELB. The Bayes factor, which can be computed
with the path sampling technique, is presented to compare two competing models in the
variational Bayesian framework. The merits of the proposed variational Bayesian method
are (i) simultaneously estimating parameters and variance–covariance matrices and select
fixed- and random-effects components with quite a low computation cost, (ii) efficiently
analyzing high-dimensional data without requiring the non-convex optimization and avoid-
ing the curse of dimensionality problem, (iii) automatically incorporating the shrinkage
parameters and (iv) avoiding large matrix computations.
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The rest of the article is organized as follows: Section 2 introduces the linear mixed
model setup, including the spike and slab priors. Section 3 describes the Skinny Gibbs
sampler algorithm for selecting fixed- and random-effects components and estimating
parameters in coefficients and variance–covariance matrices via the Bayesian Lasso method.
Section 4 develops a variational Bayesian approach to approximate posterior distributions
of parameters and random effects and presents the Bayes factor for model comparison.
The coordinate ascent algorithm is adopted to optimize the ELB in Section 4. Simulation
studies are considered in Section 5. An empirical example is illustrated by the proposed
methodologies in Section 6. A simple discussion is given in Section 7. Technique details are
presented in the Appendix A, Appendix B and Appendix C.

2. Model

Consider a dataset with n subjects. For the ith subject, let yij be the observation of the
response variable, xij be a p× 1 vector of covariates associated with the fixed effects and zij
be a q× 1 vector of covariates associated with the random effects, which may be a subvector
of xij for j = 1, . . . , ni, where ni is the number of times observed repeatedly for the ith
subject. Generally, ni varies across subjects. For simplicity, we suppose that yij has been
centered at zero for avoiding the requirement of intercept and n1 = . . . = nn = m, i.e.,
the balanced design. It is assumed that p � n and only a small number of covariates xij
contribute to response variable yij, i.e., xij has sparsity, while q is smaller than n.

For the dataset D = {(yij, xij, zij) : i = 1, . . . , n, j = 1, . . . , m}, we consider the follow-
ing linear mixed model:

yij = x>ij β + z>ij bi + εij, i = 1, . . . , n, j = 1, . . . , m, (1)

where β = (β1, . . . , βp)> is a p× 1 vector of population-specific fixed-effects regression
coefficients, bi is a q× 1 vector of subject-specific random effects and εij is measurement
error. Here, we assume that b1, . . . , bn are independent and identically distributed (i.i.d.) as
the multivariate normal distribution with mean zero and covariance matrix Q and εij’s are
independently distributed as N (0, σ2

j ), where N (·, ·) represents the normal distribution.

Here, σ2
1 , . . . , σ2

m are not completely different but some of them may be identical.
Under the aforementioned assumptions, a penalized likelihood approach to estimate

β is implemented by

β̂ = arg max
β∈Rp

[
−1

2

n

∑
i=1

m

∑
j=1

(yij − x>ij β)2

σ2
j + z>ij Qzij

+ fλ(β)

]
, (2)

where fλ(β) is some appropriate penalty function indexed by the penalty parameter λ. In
variable selection literature, it is usually assumed that fλ(β) has the form: fλ(β) = ∑

p
k=1 fλk(βk),

where fλk(βk) takes the `0-norm, `1-norm, MCP penalty [28], SCAD penalty [29] and Elastic-
Net penalty [30]. Recently, it was widely recognized that β̂ can be regarded as a posterior mode
of β with some proper prior. Inspired by this idea, we consider Bayesian variable selection
procedure based on some proper prior on β.

Following [31], we consider the following spike and slab prior of β:

f (β|γ, λ0, λ1) =
p

∏
k=1
{γkg1(βk|λ1) + (1− γk)g0(βk|λ0)}, (3)

where γ = (γ1, . . . , γp)>, in which γk is a binary latent variable and follows a Bernoulli
distribution with the probability ρk = Pr(γk = 1), i.e., γk = 1 indicates that the kth
covariate is active and γk = 0 implies that the kth covariate is inactive and g1(βk|λ1) is
usually referred to as a diffuse slab prior reflecting the effect of an active covariate, while
g0(βk|λ0) is called a concentrated spike prior reflecting the negligibly unimportant effect
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of an inactive covariate for k = 1, . . . , p. Let f (γ|ρ) be the prior distribution of γ indexed
by ρ. It is assumed that f (γ|ρ) has the form

f (γ|ρ) =
p

∏
k=1

ρ
γk
k (1− ρk)

1−γk , (4)

where ρ = (ρ1, . . . , ρp)>. For simplicity, we assume ρ1 = . . . = ρp = ρ, which is the ex-
pected proportion of the active covariates. Generally, one can take g0(·) and g1(·) as the nor-
mal distribution with a small and a large variance, respectively. However, for the spike and
slab lasso, we take the following slab and spike priors

g1(βk|λ1) =
λ1

2
e−λ1|βk |, g0(βk|λ0) =

λ0

2
e−λ0|βk |, (5)

respectively, where λ1 should tend to zero and λ0 should tend to ∞ as the sample size is
sufficiently large, which implies that the inactive covariates will be detected as zeros in that
small values of βk relative to 1/λ0 or λ1 are truncated to zero. Following [32], the den-
sity g`(βk|λ`) = λ`

2 exp(−λ`|βk|) can be hierarchically written as a mixture of a normal
distribution and an exponential distribution, i.e.,

βk|ξ2
`k, γk = ` ∼ N (0, ξ2

`k), ξ2
`k|λ

2
` ∼ Exp(λ2

`/2), ` = 0, 1. (6)

Incorporating the above idea shows that the posterior distributions of binary latent
variables can be employed to distinguish active covariates from inactive ones in the consid-
ered model.

For covariance matrix Q, the proportion ρ, λ2
0, λ2

1 and σ2
j , we consider the follow-

ing priors:

Q ∼ IW(S0, ν0), ρ ∼ Beta(aγ, bγ), λ2
0 ∼ Γ(c0, d0), λ2

1 ∼ Γ(c1, d1), σ−2
j ∼ Γ(c2, d2), (7)

where IW(·, ·) denotes the inverted Wishart distribution, Beta(·, ·) represents the Beta
distribution, Γ(·) is the gamma distribution, IG(·, ·) is the inverse gamma distribution and
S0, ν0, aγ, bγ, c0, d0, c1, d1, c2 and d2 are the user-specified hyperparameters. As mentioned
above, λ1 should tend to zero and λ0 should tend to ∞ as the sample size is sufficiently
large, which implies that c1/d1 is smaller than c0/d0. To this end, we assume c1 � c0 and
d0 � d1.

Based on the above discussion, we can rewrite the considered linear mixed model
together with the spike and slab lasso prior as the following hierarchical models:

yij|bi ∼ N (µij, σ2
j ), µij = x>ij β + z>ij bi, i = 1, . . . , n, j = 1, . . . , m,

bi ∼ Nq(0, Q), i = 1, . . . , n,
βk|ξ2

1k, γk = 1 ∼ N (0, ξ2
1k), ξ2

1k|λ
2
1 ∼ Exp(λ2

1/2), λ2
1 ∼ Γ(c1, d1),

βk|ξ2
0k, γk = 0 ∼ N (0, ξ2

0k), ξ2
0k|λ

2
0 ∼ Exp(λ2

0/2), λ2
0 ∼ Γ(c0, d0),

γk ∼ Bernoulli(ρ), k = 1, . . . , p,
Q ∼ IW(S0, ν0), ρ ∼ Beta(aγ, bγ), σ−2

j ∼ Γ(c2, d2), j = 1, . . . , m.

