
 
 

 

 
Mathematics 2022, 10, 460. https://doi.org/10.3390/math10030460 www.mdpi.com/journal/mathematics 

Article 

Relationship of Time-Dependent Parameters from Destructive 
and Non-Destructive Tests of Structural Concrete 
Petr Lehner 1,* and Kristýna Hrabová 2 

1 Department of Structural Mechanics, Faculty of Civil Engineering, VSB—Technical University of Ostrava,  
L. Podéště 1875, 70800 Ostrava-Poruba, Czech Republic 

2 Institute of Building Testing, Faculty of Civil Engineering, Brno University of Technology,  
Veveří 331/95, 60200 Brno, Czech Republic; kristyna.hrabova@vutbr.cz 

* Correspondence: petr.lehner@vsb.cz 

Abstract: Reinforced concrete structures are typically exposed to a combination of aggressive sub-
stances and mechanical stresses, which contribute to fast degradation. The present research was 
conducted to evaluate five time-dependent parameters from several different tests, namely com-
pressive strength, static modulus, dynamic modulus, surface, and bulk electrical resistance. Some 
parameters were obtained using destructive testing (DT) and some using non-destructive testing 
(NDT). Due to the correlation and calculation of regression curves, it was possible to compare the 
correlation of parameters important for estimating the durability of reinforced concrete structures 
in relation to degradation and corrosion. Concrete of C40/50 grade was examined in several time 
periods, and the parameter relationships were analysed. At the same time, a statistical evaluation 
was carried out, and therefore the study contains the average values and standard deviations of all 
measured parameters. The results show that the compressive strength and the electrical resistivity 
of the surface and bulk have a high correlation. In contrast, the dynamic modulus and electrical 
resistivity have low linear correlation, but it was possible to apply a quadratic curve with a high 
degree of fit. For the comparison of static elastic modulus and electrical resistance, the quality of the 
quadratic regression model was low but sufficient. The results show that, for structural concrete, 
the presented NDT methods can be used to estimate other parameters obtained from the DT meth-
ods. 

Keywords: concrete; NDT; quadratic regression; durability; modulus of elasticity; strength; corre-
lation analysis 
 

1. Introduction 
Building structures are affected throughout their lifetime by mechanical, dynamic, 

climatic, and degradation factors [1,2]. All these aspects can, over time, cause the part of 
the structure to become unsatisfactory in terms of load-bearing capacity or serviceability. 
Due to this, regular inspections and quality control are some of the basic requirements of 
the construction industry [3]. In the evaluation of building structures, their current condi-
tion is assessed based on appropriately selected diagnostic methods. Currently, the diag-
nostics of building structures are mainly based on destructive methods. Their use is not 
always optimal precisely because of the invasive intervention into the structure. Non-de-
structive tests are a suitable choice for structures diagnostics because they are fast, accu-
rate, and can be repeated [4]. 

The compressive strength of concrete is one of the most important variables in as-
sessing the quality of a structure and should be viewed as a variable parameter. Thus, the 
evaluation of the condition of existing structures is performed standardly in core wells 
and their determination of the present value of strength [5]. There are also many studies 
dealing with the analysis of the relationship between destructive and non-destructive 
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methods of determining compressive strength and other important parameters. The most 
commonly used non-destructive method to verify the quality of concrete and determine 
its compressive strength is the rebound hardness test method [6]. 

It is also possible to use the ultrasonic evaluation method, which works according to 
the principle of transmitting ultrasonic waves to the surface of the structure by an exciter 
and then monitoring the speed of the transmitted pulses [7,8]. 

The general advantages of non-destructive testing of structures are well known, but 
the most important are speed and economy. On the contrary, the accuracy of non-destruc-
tive tests can be affected by many parameters such as aggregate grain size, concrete age, 
and water coefficient [9–12]. Trykoz et al. [13] presented evidence of the importance of 
non-destructive testing (NDT) measurements in practice in the evaluation of existing con-
crete structures. 

