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Abstract: In the paper, we consider a new approach to the comparison of the distributions of sums
of random variables. Unlike preceding works, for this purpose we use the notion of deficiency that
is well known in mathematical statistics. This approach is used, first, to determine the distribution
of a separate random variable in the sum that provides the least possible number of summands
guaranteeing the prescribed value of the (1− α)-quantile of the normalized sum for a given α ∈ (0, 1),
and second, to determine the distribution of a separate random variable in the sum that provides
the least possible number of summands guaranteeing the prescribed value of the probability for
the normalized sum to fall into a given interval. Both problems are solved under the condition
that possible distributions of random summands possess coinciding three first moments. In both
settings the best distribution delivers the smallest number of summands. Along with distributions
of a non-random number of summands, we consider the case of random summation and introduce
an analog of deficiency which can be used to compare the distributions of sums with random and
non-random number of summands. The main mathematical tools used in the paper are asymptotic
expansions for the distributions of R-valued functions of random vectors, in particular, normalized
sums of independent identically distributed r.v.s and their quantiles. Along with the general case,
main attention is paid to the situation where the summarized random variables are independent
and identically distributed. The approach under consideration is applied to determination of the
distribution of insurance payments providing the least insurance portfolio size under prescribed
Value-at-Risk or non-ruin probability.

Keywords: limit theorem; sum of independent random variables; random sum; asymptotic expansion;
asymptotic deficiency; kurtosis

1. Introduction
1.1. The Problem under Consideration and the Structure of the Paper

The problem considered in the paper is very close to the problem of stochastic ordering
and even may be considered as a a version of this problem. In probability theory and
statistics, a stochastic order quantifies the concept of one random variable being “bigger”
or “smaller” than another. Many different orders exist, which have different applications,
see, e.g., the book [1]. Here we propose an approach to establishing stochastic order for the
distributions of sums of independent random variables (r.v.s) based on the notion of defi-
ciency that is well known in asymptotic statistics, see, e.g., [2] and later publications [3–5].
Roughly speaking, in statistics the deficiency of a statistical procedure with respect to an
‘optimal’ procedure is the number of additional observations required to attain the same
quality of inference as is guaranteed by the ‘optimal’ procedure.

In this paper we deal with the case where the deficiency is measured in natural-valued
discrete units (number of ‘additional’ summands) and therefore here we deal with discrete
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case. The notion of deficiency can be extended to the case of the continuous parameter, say,
time. This case will be considered in another work.

Along with the general case, in the paper main attention is paid to the situation where
the r.v.s being summed are assumed to be independent and identically distributed.

The first problem to be considered below consists in determination of the distribution
of a separate random variable in the sum that provides the least possible number of
summands guaranteeing the prescribed value of the (1− α)-quantile of the normalized
sum for a given α ∈ (0, 1). The second problem considered in the paper consists in
determination of the distribution of a separate random variable in the sum that provides
the least possible number of summands guaranteeing the prescribed value of the probability
for the normalized sum to fall into a given interval. Actually, in both problems we deal
with ‘fine tuning’ of the distribution of a separate summand since we assume that different
possible distributions of random summands possess coinciding three first moments, so
that they can differ only by their kurtosis. In both settings the best distribution delivers the
smallest number of summands.

We also consider the problem where some additional randomization is introduced so
that the number of summands in the sum can be random itself. This randomization may
not be artificially induced, but also may occur when the exact number of summands is a
priori unknown and only some its ‘expected’ value can be available as the parameter of the
problem. For this case we introduce an analog of deficiency which can be used to compare
the distributions of sums with random and non-random number of summands.

Both problems are closely related with the problem of quantification of the accuracy of
approximations provided by limit theorems of probability theory. The main mathematical
tools used in the paper are asymptotic expansions for the distributions of normalized sums
of independent identically distributed r.v.s and their quantiles.

The formal settings mentioned above can be applied to solving practical problems
where the models of the observed statistical regularities have the form of distributions of
sums of r.v.s and the number of summands plays a substantial role. For example, consider
an insurance company whose portfolio consists of a finite number of insurance contracts.
Formally, the portfolio is assumed to be a finite set of r.v.s each of which characterizes the
income of the company related to a separate contract. Instead of income we can speak of
loss assuming that income is a negative loss or that loss is a negative income.