(8)

3. Skinny Gibbs Sampler for Bayesian Lasso

Let Y = {yij : i = 1, . . . , n, j = 1, . . . , m}, X = {xij : i = 1, . . . , n, j = 1, . . . , m}
and Z = {zij : i = 1, . . . , n, j = 1, . . . , m}. From Equation (8), the joint posterior density
of parameters β, Q, γ = {γ1, . . . , γp}, σ2 = (σ2

1 , . . . , σ2
m)
> and ϑ = {ρ, λ0, λ1} given

the data D = {Y , X, Z} is given by
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f (β, Q, γ, σ2, ϑ|D) ∝

{
n
∏
i=1

m
∏
j=1

ψ(yij, x>ij β, z>ij Q−1zij + σ2
j )

}{
m
∏
j=1

f (σ−2
j )

}
×

p
∏

k=1
{ρg1(βk|λ1)}γk{(1− ρ)g0(βk|λ0)}1−γk fW(Q) fϑ(ϑ),

(9)

where ψ(x, µ, ς2) is the probability density of normal random variable x with mean µ
and variance ς2, f (σ−2

j ) denotes the probability density of random variable σ−2
j , fW(Q) is

the inverted Wishart density function of random matrix Q and fϑ(ϑ) represents the joint
prior density function of random variable vector ϑ. It is rather difficult to sample ob-
servations from the joint posterior density given in Equation (9) in the presence of high-
dimensional fixed effects because of some non-standard distributions and large matrix
computations involved. In what follows, the Gibbs sampler is utilized to sample observa-
tions required for Bayesian inference.

To avoid expensive computation in running the Gibbs sampler, similarly to [23], at
each Gibbs iteration, we divide parameter vector β into two subvectors corresponding to
those active (i.e., γk = 1) and inactive (i.e., γk = 0) covariates, respectively. To wit, we
define β = (β>A , β>I )

>, where βA and βI are the subvectors of β associated with γk = 1 and
γk = 0, respectively. Suppose that the cardinality of the set A is r. Without loss of generality,
it is assumed that the first r components of β correspond to βA and the last p− r components
of β correspond to βI . Similarly, we decompose xij as xij = (x>ijA, x>ijI)

>. Under the above
assumptions, the Gibbs sampler is implemented as follows. Observations required at
each Gibbs iteration are iteratively drawn from the following conditional distributions:
fA(βA|D, b, σ2), f I(βI |D), f (bi|D, β, σ2, Q), f (ξ2

0k|βk, γk), f (ξ2
1k|βk, γk), fγ(γk|D, b, ξ1, ξ0),

f (Q|b), f (σ−2
j |D, b), f (ρ|γ), f (λ2

0|ξ0) and f (λ2
1|ξ1), which are given in Appendix A, where

b = {b1, . . . , bn}, ξ0 = {ξ2
01, . . . , ξ2

0p} and ξ1 = {ξ2
11, . . . , ξ2

1p}.
Although the Skinny Gibbs sampler introduced above can be easily conducted, it is

rather time-consuming for a sufficiently large p. To address the issue, we investigate a fast
yet efficient approach as follows, i.e., the variational Bayesian method.

4. Variational Bayesian Inference
4.1. Variational Bayes

It follows from the principle of variational inference that it is necessary to first con-
struct a variational set F of densities for random variables Ξ having the same support
as the posterior density f (Ξ|D), where Ξ = {β, b, ξ0, ξ1, Q, γ, σ2, ϑ}. It is assumed that
q(Ξ) ∈ F is any variational density for approximating f (Ξ|D). The variational Bayes aims
to find the best approximation to f (Ξ|D) in terms of the Kullback–Leibler divergence
between q(Ξ) and f (Ξ|D), which is a solution to the optimization problem:

q∗(Ξ) = argmin
q(Ξ)∈F

KL(q(Ξ) ‖ f (Ξ|D)), (10)

where

KL(q(Ξ) ‖ f (Ξ|D)) =
∫

log
{

q(Ξ)

f (Ξ|D)

}
q(Ξ)dΞ

=
∫

log
{

q(Ξ) f (Y |X, Z)
f (Ξ, Y |X, Z)

}
q(Ξ)dΞ

= Eq(Ξ){log q(Ξ)} − Eq(Ξ){log f (Ξ, Y |X, Z)}

+ log f (Y |X, Z) ≥ 0,

(11)

in which Eq(Ξ)(·) is the expectation taken with respect to q(Ξ). Here, KL(q(Ξ) ‖ f (Ξ|D))
equals zero if and only if q(Ξ) ≡ f (Ξ|D). Due to the intractable high-dimensional integral
involved, it is quite troublesome to conduct the above optimization problem.
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However, it follows from L{q(Ξ)} = Eq(Ξ){log f (Ξ, Y |X, Z)} − Eq(Ξ){log q(Ξ)} that

log f (Y |X, Z) = KL(q(Ξ) ‖ f (Ξ|D)) +L{q(Ξ)} ≥ L{q(Ξ)}. (12)

Thus, L{q(Ξ)} might be regarded as a lower bound of log f (Y |X, Z) and is usually
referred to as the evidence lower bound (ELB). Then, minimizing KL(q(Ξ) ‖ f (Ξ|D)) is
equivalent to maximizing L{q(Ξ)} in that log f (Y |X, Z) is not related to Ξ. That is,

q∗(Ξ) = argmin
q(Ξ)∈F

KL(q(Ξ) ‖ f (Ξ|D)) = argmax
q(Ξ)∈F

L{q(Ξ)}. (13)

Finding the problem of the best approximation to f (Ξ|D) is transformed into an opti-
mization problem of maximizing L{q(Ξ)} over the variational family F. The complexity
of the optimization problem is associated with that of the variational set F. Thus, it is rather
desirable to implement the optimization problem over a relatively simple variational set F.

Following the widely used methods for constructing a relatively simple variational
set, we take F as the mean-field variational family in which components of Ξ are mutually
independent and each has a distinct factor in the variational density. Thus, we can assume
that the variational density q(Ξ) has the form

q(Ξ) = q(β)q(b)q(σ−2)q(γ)q(Q)q(ϑ)
p

∏
k=1
{q(ξ2

0k)q(ξ
2
1k)} ≡

S
∏
s=1

qs(ζs), (14)

where qs(ζs)s are unspecified but the above assumed factorization across components is pre-
specified. Similarly to considerable variational literature, the optimal solutions of qs(ζs)s
can be obtained by maximizing L{q(ζ1, . . . , ζS )} via the coordinate ascent method, where
Ξ = {ζ1, . . . , ζS}.

Following the idea of the coordinate ascent method given in [33–35], when fixing
other variational factors qj(ζ j) for j 6= s, i.e., ζ−s = {ζ j : j 6= s, j = 1, . . . ,S}, the optimal
variational density q∗s (ζs) maximizing L{q(Ξ)} with respect to qs(ζs) has the form

q∗s (ζs) ∝ exp
[
E−s

{
log f (ζs|ζ−s,D)

}]
∝ exp[E−s{log f (Y , Ξ|X, Z)}],

(15)

where f (ζs|ζ−s,D) is the conditional density for ζs given (ζ−s D) and E−s(·) represents
the expectation evaluated for q−s(ζ−s) = ∏j 6=s qj(ζ j). Equation (15) implies that E−s(·) is
not associated with the sth variational factor qs(ζs) and the optimal variational density
q∗s (ζs) cannot be obtained in that the q−s(ζ−s) on the right-hand side are not the optimal
ones. To address this issue, the coordinate updating algorithm is employed to iteratively
update q∗s (ζs) via Equation (15). After the coordinate updating algorithm converges, we
can take mean or mode of the optimal variational density q∗s (ζs) as a variational Bayesian
estimate of parameter vector ζs and regard the covariate as active if its corresponding
variational Bayesian estimate deviates from zero.