This paper presents a correlation and regression analysis of several concrete param-
eters obtained during the initial curing stage from 1 to 128 days. The selected parameters 
can be used as input parameters for the numerical analysis of the durability of reinforced 
concrete structures subjected to common force and chemical loads [14–17]. These numer-
ical models are available in both deterministic and stochastic forms, and since they are 
computationally and time-consuming, an adequate description of the input parameters of 
the time variables is required. The time-dependent parameters mentioned include com-
pressive strengths, static modulus of elasticity, dynamic modulus of elasticity derived 
from ultrasonic velocity [18,19], and surface and bulk electrical resistivity [20–22], which 
can be used to determine the chloride diffusion parameter of concrete [23]. In studies, a 
comparison of the results of the resistivity of the surface and the velocity of the ultrasonic 
pulse was presented ([24,25]). Conventional concrete shows the same values from both 
methods, even in aggressive environments. 

The objective was to evaluate the simplest possible relationship between two selected 
parameters, that is, a linear regression equation or apply a quadratic regression curve. 
Due to the introduction of these equations in further calculations, the linear form is pref-
erable, but if it is not accurate, a more complex polynomial must be applied. This paper 
presents a basic description of the experimental evaluation, statistical and correlation 
analyses, and the resulting equations, accompanied by the degree of agreement. All of this 
supports the long-term goals of improving non-destructive testing procedures, using non-
traditional instrumentation, and analysing relationships between the results of standard-
ised destructive methods. 

2. Materials and Methods 
For the analysis of the relationship between destructive and non-destructive methods 

of concrete testing, a standard concrete based on Portland cement was chosen, with an 
expected strength class of C40/50. This concrete is used in the Czech Republic, among 
other things, for the load-bearing elements of reinforced concrete bridge structures [26]. 
This material was chosen for purely pragmatic reasons, as it is widely used in modern 
times and is not burdened with any chemical additives or non-standard ingredients. At 
the same time, this concrete composition is ideal for further extension of research where 
the effect of change in composition, non-standard admixtures, and others can be analysed. 

2.1. Properties of Concrete 
The concrete mixture was prepared according to the practice of EN 206 + A1 [27]. The 

composition is shown in Figure 1. The requirement was a water coefficient w/c = 0.4 and 
a strength class of at least C40/50. For the needs of the experimental program, considering 
the curing of concrete at the time, a larger number of samples were prepared. Cubes with 
an edge length of 150 mm, large cylinders with a diameter of 150 mm and a length of 300 
mm, and small cylinders with a diameter of 100 mm and a length of 200 mm were pre-
pared. The uses of each sample for specific tests are given below. The fresh concrete mix 
was poured into the moulds, and after an initial curing period of 24 h, the samples were 
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demoulded. The storage of all samples was managed under laboratory conditions to avoid 
undesirable degradation. The tests were performed 7, 28, 63, and 126 days after concret-
ing. According to standards, it was necessary to use 3 samples for each type of test and 
each time. Due to this, at least 12 samples for every method were prepared at the begin-
ning. For the non-destructive tests, this need was not present, and the same 3 samples 
were tested at each time. 

 
Figure 1. Concrete mixture properties; amount per 1 m2 [kg]. 

2.2. Destructive Testing Methods 
For the present research, two standard methods for laboratory testing of concretes 

were selected, namely a test to determine the compressive strength on cubes and a test to 
determine the static modulus of elasticity from ultrasonic measurements. 

The compressive strength was tested according to EN 12390-3 [28] on three cubes 
several times-7, 28, 63, and 126 days after concreting. The test was carried out on a stand-
ard hydraulic press machine, and the cubic strengths of the concrete were calculated from 
the maximum force and the load area recorded. 