In these terms, the first setting concerns the problem of determination of the dis-
tribution of a possible loss within a separate insurance contract (say, the distribution of
an insurance payment) providing the least possible portfolio size and guaranteeing the
prescribed Value-at-Risk for the average losses. The approach considered in the paper
can be used when the distributions of the summands (possible losses) are known only
up to their three first moments and the exact Value-at-Risk is not known for sure. In the
second setting the latter requirement is replaced by that of guaranteeing the prescribed
‘non-ruin’ probability. Within the framework of this example in both settings the problem
consists in the description of the best strategy of the insurance company, if by a strategy
we mean the choice of the terms of a contract (e.g., the amount of insurance payment
related to each possible insurance event), that is, of the distribution of possible loss within
a separate contract. Briefly, the problem is to choose an optimal distribution of a separate
loss among the distributions that have the same first three moments so that the portfolio
size is least possible.

The paper is organized as follows. Section 1.2 contains a short overview of the
properties of statistical deficiency. In Section 2 we outline some results concerning the
asymptotic expansions for the distributions of R-valued measurable functions of r.v.s and,
in particular, for the distributions of normalized sums of r.v.s, as well as for their quantiles.
In Section 3 the problem of comparison of the distributions of two sums of independent
r.v.s by their deficiency is considered. The notion of asymptotic deficiency is introduced
and some formulas for the calculation of asymptotic deficiency are presented. Section 3.1
contains the solution of this problem for these distributions providing a prescribed value
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of the (1− α)-quantile for a given α ∈ (0, 1). In Section 3.2 this problem is considered for
the distributions of sums of independent r.v.s guaranteeing a prescribed probability for an
R-valued measurable function of r.v.s, in particular, for a normalized sum of r.v.s, to fall
into a given interval. Section 4 contains an example of extension of the results of Section 3
to the case of a random number of summands in the sum (random portfolio size, in terms
of the example dealing with an insurance company). In Section 4.1 asymptotic expansions
for the asymptotic (1− α)-quantile (called α-reserve here) under a random portfolio size
are presented and an analog of deficiency of the sum of a random number of summands
(or the strategy with a random portfolio size) with respect to the distribution of the sum of
a non-random number of summands (or a strategy with a non-random portfolio size) is
considered. In Section 4.2 the problem of comparison of these distributions by an analog of
deficiency is considered in a special case of three-point distribution of portfolio size.

Everywhere in what follows the set of real numbers is denoted by R, the set of natural
numbers is denoted by N. The distribution function of the standard normal law will be
denoted by Φ(x),

Φ(x) =
1√
2π

∫ x

−∞
ϕ(y)dy, ϕ(x) =

1√
2π

exp
{
− x2

2

}
, x ∈ R.

The distribution of a random vector (X1, . . . , Xn) will be denoted L(X1, . . . , Xn).

1.2. Asymptotic Deficiency

Following the classical terminology of [6], consider two decision rules (say, two
statistical procedures) D∗n and Dn whose quality is characterized by the quantities π∗n and
πn, respectively. Here n is the number of observations X1, . . . , Xn delivering the information
underlying the decision rules. Assume that the rule D∗n is in some sense optimal whereas
the rule Dn is competing. For example, in the problem of estimation usually π∗n and πn are
mean square deviations and π∗n ≤ πn. In the problem of testing hypotheses usually π∗n and
πn are powers of tests so that π∗n ≥ πn.

By m(n) denote the number of observations required for the decision rule Dm(n) based
on m(n) observations X1, . . . , Xm(n) to attain the same quality as the ‘best’ rule D∗n based
on n observations X1, . . . , Xn. In what follows we will keep to the asymptotic approach
assuming that n→ ∞. Following [7], by the asymptotic relative efficiency (a.r.e.) of the rule
Dn with respect to the rule D∗n we will mean the limit

e ≡ lim
n→∞

n
m(n)

(if it exists and does not depend on the sequence m(n)).
Instead of the ratio of the required number of observations, the difference m(n)− n

can be considered as well, vividly showing the additional number of observations required
by the decision rule Dn. However, many authors considered the ratio n/m(n), possibly,
because the asymptotic analysis of its properties is simpler.

The systematic analysis of the asymptotic behavior of the difference m(n)− n was
first carried out by Hodges and Lehmann in 1970 [2]. They suggested to call the difference
m(n) − n deficiency of the competing decision rule Dn with respect to the rule D∗n and
introduced the notation

dn = m(n)− n. (1)

If the limit limn→∞ dn exists, then it is called the asymptotic deficiency of the competing
decision rule Dn with respect to the rule D∗n and is denoted d. The number d is often called
the deficiency of Dn with respect to D∗n. Note that if a.r.e. e 6= 1, then d = ∞, so that this
case is not so interesting. In [2] it was also noticed that for some decision rules (statistical
procedures) there typically appear cases e = 1 (see, e.g., the book [8]), that is, in these cases
the a.r.e. cannot give an answer to the question, which rule is better, whereas the deficiency
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can clarify the case, because, generally speaking, in this case the asymptotic deficiency can
be arbitrary.