It is easily shown from Equation (15) that the optimal density q∗β(β) has the form

q∗βA
(βA) ∼ Nr(µA, ΣA), q∗β I

(βI) ∼ Np−r(0, ΣI), (16)

respectively, where Σ−1
A = ∑n

i=1 ∑m
j=1 xijAx>ijAE∗

σ2
j
(σ−2

j ) + diag(ξA) with ξA = {E∗ξ1k
(ξ−2

1k ), k ∈

A}, µA = ΣA[∑n
i=1 ∑m

j=1 xijA{yij − z>ij E∗bi
(bi)}E∗σ2

j
(σ−2

j )] and Σ−1
I = diag(∑n

i=1 ∑m
j=1 xijIx>ijI)

+diag(ξ0
I) = nmIp−r + diag(ξ0

I) with ξ0
I = {E∗ξ0k

(ξ−2
0k ), k ∈ I}, in which E∗

σ2
j
(·), E∗ξ1k

(·), E∗ξ0k
(·)

and E∗bi
(·) are the expectations taken with respect to q∗

σ2
j
(σ−2

j ), q∗ξ1k
(ξ−2

1k ), q∗ξ0k
(ξ−2

0k ) and q∗bi
(bi), re-

spectively. Then, the estimated posterior means and variance matrices of βA and βI for the vari-
ational densities q∗βA

(βA) and q∗βI
(βI) are E∗A(βA) = µA, var∗A(βA) = ΣA, E∗I (βI) = 0 and
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var∗I (βI) = ΣI, respectively. Moreover, the mode estimator β
q
A of βA for the variational density

q∗βA
(βA) is β

q
A = µA, while the mode estimator β

q
I of βI for the variational density q∗βI

(βI) is

β
q
I = 0.

The optimal density q∗bi
(bi) is the multivariate normal distribution

q∗bi
(bi) ∼ Nq(µb, Σb), (17)

where Σ−1
b = E∗Q(Q) + ∑m

j=1 zijz>ij E∗
σ2

j
(σ−2

j ) and µb = Σb[∑
m
j=1 zij{yij − x>ijAE∗A(βA)}E∗σ2

j
(σ−2

j )].

Then, the estimated posterior mean and variance matrix of bi for variational densities q∗bi
(bi)

are E∗bi
(bi) = µb and var∗bi

(bi) = Σb, respectively. Moreover, the mode estimator bq
i of bi

for variational density q∗bi
(bi) is bq

i = µb. The optimal densities q∗ξ0k
(ξ−2

0k ) and q∗ξ1k
(ξ−2

1k ) are
given by

q∗ξ0k
(ξ−2

0k ) ∼ IvG(a∗0ξk, b∗0ξk) for k ∈ I, q∗ξ1k
(ξ−2

1k ) ∼ IvG(a∗1ξk, b∗1ξk) for k ∈ A, (18)

respectively, where a∗0ξk =
√

E∗λ0
(λ2

0)/var∗βk
(βk), a∗1ξk =

√
E∗λ1

(λ2
1)/[{E∗βk

(βk)}2 + var∗βk
(βk)],

b∗0ξk = E∗λ0
(λ2

0), b∗1ξk = E∗λ1
(λ2

1) and E∗λ0
(·) and E∗λ1

(·) are the expectations taken with respect

to q∗λ0
(λ2

0) and q∗λ1
(λ2

1), respectively. In this case, we have E∗ξ0k
(ξ−2

0k ) = a∗0ξk, E∗ξ1k
(ξ−2

1k ) = a∗1ξk,

var∗ξ0k
(ξ−2

1k ) = (a∗0ξk)
3/b∗0ξk and var∗ξ1k

(ξ−2
1k ) = (a∗1ξk)

3/b∗1ξk. Moreover, the mode estimators

ξ
−2q
0k and ξ

−2q
1k of ξ−2

0k and ξ−2
1k for variational densities q∗ξ0k

(ξ−2
0k )

and q∗ξ1k
(ξ−2

1k ) are ξ
−2q
0k = a∗0ξk

√
1 + (1.5a∗0ξk/b∗0ξk)

2 − 1.5(a∗0ξk)
2/b∗0ξk for k ∈ I and ξ

−2q
1k =

a∗1ξk

√
1 + (1.5a∗1ξk/b∗1ξk)

2 − 1.5(a∗1ξk)
2/b∗1ξk for k ∈ A, respectively.

To derive the optimal density q∗γk
(γk), we denote

log($k) = E∗ρ(log ρ)− E∗ρ{log(1− ρ)}+ 1
2

[
E∗ξ1k
{log(ξ−2

1k )} − E∗ξ0k
{log(ξ−2

0k )}
]

+E∗βk
(βk)

n
∑

i=1

m
∑

j=1
{yij − x>ij,Ck

E∗β(βCk
)− z>ij E∗bi

(bi)}xijkE∗
σ2

j
(σ−2

j )

−1
2

[
var∗βk

(βk) + {E∗βk
(βk)}2

]{ n
∑

i=1

m
∑

j=1
x2

ijkE∗
σ2

j
(σ−2

j )− E∗ξ0k
(ξ−2

0k ) + E∗ξ1k
(ξ−2

1k )

}
,

(19)

where Ck = {` : γ` = 1, ` 6= k ∈ A} = A\{k}, which is an index set with the kth index
deleted from the set A. Thus, latent variable γk is sampled from the Bernoulli distribution
with the probability ςk = $k/($k + 1), i.e., γk|D, b, σ ∼ Bernoulli(ςk) for k = 1, . . . , p.
In this case, the estimated posterior mean and variance of γk for variational density q∗γk

(γk)

are E∗γk
(γk) = ςk and var∗γk

(γk) = ςk(1− ςk), respectively. Thus, the mode estimator γ
q
k

of γk for variational density q∗γk
(γk) is γ

q
k = ςk for k = 1, . . . , p.

The optimal density q∗Q(Q) has the form

q∗Q(Q) ∼ IWq(S∗0 , ν∗0 ), (20)

where S∗0 = S0 + nµbµ>b + nΣb with µb and Σb defined in Equation (17) and ν∗0 = ν0 + n.
Then, we have E∗Q(Q) = S∗0/(ν∗0 − q− 1). Moreover, the mode estimator Qq of Q is given
by Qq = S∗0/(ν∗0 + q + 1).

The optimal density q∗
σ2

j
(σ−2

j ) (j = 1, . . . , m) has the form

q∗
σ2

j
(σ−2

j ) ∼ Γ
(n

2
, b∗σ
)

, (21)

where b∗σ = 0.5 ∑n
i=1 hij, hij = (yij − µ∗ij)

2 + x>ijAΣAxijA + x>ijIΣI xijI + z>ij Σbzij

and µ∗ij = x>ijAµA + z>ij µb. Thus, we have E∗σj
(σ−2

j ) = n/ ∑n
i=1 hij and var∗σj

(σ−2
j ) =
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2n/(∑n
i=1 hij)

2. In this case, the mode estimator σ
−2q
j of σ−2

j for variational density q∗
σ2

j
(σ−2

j )

is σ
−2q
j = (n− 2)/ ∑n

i=1 hij for j = 1, . . . , m.
The optimal density q∗ρ(ρ) can be expressed as

q∗ρ(ρ) ∼ Beta(cρ, dρ), (22)

where cρ = aγ + ∑
p
k=1 E∗γk

(γk) and dρ = bγ + p − ∑
p
k=1 E∗γk

(γk). Thus, we have
E∗ρ(ρ) = cρ/(cρ + dρ) and var∗ρ(ρ) = cρdρ/{(cρ + dρ)2(cρ + dρ − 1)}. In this case, the mode
estimator of ρ is given as ρq = cρ/(cρ + dρ).