The static modulus of elasticity in the compression of hardened concrete expresses 
the dependence between the stress and the strain that a given element or structure exhibits 
under stress. The procedure to determine the static compressive modulus of elasticity for 
concrete is defined in ISO 1920-10 [29]. The determination of the static modulus of elastic-
ity was carried out by cyclic loading of the test pieces in a press, which was carried out 
according to EN 12390-13 [30]. 

2.3. Non-Destructive Testing Methods 
Three small cylinders with a diameter of 100 mm and a length of 200 mm and three 

large cylinders with a diameter of 150 mm and a length of 300 mm were prepared for the 
NDT methods. Two types of cylinders were chosen to analyse the effect of the shape and 
size of the sample on the resistivity of the surface. 

A Wenner probe [31] (see Figure 2) was used to measure the electrical resistivity of 
the surface. The test was carried out on six cylindrical samples (three small and three 
large) according to the AASHTO T358 standard [32]. Surface resistance was measured 
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from four longitudinal sides, and then the mean value and standard deviation were de-
termined. The surface resistivity was then converted to an adequate bulk resistivity using 
a calibration relationship dependent on the dimensions of the sample according to previ-
ously published procedures [33]. 

 
Figure 2. A Wenner probe before the measurement. 

An rCON meter [34] was used to measure the bulk electrical resistivity. This test was 
also carried out on six cylindrical samples (three small and three large) according to ASTM 
C1876 [35]. 

Furthermore, an ultrasonic pulse method was used to determine the dynamic mod-
ulus of elasticity according to EN 12504-4 [7]. The dynamic modulus of elasticity was de-
termined from the bulk density of concrete and the time of ultrasound passage through 
the sample. The test was performed on three large cylindrical samples. 

2.4. Correlation and Regression Analysis 
Since all tests were performed on specimens at the same time periods since concret-

ing, the relationship between the results of destructive and non-destructive methods 
could be analysed. When looking for a relationship between two sets of results, the corre-
lation coefficient can be used at the first level. The presented research shows the Pearson 
correlation coefficient (PCC), which is one of the most widely used [36]. The PCC shows 
the degree of linear correlation between two sets of data. If the value is close to 1 (or −1) 
there is a possible high linear correlation (positive for +1 and negative for −1). On the other 
hand, if it approaches 0, it is not possible to talk about a linear correlation. PCC provides 
a basic view of the data sets but can definitely help for further analysis. 

The next step in assessing the relationship between the selected outcomes was to in-
troduce a point set consisting of one set of data on the X-axis and another set of data re-
lated to the same time on the Y-axis. The points depicting the measured values were then 
fitted with a line segment showing the standard deviation. 

This procedure then allows the search for a linear regression equation or, if the fit is 
low, a quadratic regression equation that uses a parabola [37]. In either case, it is necessary 
to evaluate graphically and mathematically how closely the line or parabola fits the set of 
measured values. The coefficient is useful to determine the best fit [38]. The coefficient of 
determination shows the fit between the measured values and the chosen curve. The lim-
its for R2 are varied. For example, a value of 0.82 to 1 is reported to indicate a very strong 
fit, a value of 0.5 to 0.81 is a strong fit, and lower values are moderate or weak fits [39]. 
Therefore, the value of 0.8 was chosen as the boundary where linear correlation is suffi-
cient, and there is no need to look for a quadratic equation. 
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3. Results 
The following sections show the results of all measurements and then the individual 

correlations and regressions on the 10 pairs of results. The graphs contain a mathematical 
description of the linear or quadratic regression curve and the values of R2. Further anal-
ysis of the results was performed at the level of application of linear regression and best-
fit analysis using the coefficient of determination. In case of low agreement, quadratic re-
gression was applied. 

3.1. Time-Dependent Results 
Due to the chosen procedure of measuring all parameters in several time steps, it is 

possible to display the results together on one graph and look for primary relationships. 
Figure 3 shows the graph for the electrical resistivity measured in small and large cylin-
ders from both surface and bulk instruments. The same graph in the figure also shows a 
plot of the increase in compressive strength values on the cubes. The first view foreshad-
ows a relationship that could be further evaluated. 