So, the deficiency of Dn with respect to D∗n shows, how many additional observations
(that is, how much extra information) is required to attain the desired quality, if the decision
rule Dn is used instead of the ‘optimal’ decision rule D∗n. Therefore, the notion of deficiency
provides natural grounds for the asymptotic comparison of Dn and D∗n in the case e = 1.
The study of the asymptotic behavior of the deficiency dn requires more sophisticated
techniques than is used to find the limit e. As a rule, this techniques employ the construction
of asymptotic expansions (a.e.s) for the corresponding functions characterizing the quality
of decision rules (see, e.g., the books [7–9]).

Since the rules D∗n and Dn have the quality characteristics π∗n and πn, respectively,
then, by the definition of the deficiency dn = m(n)− n, for every n we have

π∗n = πm(n). (2)

So solve Equation (2), the integer-valued quantity m(n) should be treated as a variable
taking arbitrary real values. For this purpose the function πm(n) can be defined for non-
integer m(n) by the formula

πm(n) =
(
1−m(n) + [m(n)]

)
π[m(n)] +

(
m(n)− [m(n)]

)
π[m(n)]+1

(see [2]).
The functions π∗n and πn are usually unknown, so, in practice, their approximations

are used. Assume that the a.e.s

π∗n =
a
nr +

b
nr+s + o

(
n−r−s), (3)

and
πn =

a
nr +

c
nr+s + o

(
n−r−s), (4)

hold, where a, b and c are some numbers that do not depend on n, and r > 0, and s > 0 are
constants determining the rate of decrease of these quality criteria in n. The first terms in
these expansions coincide which means that the a.r.e. of the corresponding rules equals
one. It can be easily obtained from relations (1)–(4) that

dn =
c− b

ra
n1−s + o

(
n1−s) (5)

(see [2] or [7]). Thus, the asymptotic deficiency has the form

d =


±∞, 0 < s < 1,
c− b

ra
, s = 1,

0, s > 1.

. (6)

The asymptotic deficiency possesses the following obvious property of transitivity:
if there is some third decision rule Dn with the quality characteristic πn admitting an a.e.
of the form (4), then the deficiency dn of the rule Dn with respect the the rule D∗n satisfies
the equality

dn = d̃n + dn,

where d̃n is the deficiency of the rule Dn with respect to Dn and dn is the deficiency of Dn
with respect to D∗n.

The case where s = 1 is most interesting, because in this case the asymptotic deficiency
is finite. In the paper [2] some simple examples are given illustrating that this case is quite
natural in mathematical statistics (also see the book [8]).
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2. Asymptotic Expansions for the Distributions of Normalized Sums of Random
Variables

We begin with most general case. Let n ∈ N. Consider a finite set of r.v.s X1, . . . , Xn. For
the time being we do not assume that the r.v.s X1, . . . , Xn are independent and identically
distributed. Let Ln = Ln(X1, . . . , Xn) be an R-valued measurable function of X1, . . . , Xn.
(In what follows when dealing with the example of the portfolio of an insurance company
we will call this function generalized loss). In particular, Ln may be of the form Ln =

√
nTn

where Tn is the arithmetic mean,

Tn ≡
1
n ∑n

i=1 Xi. (7)

As it has been already said, the problem consists in description of the distribution
of r.v.s Xi providing the least possible number of summands n and guaranteeing the
prescribed value of the (1− α)-quantile of the function Ln for a given α ∈ (0, 1).

Let α ∈ (0, 1) be a small number. Consider the quantity cα(n) defined by the asymp-
totic relation

P
(

Ln ≥ cα(n)
)
= α + o(n−1), n→ ∞. (8)

The quantity cα(n) is the asymptotic (1− α)-quantile of Ln. If Ln =
√

nTn, then cα(n)
can be interpreted as the threshold, the exceedance of which by Ln is undesirable and is
assumed to have the prescribed small probability α. In terms of an insurance company,
cα(n) is the asymptotic Value-at-Risk.

By applying the Taylor formula it is not difficult to obtain the following result.

Lemma 1. Assume that there exist distribution function G(x) and functions g1(x) and g2(x)
such that

sup
x∈R

∣∣∣P(Ln < x
)
− G(x)− 1√

n
g1(x)− 1

n
g2(x)

∣∣∣ = o(n−1),

where the functions G(x), g1(x) and g2(x) are smooth enough. Then the asymptotic (1− α)-
quantile cα(n) of Ln admits the a.e.

cα(n) = cα −
g1(cα)√
nG′(cα)

− 1
n

[
G′′(cα)g2

1(cα)

2(G′(cα))3 +
G′(cα)g2(cα)− g1(cα)g1

′(cα)

(G′(cα))2

]
+ o(n−1),

where cα satisfies the equation G(cα) = 1− α.