The optimal densities q∗λ0
(λ2

0) and q∗λ1
(λ2

1) are

q∗λ0
(λ2

0) ∼ Γ(a∗0λ, b∗0λ), q∗λ1
(λ2

1) ∼ Γ(a∗1λ, b∗1λ), (23)

respectively, where a∗0λ = c0 + p−∑
p
k=1 E∗γk

(γk), b∗0λ = d0 +∑
p
k=1{1−E∗γk

(γk)}E∗ξ0k
(ξ2

0k)/2,

a∗1λ = c1 + ∑
p
k=1 E∗γk

(γk) and b∗1λ = d1 + ∑
p
k=1 E∗γk

(γk)E∗ξ1k
(ξ2

1k)/2. In this case, we ob-
tain E∗λ0

(λ2
0) = a∗0λ/b∗0λ, var∗λ0

(λ2
0) = a∗0λ/(b∗0λ)

2, E∗λ1
(λ2

1) = a∗1λ/b∗1λ and var∗λ1
(λ2

1) =

a∗1λ/(b∗1λ)
2. The mode estimators λ

2q
0 and λ

2q
1 of λ2

0 and λ2
1 for variational densities q∗λ0

(λ2
0)

and q∗λ1
(λ2

1) are λ
2q
0 = (a∗0λ − 1)/b∗0λ and λ

2q
1 = (a∗1λ − 1)/b∗1λ, respectively.

4.2. Optimizing L{q(Ξ)} via Coordinate Ascent Algorithm

The elaborated steps for optimizing L{q(Ξ)} via the coordinate ascent algorithm are
given below:

Step (a) Given the initial values of variational densities q∗β(β), q∗bi
(bi), q∗ξ0k(ξ

−2
0k ),

q∗ξ1k(ξ
−2
1k ), q∗γk

(γk), q∗Q(Q), q∗
σ2

j
(σ−2

j ), q∗ρ(ρ), q∗λ0
(λ2

0) and q∗λ1
(λ2

1), compute the lower

bound L{q(Ξ)} (denoted as L(0){q(Ξ)}) and set κ = 1.
Step (b) Compute variational density q∗β(β) and update E∗β(β).
Step (c) Compute variational density q∗bi

(bi) and update E∗bi
(bi).

Step (d) Compute variational density q∗ξ0k(ξ
−2
0k ) and update E∗ξ0k

(ξ−2
0k ).

Step (e) Compute variational density q∗ξ1k(ξ
−2
1k ) and update E∗ξ1k

(ξ−2
1k ).

Step (f) For k = 1, . . . , p, compute variational densities q∗γk
(γk) and update E∗γk

(γk).
Step (g) Compute variational density q∗Q(Q) and update E∗Q(Q).
Step (h) Compute variational densities q∗

σ2
j
(σ−2

j ) and update E∗σj
(σ−2

j ).

Step (i) Compute variational density q∗ρ(ρ) and update E∗ρ(ρ).
Step (j) Compute variational density q∗λ0

(λ2
0) and update E∗λ0

(λ2
0).

Step (k) Compute variational density q∗λ1
(λ2

1) and update E∗λ1
(λ2

1).
Step (l) Based on variational densities from Steps (b)–(k), compute the ELB L{q(Ξ)}
(denoted as L(κ){q(Ξ)}) and the relative change

RC =
|L(κ){q(Ξ)} −L(`−1){q(Ξ)}|

L(κ−1){q(Ξ)}
.

Step (m) Given sufficiently small ε, if RC < ε, the algorithm is stopped. Otherwise,
repeat Steps (b)–(l).

The preceding presented coordinate ascent algorithm for computing variational
Bayesian estimates of parameters is summarized as Algorithm 1 and converges to the solu-
tion of the optimization problem (13) because it satisfies the well-known KKT condition
for the considered model.
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Algorithm 1: Variational Bayesian estimation

Input: A data set D = {Y , X, Z} and an LMM f (Ξ,D)
Output: Variational densities q(Ξ) and estimates of parameters

1 Initialize: Variational factors q∗β(β), q∗bi
(bi)(i = 1, . . . , n), q∗ξ0k(ξ

−2
0k ) (k = 1, . . . , p),

q∗ξ1k(ξ
−2
1k ) (k = 1, . . . , p), q∗γk

(γk) (k = 1, . . . , p), q∗Q(Q), q∗
σ2

j
(σ−2

j ) (j = 1, . . . , m),

q∗ρ(ρ), q∗λ0
(λ2

0) and q∗λ1
(λ2

1) ;
2 while the ELBO has not converged do
3 Update q∗β(β) via Equation (16) and βq;
4 for i ∈ {1, . . . , n} do
5 Update q∗bi

(bi) via Equation (17) and bq
i ;

6 end
7 for k ∈ {1, . . . , p} do
8 Update q∗ξ0k(ξ

−2
0k ) via Equation (18) and ξ

−2q
0k ;

9 Update q∗ξ1k(ξ
−2
1k ) via Equation (18) and ξ

−2q
1k ;

10 Update q∗γk
(γk) via Equation (19) and γ

q
k ;

11 end
12 Update q∗Q(Q) via Equation (20) and Qq;
13 for j ∈ {1, . . . , m} do
14 Update q∗σj

(σ−2
j ) via Equation (21) and σ

−2q
j ;

15 end
16 Update q∗ρ(ρ) via Equation (22) and ρq;

17 Update q∗λ0
(λ2

0) via Equation (23) and λ
2q
0 ;

18 Update q∗λ1
(λ2

1) via Equation (23) and λ
2q
1 ;

19 Compute L{q∗(Ξq)} = Eq∗(Ξq
)
{log f (Y , Ξq|X, Z)} − Eq∗(Ξ){log q∗(Ξq)}

20 end
21 return q∗(Ξ) and Ξq

4.3. Model Comparison

The Bayes factor is a vital statistic for model comparison within the Bayesian frame-
work and is widely employed to choose a better model among the considered competing
models due to its merits for model selection: (i) it is a consistent selector; (ii) it plays
the part of an Occam’s razor, preferring the simpler model for the similar fits; (iii) it does
not need the models to be nested. For instance, see [36] for structural equation mod-
els and [37] for non-ignorable missing data. Denote f (Y |X, Z, Ξh,Hh) as the probability
density of the data {Y , X, Z} associated with the model Hh, where Ξh is the parameter
vector in the modelHh. Define f (Ξh|Hh) as the prior of Ξh for h = 0, 1. The Bayes factor
for comparing two competing modelsH0 andH1 can be written as

B10 =

∫
f (Y |X, Z, Ξ1,H1) f (Ξ1|H1)dΞ1∫
f (Y |X, Z, Ξ0,H0) f (Ξ0|H0)dΞ0

=
f (Y |X, Z,H1)

f (Y |X, Z,H0)
, (24)

where f (Y |X, Z,Hk) is the marginal likelihood for the modelHh for h = 0 and 1. However,
computing the Bayes factor B10 is a non-trivial task for our considered high-dimensional lin-
ear mixed model because of the intractable integral involved. Considerable methods have
been developed to compute the marginal likelihood f (Y |X, Z,Hk) or the Bayes factor, for ex-
ample, Laplace’s method [38], annealed importance sampling [39], bridge sampling [40],
path sampling (also called thermodynamic integration) [41], nested sampling [42], power
posteriors [43], hybrid method combining simulation and asymptotic approximations [44].
For a comprehensive review, refer to [45]. Here, a path sampling or thermodynamic integra-
tion method is adopted to compute B10 via a link model: Hζ01 = (1− ζ)H0 + ζH1, where
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ζ is a continuous parameter taking value in the interval [0, 1]. Thus, we have Hζ01 = H0
when ζ = 0 and Hζ01 = H1 when ζ = 1. Similarly to [41], we define the following class
of probability densities:

Q(ζ) = f (Y |X, Z, ζ) =
∫

f (Y , ζ|X, Z, Ξ) f (Ξ)dΞ, (25)

where f (Y , ζ|X, Z, Ξ) is the density of Y given X and Z under Hζ and f (Ξ) is the prior
of Ξ. Under the above definition, it is easily known that Q(0) = f (Y |X, Z,H0) and
Q(1) = f (Y |X, Z,H1). Following the argument of [41], we obtain

log B10 = log
Q(1)
Q(0) =

∫ 1

0
E{U(Y , ζ, Ξ|X, Z)}dζ, (26)

where E(·) represents the expectation taken with respect to the conditional density
f (Ξ, ζ|Y , X, Z) and U(Y , ζ, Ξ|X, Z) = d log f (Y , ζ, Ξ|X, Z)/dζ. Thus, applying the thermo-
dynamic integration [41] or powered posteriors method [43] to Equation (26), log B10 can
be estimated by

̂log B10 =
1
2

L
∑
`=0

(
ζ(`+1) − ζ(`)

)(
Ū(`+1) + Ū(`)

)
, (27)

where 0 = ζ(0) < ζ(1) < · · · < ζ(L+1) = 1 and Ū(`) = J −1 ∑Jτ=1 U(Y , ζ(`), Ξ
(τ)
` |X, Z),

in which {Ξ(τ)
` : τ = 1, . . . ,J } are observations sampled from the variational density

q∗(Ξ|ζ(`)) for ` = 1, . . . ,L. Following [46],H1 is selected when ̂log B10 > 1; otherwise,H0
is selected.

5. Simulation Studies

Several simulation studies are implemented to assess the performance of the intro-
duced variational Bayesian methodologies. For comparison, we also take the Bayesian lasso
method into consideration. In this simulation study, response variables yijs are indepen-
dently sampled from the normal distribution: yij ∼ N (x>ij β + z>ij bi, σ2

j ), where xij, zij and
bi are independently drawn from the multivariate normal distributions Np(0, Σx), Nq(0, I)
and Nq(0, Q), respectively, for i = 1, . . . , n, j = 1, . . . , m. The true value of β is taken to
be (−0.5, 0.8, 2, 0.8, 0.5, 0.0, . . . , 0.0)>, which implies that there are five active variables and
p− 5 inactive variables. As an illustration, we set m = 6, q = 4, n = 100, 200 and 300,
and p = 500, 1000 and 2000, which indicate that n� p. The true values of σ2

j ’s are set to

be σ2
1 = σ2

2 = 0.8, σ2
3 = σ2

4 = 0.9 and σ2
5 = σ2

6 = 1.0. The true value of Q is taken with
diagonal elements being 1.0 and remaining components being 0.1.

We consider the following two types of covariance structures for Σx = (σxjk )p×p.

Type I. Components of covariate vector xij are independent of each other, i.e.,
σxjk = 0.0 when j 6= k and σxjj = 1.0 when 1 ≤ j, k ≤ p.

Type II. xij is an autoregressive correlation, i.e., σxjk = 0.5|j−k| when ∀j 6= k and
σxjj = 1.0 when 1 ≤ j, k ≤ p.

In implementing the preceding presented variational Bayesian approach together
with the spike and slab priors, we take the hyperparameters ν0 = 1 and S0 = 0.02Iq×q
leading to the flat prior for Q and set aγ = bγ = 0.5. For the spike and slab priors of βks,
to achieve appropriate shrinkage and model selection consistency, we take c0 = 500 and
c1 = 0.3, indicating c1 � c0, d0 = 5 and d1 = 30, implying d0 � d1, guaranteeing
the sparsity of the model. In this simulation, 100 replications are conducted to select active
variables and estimate model parameters. To assess the accuracy of parameter estimation
via the proposed variational Bayesian method, we calculate the average value of RMSes for
unknown parameters, where “RMS“ indicates the root mean square between the Bayesian
estimates based on 100 replications and true values of unknown parameters. To assess
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the performance of the variable selection procedure, we compute TP and FP, where TP
represents the average number of active covariates correctly identified as active and FP
denotes the average number of inactive covariates incorrectly detected as active. Generally,
the closer to the true number of active covariates TP is or the smaller FP is, the better
the variable selection method behaves. Results are reported in Table 1. Examination
of Table 1 shows that the proposed variational Bayesian method behaves better than
Bayesian lasso method, regardless of the values of p and n and covariance structures,
in that TP values for the former are closer to the true number of active covariates and FP
values for the former are closer to zero than those for the latter. For parameter estimation,
the proposed variational Bayesian method behaves better than the Bayesian lasso method
in that the average values of the RMSes for the former are smaller than those for the latter,
regardless of the values of p and n and covariance structures. To investigate the sensitivity
of the selection of the hyperparameters aγ and bγ, we take aγ = 0.1 and bγ = 0.9 and
calculate the corresponding results for the Type I structure of Σx, which results are given
in Table 1. These empirical results indicate that the proposed variational Bayesian method
is not sensitive to the hyperparameters in that the same pattern is observed regardless
of the hyperparameters aγ and bγ.

Table 1. Performance of variable selection and parameter estimation in the first simulation study.

(aγ, bγ) Σx n Method
p = 500 p = 1000 p = 2000

TP FP RMS TP FP RMS TP FP RMS

(0.5, 0.5) I 100 VB 3.91 0.00 0.11 3.79 0.00 0.08 3.84 0.00 0.06
LASSO 4.44 0.87 1.90 3.54 1.03 1.66 1.39 0.00 1.91

200 VB 4.71 0.00 0.11 4.68 0.00 0.08 4.65 0.00 0.06
LASSO 4.95 0.24 2.24 2.78 1.91 1.36 3.34 0.00 1.64

300 VB 4.89 0.00 0.11 4.81 0.00 0.08 4.91 0.00 0.06
LASSO 4.99 0.01 2.12 4.91 0.00 1.41 4.23 0.00 1.45

II 100 VB 3.79 0.00 0.11 3.84 0.00 0.08 3.76 0.00 0.06
LASSO 3.48 0.10 2.19 3.01 0.00 1.87 3.00 0.00 2.01

200 VB 3.97 0.00 0.11 3.96 0.00 0.08 3.98 0.00 0.06
LASSO 3.59 0.02 2.44 3.12 0.00 1.78 3.00 0.00 1.84

300 VB 3.98 0.00 0.11 3.96 0.00 0.08 3.98 0.00 0.06
LASSO 3.63 0.03 2.31 3.20 0.00 1.79 3.01 0.00 1.75

(0.1, 0.9) I 100 VB 3.88 0.00 0.11 3.79 0.00 0.08 3.84 0.00 0.06
LASSO 4.44 0.87 1.90 3.54 1.03 1.66 1.39 0.00 1.91

200 VB 4.71 0.00 0.11 4.66 0.00 0.08 4.64 0.00 0.06
LASSO 4.95 0.24 2.24 2.78 1.91 1.36 3.34 0.00 1.64

300 VB 4.89 0.00 0.11 4.81 0.00 0.08 4.91 0.00 0.06
LASSO 4.99 0.01 2.12 4.91 0.00 1.41 4.23 0.00 1.45

Note: VB represents variational Bayesian method and LASSO denotes Bayesian lasso method.

Table 2. Estimated log Bayes factor in the second simulation study.