 
Figure 3. Time-dependent results of electrical resistivity and compressive strength. 

The next graph (Figure 4) again shows the same electrical resistivity values but adds 
the static and dynamic modulus values at the given times. The literature indicates that the 
static modulus corresponds to approximately 60% of the dynamic modulus [40]. This fact 
is also observed here. 

 
Figure 4. Time-dependent results of electrical resistivity and modulus of elasticity. 
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The Pearson correlation coefficient described above was chosen as the first numerical 
result of the analysis. Table 1 shows the results of this coefficient for each pair of results. 
It can be seen that the electrical resistivity has an almost 100% correlation when comparing 
surface and bulk measurements. The correlation between compressive strength and elec-
trical resistance ranges from 0.94 to 0.96. The other correlations are at or below 0.8. 

Table 1. Results of the numerical analysis based on Pearson’s correlation coefficient (PCC). 

First Parameter Second Parameter PCC 
Small cylinder surface electrical resistivity Small cylinder bulk electrical resistivity 0.99 
Large cylinder surface electrical resistivity Large cylinder bulk electrical resistivity 0.99 
Compressive strength Small cylinder bulk electrical resistivity 0.96 
Compressive strength Large cylinder bulk electrical resistivity 0.94 
Compressive strength Dynamic modulus of elasticity 0.85 
Compressive strength Static modulus of elasticity 0.78 
Dynamic modulus of elasticity Small cylinder bulk electrical resistivity 0.77 
Dynamic modulus of elasticity Large cylinder bulk electrical resistivity 0.68 
Static modulus of elasticity Small cylinder bulk electrical resistivity 0.75 
Static modulus of elasticity Large cylinder bulk electrical resistivity 0.65 

3.2. Bulk and Surface Electrical Resistivity 
For the first results, i.e., surface and bulk electrical resistivity on small and large cyl-

inders, a high agreement for linear dependence can be observed (see Figure 5). The results 
show that it is not necessary to look for discrepancies in the Wenner probe and rCon meas-
urements for the prepared concrete type. Therefore, only the bulk resistivities were used 
for further evaluation. 

 

Figure 5. Linear regression analysis of the relationship between surface and bulk electrical resistivity 
on large and small cylindrical samples (LC = Large Cylinders, SC = Small Cylinders). 

3.3. Compressive Strength vs. Electrical Resistivity 
The relationship between the concrete strength obtained from the cubic test and the 

electrical resistivity measured in large and small cylinders using linear regression is 
shown in Figure 6. The coefficient of determination values for both sets are high, 0.89 for 
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the large cylinders and up to 0.93 for the small cylinders. Thus, it can be concluded that 
the time dependence of both parameters is almost linear, which supports the electrical 
resistivity measurement as an alternative NDT method for determining the compressive 
strength of concrete. It is possible to use linear regression curves for numerical modelling. 

 
Figure 6. Linear regression analysis of the relationship between bulk electrical resistivity and com-
pressive strength (LC = Large Cylinders, SC = Small Cylinders). 

3.4. Compressive Strength vs. Modulus of Elasticity 
The relationship between compressive strength and modulus of elasticity was also 

investigated. Both the static modulus obtained from destructive testing (DT) and the dy-
namic modulus obtained from NDT ultrasonic propagation velocity testing were evalu-
ated. Figure 7 shows the plots for the linear regression between the parameters. The coef-
ficient of determination has medium values. 

 

Figure 7. Linear regression analysis of the relationship between modulus of elasticity and compres-
sive strength (D = Dynamic, S = Static). 
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strength of the concrete also shows the divergence in this case, which is probably due to 
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value of the coefficient of determination is 0.85, again showing high agreement. 
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Figure 8. Quadratic regression analysis of the relationship between modulus of elasticity and com-
pressive strength (D = Dynamic, S = Static). 