Consider the application of this lemma to the case where X1, X2, . . . are independent
identically distributed r.v.s such that

EX1 = 0, EX2
1 = 1, E|X1|k+δ < ∞, k ∈ N, k ≥ 3, δ > 0 (9)

and the function Ln has the form Ln =
√

nTn with Tn defined by (7). Here the condition
EX1 = 0 means that the separate losses are centered by their expectations. Assume that the
characteristic function f (t) of the r.v. X1 satisfies the Cramér condition (C)

lim sup
|t|→∞

| f (t)| < 1. (10)

Under conditions (9) and (10), from Theorem 6.3.2 of [10] (also see [9]) it follows that
there exist functions Q1(x), . . . , Qk−2(x) and a Ck,δ ∈ (0, ∞) such that

sup
x

∣∣∣P(√nTn < x
)
−Φ(x)−∑k−2

i=1 n−i/2Qi(x)
∣∣∣ ≤ Ck,δ

n(k−2+δ)/2
, n ∈ N, (11)
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For the definition of the functions Q1(x), . . . , Qk−2(x) see the book [10]. In particular,

Q1(x) = −(x2 − 1)ϕ(x)
EX3

1
6

,

Q2(x) = −(x3 − 3x)ϕ(x)
EX4

1 − 3
24

− (x5 − 10x3 + 15x)ϕ(x)
(EX3

1)
2

72
. (12)

Relations (11) and (12) and Lemma 1 directly imply the a.e. for the asymptotic (1− α)-
quantile cn(α) of Ln presented in the following lemma.

Lemma 2. Let conditions (9) and (10) hold with k = 4, δ > 0. Then the the asymptotic (1− α)-
quantile cn(α) of Ln admits the a.e.

cα(n) = uα +
EX3

1
6
√

n
(u2

α − 1) +
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)

]
+ o(n−1),

where uα is the (1− α)-quantile of the standard normal distribution: Φ(uα) = 1− α.

3. The Comparison of the Distributions of Two Normalized Sums of
Random Variables
3.1. The Asymptotic Deficiency of the Distributions of Summands Providing a Given
(1− α)-Quantile of the Normalized Sums

In this section we will present an approach to the comparison of the distributions of two
sums of r.v.s in terms of the number of summands. The distribution of the random vector
X1, . . . , Xn will be denoted L(X1, . . . , Xn). Consider an R-valued measurable function of
X1, . . . , Xn.

From Lemma 1 we can easily obtain the following result.

Lemma 3. Consider a sequence {εn}n≥1 such that εn → 0 as n → ∞. Under the conditions of
Lemma 1 we have

sup
x∈R

∣∣∣P(Ln(X1, . . . , Xn) < x + εn
)
− P

(
Ln(X1, . . . , Xn) < x

)
−

−εnG′(x)− ε2
n

2
G′′(x)− εn√

n
g1
′(x)

∣∣∣ = o
(

max
{

ε2
n,

εn√
n

, n−1
})

.

Along with the r.v.s X1, . . . , Xn resulting in the value Ln(X1, . . . , Xn) of the function
Ln, consider another set of r.v.s Y1, . . . , Yn, according to which the value of the function Ln
is Ln(Y1, . . . , Yn). For example, Ln(X1, . . . , Xn) may have the form Ln(X1, . . . , Xn) =

√
nTn

with Tn defined by (7) and Ln(Y1, . . . , Yn) may have the form Ln(Y1, . . . , Yn) =
√

nUn where

Un =
1
n ∑n

i=1 Yi. (13)

Let to the distribution L(Y1, . . . , Yn) there correspond the asymptotic (1− α)-quantile
cα(n) of Ln:

P
(

Ln(Y1, . . . , Yn) ≥ cα(n)
)
= α + o(n−1), n→ ∞. (14)

Assume that the a.e. for the distribution function of Ln(Y1, . . . , Yn) has the form

P
(

Ln(Y1, . . . , Yn) < x
)
= G(x) +

1√
n

g1(x) +
1
n

g2(x) + o(n−1), (15)

where the functions G(x), g1(x) and g2(x) are smooth enough. The a.e. (15) differs from
the a.e. for the distribution function of Ln(X1, . . . , Xn) established by Lemma 1 only by
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the term of order n−1, which means that the two distributions are rather close. Define the
sequence of natural numbers {m(n)}n≥1 by the equality

P
(

Lm(n)(Y1, . . . , Ym(n)) ≥ cα(m(n))
)
= α + o(n−1), n→ ∞. (16)

If m(n)− n = d + o(1), d ∈ R, n→ ∞, then d is the asymptotic deficiency of the distri-
bution L(Y1, . . . , Y1) with respect to the distribution L(X1, . . . , Xn). In other words, d is the
asymptotic number of ‘additional’ r.v.s be included in the set Y1, . . . , Y1 in order that the
distribution L(Y1, . . . , Ym(n)) provides the same quality as the distribution L(X1, . . . , Xn).