Bayes
Factor

n
p

500 1000 2000

̂log B10
100 −194 −102 −86
200 −372 −272 −294
300 −506 −544 −588

̂log B20 (×107) 100 −0.95 −4.03 −1.41
200 −1.54 −3.68 −2.54
300 −3.13 −3.58 −2.26

As an illustration for model comparison via the proposed Bayes factor, we con-
sider the second simulation study. In the simulation study, the data {(xij, zij, yij) : i =
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1, . . . , n, j = 1, . . . , m} are generated as those in the first simulation study with covariance
structure of Σx taken to be Type I. To this end, we consider the following competing models:

H0 : yij = x>ijβ + z>ijbi + εij, εij ∼ N (0, σ2
j ),

H1 : yij = z>ijbi + εij, εij ∼ N (0, σ2
j ),

H2 : yij = x>ijβ + z>ijbi + εij, εij ∼ N (0, σ2
0 ),

whereH0 represents the true linear mixed model and whileH1 andH2 are two competing
linear mixed models, H1 only containing random effects without fixed effects, and H2
misspecifying the distribution of measurement error. We define a path t ∈ [0, 1] to link
any two of the above presented three models. For example, H0 and H1 can be linked by
Ht01 : yij = (1− t)x>ij β + z>ij bi + εij, which indicates that Ht01 is just H0 for t = 0 and

becomes H1 for t = 1, and H0 and H2 are linked by Ht02 : yij = x>ij β + z>ij bi + εij with

εij
ind∼ N (0, t2σ2

0 + (1− t)2σ2
j ), which implies thatHt02 reduces toH0 with t = 0 andHt02

becomesH2 with t = 1.
To calculate the estimated log Bayes factors (i.e., ̂log B10 and ̂log B20) via the preceding

proposed path sampling procedure, we take ζ(`) = `/L for ` = 0, 1, . . . ,L, L = 10,
J = 1000 and σ2

0 = 0.5 and the same priors as those given in the first simulation studies.
Results are given in Table 2, which indicates that H0 is strongly selected as expected
regardless of n and p.

6. An Empirical Example

As an illustration of the variational Bayesian method developed above, we consider
the ADNI-2 data [47] published in 2003 and followed by ADNI-1, ADNI-GO and ADNI-
2 groups. This study aims to predict the mini-mental state examination (MMSE) score,
which is an important index for detecting Alzheimer’s disease (AD) stages in that different
MMSE scores indicate different progression of a AD patient. AD is the most common type
of dementia for elderly people and the sixth leading cause of death in the United States, and
it results in the loss of memory and the impairment of cognitive and language skills. More
importantly, there is no effective treatment to slow the progression of the disease [48]. The
number of AD patients has grown exponentially with the speed of the aging population,
bringing a socioeconomic burden to both families and society [49]. The details on the ADNI
database can refer to the website http://adni.loni.usc.edu (accessed on 20 May 2021).

The ADNI-2 data were analyzed by [48] using the factor analysis model to impute
missing values. As an illustration, we utilize 340 complete magnetic resonance imaging
(MRI) features with 62 samples and 3 medical visits (6-month, 12-month and 24-month),
take five features among 340 features as covariates associated with random effects and set
the MMSE score as the response variable. That is, n = 62, p = 340, q = 5 and m = 3. In this
case, covariates are high-dimensional compared with the sample size. Here, we assume
that only a small fraction of covariates contribute to the response variable.

The preceding introduced variational Bayesian method together with the linear mixed
model and the same priors as those in the first simulation study are utilized to fit the above-
mentioned MRI data. Here, the hyperparameters are taken as ν0 = 1, S0 = 0.02Iq×q,
aγ = bγ = 0.5, c0 = 10, d0 = 1, c1 = 1 and d1 = 10 for ensuring the sparsity of the model.
Thus, the proposed variational Bayesian method selects three features as active variables:
thickness average of the right fusiform (denoted as “x1”), thickness standard deviation
of the right posterior cingulate (denoted as “x2”) and thickness standard deviation of the
left postcentral (denoted as “x3”). Their corresponding parameter estimates are 1.9, 0.25
and 0.4, respectively, which show that the three active variables have positive effects
on MMSE that are consistent with those given in [48]. Bayesian estimates of random
effects bi are −0.003, −0.0021, −0.0013, −0.0058 and −0.0054, respectively, which imply
that the selected five covariates associated with random effects have negative effects on
MMSE. Table 3 also presents the RMSE and MAP values for the models with 340 covariates

http://adni.loni.usc.edu
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(denoted as the “Complete“ model) and the selected three active covariates (denoted as the

“Selected“ model), where RMSE and MAP are evaluated by RMSE=
√

n−1 ∑n
i=1(ŷi − yi)2

and MAP=n−1 ∑n
i=1 |ŷi − yi| and ŷi is the fitted value of response yi. Examination of Table 3

shows that the selected model has smaller RMS and MAP values than the complete model,
i.e., the selected model fits the ADNI-2 data better than the complete model. For the selected
model, we also compute the Bayes factors for three competing modelsH0,H1 andH2 given
in the second simulation study, which are l̂ogB10 = −558 and l̂ogB20 = −46.93, leading to
the conclusion thatH0 is strongly selected.

Table 3. Performance of variational Bayesian method for the complete and selected models in the
ADNI-2 data.

Model n p RMSE MAP

Complete 62 340 49.17 49.15
Selected 62 3 1.05 0.82

7. Discussions

This paper investigates simultaneously estimating model parameters and selecting
variables in linear mixed models with high-dimensional fixed effects and low-dimensional
random effects in the Bayesian framework. A novel variational Bayesian approach is de-
veloped to address the time-consuming problem of the traditional Bayesian lasso method
due to the ill-posited problem and large matrix computation involved in the presence
of high-dimensional data. The Gaussian spike and slab priors of population-specific fixed-
effects regression coefficients are specified to identify important fixed effects by allowing
the tuning parameters to tend to zero. For the sake of sampling observations, the Gaus-
sian spike and slab priors are reformulated as a mixture of a normal distribution and
an exponential distribution. In the variational Bayesian framework, the problem of best
approximating the posterior density is transformed as an optimization problem, i.e., mini-
mizing the evidence lower bound. For ease of computation, the coordinate ascent algorithm,
implemented efficiently, is employed to optimize the evidence lower bound. For model
comparison, the Bayes factor is computed by the path sampling method. Simulation studies
are conducted to investigate the performance of the proposed variational Bayesian method,
and a real example is illustrated by the proposed methodologies. Empirical results show
that the proposed variational Bayesian method behaves better than the traditional Bayesian
lasso method regardless of the accuracy of parameter estimation, the consistency of variable
selection or computational flexibility and complexity.

The proposed variational Bayesian method has the following advantages:

• Overcoming the problem of selecting a high-dimensional vector of shrinkage parame-
ters required for the Bayesian lasso method;

• Simultaneously estimating model parameters and variance–covariance matrices and
selecting fixed-effects and random-effects components with a relatively low computa-
tional cost;

• Avoiding large matrix computations and the curse of dimensionality problem;
• Providing a flexible and efficient approach to compute the Bayes factor for model

comparison.

The proposed variational Bayesian method can be extended to more complicated
models, such as generalized linear mixed models with mixed discrete and missing data.
However, their extensions have huge challenges, including the closed-form derivation
of the optimal variational density, the specification of the priors, the learning of the data-
driven hyperparameters and the computational complexity. In addition, this paper does
not consider the selection of high-dimensional random effects, which is a rather challenging
topic. In addition, to speed up the convergence of the chain, we might consider some
important and relevant Gibbs sampling schemes, for example, the herded Gibbs sampling,
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which is a deterministic variant of the Gibbs sampling scheme and generates observations
by matching the full-conditionals rather than by taking the full-conditionals at random
[50], the recycling Gibbs sampler, which generates auxiliary observations whose infor-
mation is eventually discarded and which can be recycled within the Gibbs algorithm
for improving efficiency with no extra cost [51], and the blocking and parameterization
method [52].