3.5. Dynamic Modulus of Elasticity vs. Electrical Resistivity 
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urements, namely, dynamic modulus of elasticity derived from ultrasonic velocity and 
electrical resistivity. Linear regression is prepared in Figure 9 for the combination of large 
and small cylinders that were used for the electrical resistance measurements. The values 
of the coefficients of determination are low, below 0.6, so it can be concluded that there is 
a small linear relationship. 

 
Figure 9. Linear regression analysis of the relationship between bulk electrical resistivity and dy-
namic modulus of elasticity (LC = Large Cylinders, SC = Small Cylinders). 
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Figure 10. Quadratic regression analysis of the relationship between bulk electrical resistivity and 
dynamic modulus of elasticity (LC = Large Cylinders, SC = Small Cylinders). 

3.6. Static Modulus of Elasticity vs. Electrical Resistivity 
Another pair, this time from DT and NDT measurements, is static modulus versus 

electrical resistivity on small and large cylinders. In the first stage, the linear curve was 
applied again (see Figure 11). However, it showed a low agreement, although the coeffi-
cient of determination for the small cylinders was almost 0.73. 

 

Figure 11. Linear regression analysis of the relationship between bulk electrical resistivity and dy-
namic modulus of elasticity (LC = Large Cylinders, SC = Small Cylinders). 
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than for linear regression and demonstrate some agreement between the results of the two 
methods. 

 

Figure 12. Quadratic regression analysis of the relationship between bulk electrical resistivity and 
dynamic modulus of elasticity (LC = Large Cylinders, SC = Small Cylinders). 
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The presented results of the time-dependent parameters of structural concrete can 
also be evaluated in comparison with other similar studies. For example, Ghosh and Tran 
[41] presented correlations between surface and bulk electrical resistivity and showed 
high agreement. However, the study by Ghosh and Tran presents correlations using an 
exponential curve, and the results presented here show the possibility of using linear and 
quadratic regression. Simpler equations allow for better application in modelling chloride 
degradation. 

There are also a number of studies comparing different methods of measuring the 
electrical resistivity of concrete [20,22,42]. The results in Section 3.2 confirm the observa-
tions, i.e., that the bulk and surface resistivity have high correlations over time. In this 
case, the reason for using both methods was to check the correlation before using the 
measured values for further comparison. 

The results in Section 3.7 show agreement for the evaluation of the temporal change 
in parameters, which is a desirable result when applying NDT methods to long-lived 
structures, such as bridges. 

The relationship between compressive strength and modulus of elasticity has been 
analysed in many studies [43–45] and is also presented in several standards. However, the 
importance of the mathematical use of correlation and regression analysis has been little 
appreciated because it has not always been possible to obtain the necessary data. The ap-
plication of regression curves has an undeniable advantage if the relationship is properly 
calibrated for long-term observation of structures. 

5. Conclusions 
The article showed the results of the standard concrete tests used in load-bearing 

bridge structures in terms of the effect of maturation. The relationships between DT and 
NDT tests applied at several periods since concrete placement were analysed. Plots of 
pairs of measured parameters with standard deviations were presented, accompanied by 
regression curves. 

The following conclusions were drawn from the results: 
• NDT methods generally correlate well linearly with compressive strength; 
• In case of further comparisons, a quadratic curve had to be applied; 
• The quadratic regression between the dynamic modulus and the electrical resistivity 

showed a highly significant agreement; 
• The worst values were observed between static modulus and both non-destructive 

methods. 
The article highlights the importance of statistical and mathematical evaluation of 

concrete test results with the possibility of further use for numerical modelling of struc-
tural degradation. These findings and evaluation procedures can be applied in further 
research to, for example, high-value concrete, fibre concrete, recycled concrete, and other 
composite materials. 
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