Theorem 1. Assume that the conditions of Lemma 1 and (15) hold and G′(cα)cα 6= 0. Then
the asymptotic deficiency d of the distribution L(Y1, . . . , Y1) with respect to the distribution
L(X1, . . . , Xn) has the form

d =
2
[
g2(cα)− g2(cα)

]
G′(cα)cα

+ o(1).

Proof. From Lemma 1 and condition (15) it directly follows that

cα(n) = cα −
g1(cα)√
nG′(cα)

− 1
n

[G′′(cα)g2
1(cα)

2(G′(cα))3 +
G′(cα)g2(cα)− g1(cα)g′1(cα)

(G′(cα))2

]
+ o(n−1) (17)

and therefore

εn ≡
√

m(n)
n

cα(m(n))− cα(m(n)) =
d

2n
cα −

1
n

(
g2(cα)− g2(cα)

)
G′(cα)

+ o(n−1). (18)

Further, with the account of the definitions of m(n) (see (16)) and εn we have

α + o(n−1) = P
(

Lm(n)(Y1, . . . , Ym(n)) ≥ cα(m(n))
)
=

= P
(

Lm(n)(Y1, . . . , Ym(n)) ≥
√

n
m(n)

(
cα(m(n)) + εn

))
) (19)

Applying Lemma 3 to the right-hand side of (19) we obtain

α + o(n−1) = P
(

Lm(n)(Y1, . . . , Ym(n)) ≥ cα(m(n))
)
− εnG′(cα) + o(n−1).

Now from (16) and (18) it follows that

d =
2
[
g2(cα)− g2(cα)

]
G′(cα)cα

+ o(1).

The theorem is proved.

Now consider an example of the application of Theorem 1 to the optimization of the
portfolio size of an insurance company. Let the possible losses X1, X2, . . . related with each
insurance contract in the portfolio be independent identically distributed r.v.s satisfying
conditions (9) and (10). Consider another distribution, under which the possible losses
Y1, Y2, . . . are assumed to be independent identically distributed r.v.s such that

EY1 = 0, EY2
1 = 1, E|Y1|4+δ < ∞, δ > 0. (20)

Assume that the characteristic function p(t) of the r.v. Y1 satisfies the Cramér (C)
condition

lim sup
|t|→∞

|p(t)| < 1. (21)
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For each n consider the average losses Un defined by (13). Assume that

EX3
1 = EY3

1 , (22)

(for example, the r.v.s Xi and Yi are centered by their expectations and the distributions of
these centered r.v.s are symmetric). From Lemma 2 and Theorem 1 we directly obtain the
following statement.

Lemma 4. Let conditions (9), (10) and (20)–(22) hold. Then the asymptotic (as n→ ∞) deficiency
of the distribution L(Y1, . . . , Yn) with respect to the distribution L(X1, . . . , Xn) (the ‘additional
number of contracts’) d has the form

d =

(
EX4

1 − EY4
1
)(

3− u2
α

)
12

+ o(1).

Lemma 4 illustrates that if the distributions are close, then the deficiency is determined
by the kurtosis.

3.2. The Asymptotic Deficiency of the Distributions of Summands Providing a Given Probability
for the Normalized Sum to Fall into a Given Interval

To begin with, in this section we again consider the values of a measurable R-
valued function Ln(X1, . . . , Xn) and Ln(Y1, . . . , Yn) on random vectors (X1, . . . , Xn) and
(Y1, . . . , Yn) with the the distributions L(X1, . . . , Xn) and L(Y1, . . . , Yn), respectively. The
goal is to provide that the value of Ln falls into the interval [S1, S2) for some given numbers
S1 < S2. As a quality characteristic consider the probabilities

πn = P
(
S1 ≤ Ln(X1, . . . , Xn) < S2), πn = P

(
S1 ≤ Ln(Y1, . . . , Yn) < S2). (23)

If Ln(X1, . . . , Xn) =
√

nTn (see (7)) and Ln(Y1, . . . , Yn) =
√

nUn (see (22)), that is,
normalized sums of r.v.s are considered, then relation (23) means that πn and πn are
probabilities of that the normalized sums of r.v.s are inside the interval [S1, S2).

From the definition of πn we directly obtain the following result.