In addition, we did not consider BIC criterion for model comparison in that BIC is
only an approximation to the Bayes factor of marginal likelihood of the data given each
hypothesis. Moreover, due to the random effects involved in the considered models, BIC
behaves unsteadily.
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Abbreviations
The following abbreviations are used in this manuscript:

MCMC Markov chain Monte Carlo algorithm
EM Expectation Maximization algorithm
ELB evidence lower bound
TP average number of active covariates correctly identified as active
FP average number of inactive covariates incorrectly detected as active
RMS mean square between the Bayesian estimates based on 100 replications and true value

of unknown parameter
VB variational Bayesian with proposed method
LASSO Bayesian lasso method
AD Alzheimer’s Disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
MRI magnetic resonance imaging
MMSE mini-mental state examination

Appendix A. Conditional Distributions Required in Implementing the Gibbs Sampler

By the definitions and priors of βA and βI , it is easily shown from Equation (9) that
the conditional distributions fA(βA|D, b, σ) and f I(βI |D) have the forms

βA|D, b, σ ∼ Nr(µ
0
A, Σ0

A), βI |D ∼ Np−r(0, Σ0
I ), (A1)

respectively, where Σ0
A
−1

= ∑n
i=1 ∑m

j=1 xijAx>ijA/σ2
j + diag(ξ0

A) with ξ0
A = {ξ−2

1k , k ∈ A},

µ0
A = Σ0

A{∑
n
i=1 ∑m

j=1 xijA(yij − z>ij bi)/σ2
j } and Σ0

I
−1

= diag(∑n
i=1 ∑m

j=1 xijIx>ijI) + diag(ξ0
CI) =

nmIp−r +diag(ξ0
CI) with ξ0

CI = {ξ−2
0k , k ∈ I}.

http://adni.loni.usc.edu
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The conditional distribution f (bi|D, β, σ, Q) has the form

bi|D, β, σ, Q ∼ Nq(µ
C
b , ΣC

b ), (A2)

where ΣC
b
−1

= Q + ∑m
j=1 zijz>ij /σ2

j and µC
b = ΣC

b {∑
m
j=1 zij(yij − x>ij β)/σ2

j }.
The conditional distributions f (ξ2

0k|βk, γk) and f (ξ2
1k|βk, γk) are given by

f (ξ2
0k|βk, γk) ∝ (ξ2

0k)
−(1−γk)/2 exp

{
−(1− γk)β2

k/(2ξ2
0k)− λ2

0(1− γk)ξ
2
0k/2

}
,

f (ξ2
1k|βk, γk) ∝ (ξ2

1k)
−γk/2 exp

{
−γkβ2

k/(2ξ2
1k)− λ2

1γkξ2
1k/2

}
,

(A3)

respectively, which lead to

ξ2
0k|βk = 0, γk = 0 ∼ Γ(1/2, λ2

0/2), ξ−2
1k |βk, γk = 1 ∼ IvG(

√
λ2

1/β2
k, λ2

1),

where IvG(a, b) represents the inverse Gaussian distribution with parameters a and b.
The ratio of Pr(γk = 1|D, b, σ) to Pr(γk = 0|D, b, σ) is proportional to

ρψ(βk, 0, ξ2
1k)

(1− ρ)ψ(βk, 0, ξ2
0k)

exp

{
βk

n
∑

i=1

m
∑

j=1

(yij − x>i,Ck
βCk
− z>ij bi)xijk

σ2
j

+
β2

k
2

n
∑

i=1

m
∑

j=1
x2

ijk(1− σ−2
j )

}
, (A4)

which is denoted as $k, where Ck = {` : γ` = 1, ` 6= k ∈ A}. Thus, latent variable
γk is sampled from the Bernoulli distribution with the probability ςk = $k/($k + 1), i.e.,
γk|D, b, σ ∼ Bernoulli(ςk) for k = 1, . . . , p.

The conditional distribution f (Q|b) is shown as

Q|b ∼ IWq

(
S0 +

n

∑
i=1

bib
>
i , ν0 + n

)
. (A5)

The conditional distribution f (σ−2
j |D, b) (j = 1, . . . , m) has the form

f (σ−2
j |D, b) ∝ (σ−2

j )n/2+c2−1 exp

{
− 1

2σ2
j

n

∑
i=1

(yij − µij)
2 − d2

σ2
j

}
, (A6)

which indicates

σ−2
j |D, b ∼ Γ

(
n
2
+ c2, d2 +

1
2

n

∑
i=1

(yij − µij)
2

)
.

The conditional distribution f (ρ|γ) is given as

ρ|γ ∼ Beta

(
aγ +

p

∑
k=1

γk, bγ + p−
p

∑
k=1

γk

)
. (A7)

The conditional distributions f (λ2
0|ξ0) and f (λ2

1|ξ1) are shown as

λ2
0|ξ0 ∼ Γ

(
c0 + p−

p
∑

k=1
γk, d0 +

1
2

p
∑

k=1
(1− γk)ξ

2
0k

)
,

λ2
1|ξ1 ∼ Γ

(
c1 +

p
∑

k=1
γk, d1 +

1
2

p
∑

k=1
γkξ2

1k

)
,

(A8)

respectively.
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Appendix B. Calculating the Evidence Lower Bound (ELB)

Denote q∗(Ξ) to be the optimal variational density approximating the posterior density
f (Ξ|D) and f (Ξ) to be the prior density of Ξ = {β, b, ξ0, ξ1, Q, γ, σ2, ϑ}. Define Eq∗(Ξ)(·)
as the expectation taken with respect to q∗(Ξ). Thus, it follows from Equation (12) that
ELOB has the form

L{q∗(Ξ)} = Eq∗(Ξ){log f (Ξ, Y |X, Z)} − Eq∗(Ξ){log q(Ξ)}
= Eq∗(Ξ){log f (Y |Ξ, X, Z) + log f (Ξ)} − Eq∗(Ξ){log q(Ξ)}, (A9)

where

log f (Y |Ξ, X, Z) ∝
n
2

m

∑
j=1

log σ−2
j −

n

∑
i=1

m

∑
j=1

(yij − x>ij β− z>ij bi)
2

2σ2
j

, (A10)

log f (Ξ) ∝
1
2

r
∑

k=1

(
r log ξ−2

1k −
β2

k
ξ2

1k

)
+

1
2

p−r
∑

k=1

{
(p− r) log ξ−2

0k −
β2

k
ξ2

0k

}
−1

2
trace

{(
S0 +

n
∑

i=1
bib
>
i

)
Q−1

}
+

λ2
1 + λ2

0
2

+ (c1 − 1) log λ2
1

−d1λ2
1 + (c0 − 1) log λ2

0 − d0λ2
0 −

n + ν0 + q + 1
2

log |Q|

+(aγ − 1) log ρ + (bγ − 1) log(1− ρ)−
m
∑

j=1

d2

σ2
j

+(c2 − 1)
m
∑

j=1
log(σ−2

j ) +
p
∑

k=1
{γk log ρ + (1− γk) log(1− ρ)}.