Lemma 5. Assume that for some r > 0 and s > 0 there exist a distribution function H(x) and
functions h1(x), h2(x) and h2(x) such that

sup
x∈R

∣∣∣P(Ln(X1, . . . , Xn) < x
)
− H(x)− 1

nr h1(x)− 1
nr+s h2(x)

∣∣∣ = o(n−r−s),

sup
x∈R

∣∣∣P(Ln(Y1, . . . , Yn) < x
)
− H(x)− 1

nr h1(x)− 1
nr+s h2(x)

∣∣∣ = o(n−r−s),

and, moreover, the functions h1(x), h2(x) and h2(x) are measurable. Then πn and πn admit a.e.s

πn = H(S2)− H(S1) +
h1(S2)− h1(S1)

nr +
h2(S2)− h2(S1)

nr+s + o(n−r−s),

πn = H(S2)− H(S1) +
h1(S2)− h1(S1)

nr +
h2(S2)− h2(S1)

nr+s + o(n−r−s).

Corollary 1. Let εn ↓ 0 as n → ∞ and S2 = S1 + εn. Assume that the functions H(x), h1(x),
h2(x) and h2(x) are smooth enough and h1(S2) 6= h1(S1). Then

ε−1
n πn = H′(S1) +

εn

2
H′′(S1) +

ε2
n

6
H′′′(S1) + o(ε2

n)+

+
1
nr h′1(S1) +

1
2nr h′′1 (S1)εn + o(εnn−r) +

1
nr+s h′2(S1) + o(n−r−sε−1

n ),
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ε−1
n πn = H′(S1) +

εn

2
H′′(S1) +

ε2
n

6
H′′′(S1) + o(ε2

n)+

+
1
nr h′1(S1) +

1
2nr h′′1 (S1)εn + o(εnn−r) +

1
nr+s h

′
2(S1) + o(n−r−sε−1

n ).

Lemma 5, Corollary 1 and formula (6) directly imply the expression for the asymptotic
deficiency with quality characteristics (23).

Theorem 2. Let conditions of Lemma 5 hold with s = 1. Then the deficiency dn of the distribution
L(Y1, . . . , Yn) with the quality characteristic πn with respect to the distribution L(X1, . . . , Xn)
with the quality characteristic πn has the form

dn =
h2(S2)− h2(S2) + h2(S1)− h2(S1)

r(h1(S2)− h1(S1))
+ o(1). (24)

If S2 = S1 + εn with εn ↓ 0 as n→ ∞ and h′1(S1) 6= 0, then the formal passage to the
limit in (3.13) yields the formula

dn =
h
′
2(S1)− h′2(S1)

rh′1(S1)
+ o(1).

Consider an example of the application of Theorem 2 to the optimization of the
portfolio size of an insurance company. Let the possible losses X1, X2, . . . related with each
insurance contract in the portfolio be independent identically distributed r.v.s satisfying
conditions (9) and (10). Consider another distribution, under which the possible losses
Y1, Y2, . . . are assumed to be independent identically distributed r.v.s satisfying conditions
(20) and (21). Assume that in (9) and (20) k = 3. We are interested in the asymptotic
behavior of the average losses Tn (see (7)) and Un (see (13)). With the account of Lemma 5
we obtain the following statement.

Lemma 6. Let conditions (9), (10), (19) and (20) hold with k = 3. Then

P
(√

nTn < x
)
= Φ(x) +

Q1(x)√
n

+
Q2(x)

n
+ o(n−1),

P
(√

nUn < x
)
= Φ(x) +

Q1(x)√
n

+
Q2(x)

n
+ o(n−1),

uniformly in x ∈ R,

πn = Φ(S2)−Φ(S1) +
Q1(S2)−Q1(S1)√

n
+

Q2(S2)−Q2(S1)

n
+ o(n−1),

πn = Φ(S2)−Φ(S1) +
Q1(S2)−Q1(S1)√

n
+

Q2(S2)−Q2(S1)

n
+ o(n−1),

where the functions Q1(x) and Q2(x) are defined in (12),

Q1(x) = −(x2 − 1)ϕ(x)
EY3

1
6

,

Q2(x) = −(x3 − 3x)ϕ(x)
EY4

1 − 3
24

− (x5 − 10x3 + 15x)ϕ(x)
(EY3

1 )
2

72
.

Corollary 2. Let εn ↓ 0 as n→ ∞ and S2 = S1 + εn. Assume that conditions of Lemma 6 hold.
Then

ε−1
n πn = ϕ(S1) +

εn

2
ϕ′(S1) +

ε2
n

6
ϕ′′(S1) + o(ε2

n)+
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+
1√
n

Q′1(S1) +
εn

2
√

n
Q′′1 (S1) + o(εnn−1/2)

1
n

Q′2(S1) + o(n−1ε−1
n ),

ε−1
n πn = ϕ(S1) +

εn

2
ϕ′(S1) +

ε2
n

6
ϕ′′(S1) + o(ε2

n)+

+
1√
n

Q′1(S1) +
εn

2
√

n
Q′′1 (S1) + o(εnn−1/2) +

1
n

Q′2(S1) + o(n−1ε−1
n ).

Theorem 2, Lemma 5 and formula (5) directly imply the following statement.

Theorem 3. Let, in addition to the conditions of Lemma 5., EX3
1 = EY3

1 . Then the deficiency dn
of the distribution L(Y1, . . . , Yn) with the quality characteristic πn with respect to the strategy
L(X1, . . . , Xn) with the quality characteristic πn (the ‘additional number of contracts’) has the form

dn = 2
Q2(S2)−Q2(S2) + Q2(S1)−Q2(S1)

Q1(S2)−Q1(S1)
n1/2 + o(n1/2).

Consider an example where the asymptotic deficiency is finite.

Corollary 3. Let εn = 1
n and S2 = S1 +

1
n , EX3

1 = EY3
1 = 0. Then under the conditions of

Lemma 5 we have

πn =
ϕ(S1)

n
+

ϕ′(S1) + 2Q′2(S1)

n2 + o(n−2),

πn =
ϕ(S1)

n
+

ϕ′(S1) + 2Q′2(S1)

n2 + o(n−2).

Moreover, the deficiency dn has the form

dn =
2(Q′2(S1)−Q′2(S1))

ϕ(S1)
+ o(1) =

S4
1 − 6S2

1 + 3
12

(EY4
1 − EX4

1) + o(1).

4. Random Number of Summands
4.1. Asymptotic Expansions for the Asymptotic (1− α)-Quantile of R-Valued Measurable
Functions of a Random Number of Random Variables

In this section we consider the case where an additional randomization can be intro-
duced into the problem. In this case the number of summands in the sum can be considered
as random. This randomization may not be artificially induced, but also may occur when
the exact portfolio size can be unknown beforehand and only some ‘expected’ number of
summands can be available as the parameter of the problem.

Let natural-valued r.v.s N1, N2, . . . and r.v.s X1, X2, . . . be defined on one and the same
probability space (Ω,A,P). In what follows we will assume that n is the expected value
of Nn,

ENn = n. (25)

Assume that for each n ≥ 1 the r.v. Nn is independent of the sequence X1, X2, . . ..
As above, for each n ≥ 1, consider the value of an R-valued measurable function Ln =
Ln(X1, . . . , Xn). For each n ≥ 1 consider the r.v. LNn defined as

LNn(ω) ≡ LNn(ω)(X1(ω), . . . , XNn(ω)(ω)), ω ∈ Ω.

Below we will assume that the following condition holds.

Condition A. There exist k ∈ N\{1}, αi,n ∈ R, i = 1, . . . , k, βn > 0, Ck > 0, a differentiable
distribution function G(x) and measurable functions gj(x), j = 1, . . . , k such that

βn → 0, max
1≤i≤k

|αi,n| → 0
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as n→ ∞ and

sup
x

∣∣∣P(Ln < x
)
− G(x)−∑k

i=1 αi,ngi(x)
∣∣∣ ≤ Ckβn, n ∈ N.

Lemma 7. Let the function Ln = Ln(X1, . . . , Xn) satisfy Condition A. Then

sup
x

∣∣∣P(LNn < x
)
− G(x)−∑k

i=1 gi(x)Eαi,Nn

∣∣∣ ≤ CkEβNn .

The elementary proof of this lemma directly follows by the formula of total probability.
Consider an example of application of Lemma 7. Let X1, X2, . . . be independent

identically distributed r.v.s satisfying conditions (9) and (10). Assume that the function Ln
is the normalized arithmetic mean (or, which is the same, the normalized sum) Ln =

√
nTn

with Tn defined in (7). Then, in accordance with what has been said in Section 2, relation
(11) holds implying the validity of Condition A. From (11) playing the role of Condition A
and Lemma 7 we obtain the following statement.

Lemma 8. Assume that Ln =
√

nTn with Tn defined in (7) and conditions (9) and (10) hold. Then

sup
x

∣∣∣P(√NnTNn < x
)
−Φ(x)−∑k−2

i=1 Qi(x)EN−i/2
n

∣∣∣ ≤ Ck,δEN−(k−2+δ)/2
n ,

where the functions Qi(x) are defined in Theorem 6.3.2 of [10].

Relation (11) and Lemma 8 imply the following statement.