(A11)

It follows from the definition of q(Ξ) that

Eq∗(Ξ){log q(Ξ)} = E∗β{log q(β)}+ E∗b{log q(b)}+ E∗ξ1{log q(ξ−2
1 )}+ E∗ξ0{log q(ξ−2

0 )}
+E∗γ{log q(γ)}+ E∗Q{log q(Q)}+ E∗σ{log q(σ2)}+ E∗ρ{log q(ρ)}
+E∗λ0

{log q(λ2
0)}+ E∗λ1

{log q(λ2
1)},

(A12)

where E∗β{log q(β)} ∝ − r
2 log |ΣA| − p−r

2 log |ΣI|, E∗b{log q(b)} ∝ −n
2 log |Σb|, E∗ξ1{log q(ξ−2

1 )}
∝ −1

2 ∑
p
k=1[3{log a∗1ξ − a∗1ξk/(2b∗1ξk)}+ 2b∗1ξk/a∗1ξk + 1], E∗ξ0{log q(ξ−2

0 )} ∝ −1
2 ∑

p
k=1[3{log a∗0ξ −

a∗0ξk/(2b∗0ξk)} + 2b∗0ξk/a∗0ξk + 1], E∗γ{log q(γ)} ∝ ∑
p
k=1{ςk log ςk + (1 − ςk) log(1 − ςk)},

E∗Q{log q(Q)} ∝ − ν∗0
2 log S∗0 +

ν∗0−q−1
2 ν∗0 S∗0 − 1

2trace(ν∗0 Iq×q), E∗σ{log q(σ)} ∝ −nd2 ∑m
j=1

(∑n
i=1 hij)

−1 + (c2 − 1)∑m
j=1(log n − log ∑n

i=1 hij − 1/n), E∗ρ{log q(ρ)} ∝ (cρ − 1){log(cρ) −
log(cρ + dρ)} − dρ(cρ − 1)/{2cρ(cρ + dρ + 1)} + (dρ − 1){log(dρ) − log(cρ + dρ) − cρ(dρ −
1)/{2dρ(cρ + dρ + 1)}, E∗λ0

{log q(λ2
0)} ∝ (a∗0λ− 1){Γ̇(a∗0λ)/Γ(a∗0λ)− log b∗0λ}− a∗0λ and

E∗λ1
{log q(λ2

1)} ∝ (a∗1λ− 1){Γ̇(a∗1λ)/Γ(a∗1λ)− log b∗1λ]− a∗1λ.
Note that for a random variable ξ with mean E(ξ) = µ and variance D(ξ) = σ2,

it follows from Taylor expansion that the mean of the function y = f (ξ) is E(y) ≈ f (µ) +
1
2 f̈ (µ)D(ξ), where f̈ (·) denotes the second derivative of the function f (ξ). Then, we have

Eq∗(Ξ){log f (Y |Ξ, X, Z)} ∝
n
2

m
∑

j=1

(
1
n
− log

n
∑n

i=1 hij

)
−

n
∑

i=1

m
∑

j=1

n
∑n

i′=1 hi′ j
[y2

ij − 2yij{x>ij

E∗β(β) + z>ij E∗bi
(bi)}+ x>ij {var∗β(β) + E∗β(β)E∗β(β>)}xij

+z>ij {var∗bi
(bi) + E∗bi

(bi)E∗bi
(b>i )}zij + 2x>ij E∗β(β)E∗bi

(b>i )zij].

(A13)

Note that for a random variable ξ ∼ Γ(α, β), we have E{log(ξ)} = Γ̇(α)/Γ(α) −
log(β), where Γ̇(·) denotes the first derivative of gamma function. Thus, we have
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Eq∗(Ξ){log f (Ξ)} ∝
1
2

r
∑

k=1

[
r

(
log a∗1ξk −

a∗1ξk

2b∗1ξk

)
− {var∗βk

(βk) + (E∗βk
(βk))

2}E∗ξ1k(ξ
−2
1k )

]

+
1
2

p−r
∑

k=1

[
(p− r)

(
log a∗0ξk −

a∗0ξk

2b∗0ξk

)
− {var∗βk

(βk) + (E∗βk
(βk))

2}E∗ξ0k(ξ
−2
0k )

]

−1
2

n
∑

i=1
E∗bi

(b>i )E
∗
Q(Q)E∗bi

(bi) +
E∗λ1

(λ2
1) + E∗λ0

(λ2
0)

2

+(c1 − 1)

{
Γ̇(a∗1λ)

Γ(a∗1λ)
− log(b∗1λ)

}
− d1E∗λ1

(λ2
1)

+(c0 − 1)

{
Γ̇(a∗0λ)

Γ(a∗0λ)
− log b∗0λ

}
− d0E∗λ0

(λ2
0)

+
n + ν0 − q− 1

2

(
log |S∗0ν∗0 | −

var∗Q|Q|
2|S∗0ν∗0 |2

)
− 1

2
trace{S−1

0 E∗Q(Q)}

+(aγ − 1)
(

log
cρ

cρ + dρ
−

dρ

2cρ(cρ + dρ + 1)

)
+(bγ − 1)

(
log

dρ

cρ + dρ
−

cρ

2dρ(cρ + dρ + 1)

)
−nd2 ∑m

j=1(∑
n
i=1 hij)

−1 + (c2 − 1)∑m
j=1(log n− log ∑n

i=1 hij − 1/n)

+
p
∑

k=1

[
E∗γk

(γk)

(
log

cρ

cρ + dρ
−

dρ

2cρ(cρ + dρ + 1)

)
+(1− E∗γk

(γk))

(
log

dρ

cρ + dρ
−

cρ

2dρ(cρ + dρ + 1)

)]
,

(A14)

where |Q| represents the determinant of matrix Q, var∗Q(Qij) = ν0(σ
∗2
ij + σ∗ii σ

∗
jj) and σ∗ij is

the (i, j)-th component of S∗0 .

Appendix C. Calculating the Estimated Bayes Factor in the Second Simulation

For the model Ht01 : yij = x>ij β + (1− t)z>ij bi + εij for i = 1, . . . , n and j = 1, . . . , m,
where t ∈ [0, 1], its first-order derivative of log joint density function has the form

U(Y , t, Ξ|X, Z) = −
n

∑
i=1

m

∑
j=1
{(yij − x>ij β− (1− t)z>ij bi)z>ij bi}/σ2

j . (A15)

In this case, U(Y, 0, Ξ|X, Z) = −∑n
i=1 ∑m

j=1(yij− x>ij β− z>ij bi)z>ij bi/σ2
j and U(Y, 1, Ξ|X, Z) =

−∑n
i=1 ∑m

j=1(yij− x>ij β)z>ij bi/σ2
j .

For Ht02 : yij = (1 − t)x>ij β + z>ij bi + εij for i = 1, . . . , n and j = 1, . . . , m, where
t ∈ [0, 1], its first-order derivative of log joint density function has the form

U(Y , t, Ξ|X, Z) = −∑n
i=1 ∑m

j=1{yij − (1− t)x>ij β− z>ij bi}x>ij β/σ2
j . (A16)

In this case, U(Y, 0, Ξ|X, Z) = −∑n
i=1 ∑m

j=1(yij− x>ij β− z>ij bi)x>ij β/σ2
j and U(Y, 1, Ξ|X, Z) =

−∑n
i=1 ∑m

j=1(yij− z>ij bi)x>ij β/σ2
j .

For Ht03 : yij = x>ij β + z>ij bi + εij with εij
i.i.d∼ N (0, t2σ2

0 + (1− t)2σ2
j ) for i = 1, . . . , n

and j = 1, . . . , m, where t ∈ [0, 1], its first-order derivative of log joint density function has
the form

U(Y , t, Ξ|X, Z) =
n
∑

i=1

m
∑

j=1

{tσ2
0 − (1− t)σ2

j }{t2σ2
0 + (1− t)2σ2

j }2 − (yij − µij)
2{(1− t)σ2

j − tσ2
0}

{t2σ2
0 + (1− t)2σ2

j }2
. (A17)

In this case, U(Y, 0, Ξ|X, Z) = −∑n
i=1 ∑m

j=1{σ4
j + (yij− µij)

2}/σ2
j and U(Y, 1, Ξ|X, Z) =

∑n
i=1 ∑m

j=1{σ4
0 + (yij − µij)

2}/σ2
0 .
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