Lemma 9. Let conditions (9) and (10) hold with k = 4 and δ > 0. Assume that condition (25)
holds and

EN−1/2
n =

1√
n
+

a
n
+ o(n−1), a ∈ R,

EN−1
n =

b
n
+ o(n−1), EN−(2+δ)/2

n = o(n−1), b ∈ R.

Then

sup
x

∣∣∣P(√nTn < x
)
−Φ(x)− Q1(x)√

n
− Q2(x)

n

∣∣∣ = o(n−1)

and

sup
x

∣∣∣P(√NnTNn < x
)
−Φ(x)− Q1(x)√

n
− bQ2(x) + aQ1(x)

n

∣∣∣ = o(n−1).

We will use Lemma 9 in order to determine the asymptotic (1− α)-quantile of Ln and
calculate the asymptotic deficiency.

Recall that, for α ∈ (0, 1), the asymptotic (1− α)-quantile of Ln is the quantity cα(n)
satisfying the asymptotic equality

P
(

Ln ≥ cα(n)
)
= α + o(n−1), n→ ∞. (26)

Correspondingly, we define the the asymptotic (1 − α)-quantile c̃α(n) of LNn by
the equation

P
(

LNn ≥ c̃α(n)
)
= α + o(n−1), n→ ∞. (27)

From Lemmas 1 and 9 we directly obtain the a.e.s for these asymptotic (1 − α)-
quantiles.
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Lemma 10. Under the conditions of Lemma 8, we have

cα(n) = uα +
EX3

1
6
√

n
(u2

α − 1) +
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)

]
+ o(n−1),

c̃α(n) = uα +
EX3

1
6
√

n
(u2

α − 1)+

+
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
b(EX4

1 − 3)
2

(u3
α − 3uα) + 2aEX3

1(u
2
α − 1)

]
+ o(n−1),

where uα satisfies the equation Φ(uα) = 1− α.

Now define the sequence m(n) of natural numbers by the relation

P
(√

nLNm(n)
≥
√

m(n)cα(m(n))
)
= α + o(n−1), n→ ∞. (28)

If
m(n) = n + d + o(1), (29)

n = 1, 2, . . ., then d can have the meaning of the expected additional number of summands
to be included in the sum in order that the function LNn exceeds cα(n) for the loss under a
non-random number n of summands. The quantity d will be called the asymptotic deficiency.

In the same way that Theorem 1 was proved, we can establish the following statement.

Theorem 4. Assume that

ENn = n, EN−1/2
n =

1√
n
+

a
n
+ o(n−1), a ∈ R,

EN−1
n =

b
n
+ o(n−1), EN−(2+δ)/2

n = o(n−1), b ∈ R,

and there exist δ > 0, a differentiable distribution function G(x) and measurable functions g1(x)
and g2(x) such that

sup
x

∣∣∣P(Ln < x
)
− G(x)− g1(x)√

n
− g2(x)

n

∣∣∣ ≤ C
n(2+δ)/2

and G′(cα)cα 6= 0. Then the expected number d of additional summands (see (28) and (29)) in the
normalized random sum LNn with respect to the normalized sum Ln has the form

d =
2
[
g2(cα)(1− b)− ag1(cα)

]
G′(cα)cα

+ o(1),

where cα satisfies the equation G(cα) = 1− α.

Theorem 4 implies the following statement.

Corollary 4. Under the conditions of Lemma 8 the expected additional number of summands
d (see (28) and (29)) corresponding to the normalized sum

√
NnTNn with a random number of

summands with respect to the normalized sum
√

nTn has the form

d =
2
(
(1− b)Q2(uα)− aQ1(uα)

)
ϕ(uα)uα

+ o(1).
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If additionally EX3
1 = 0, then

d =
(1− b)(3− u2

α)(EX4
1 − 3)

12
+ o(1).

4.2. An Example of Three-Point Distribution of the Number of Summands

In this section, keeping to the terminology of the example related to optimization
of the portfolio size of an insurance company, we will use Corollary 4 to obtain a.e.s for
the asymptotic Value-at-Risk (asymptotic (1− α)-quantile of the normalized average loss,
or asymptotic normalized α-reserve) in the case where the portfolio size Nn has a special
distribution concentrated in three points so that is symmetric around the central point.

Assume that the portfolio size Nn has the distribution of the form

P(Nn = n− hn) = P(Nn = n) = P(Nn = n + hn) =
1
3 , (30)

where hn ∈ N, hn < n, n = 1, 2, . . ., and

lim
n→∞

hn

n
= 0. (31)

Lemma 11. Let the random portfolio size Nn have distribution (30) and let condition (31) hold.
Then ENn = n and, as n→ ∞,

EN−1/2
n =

1√
n
− 1

4
√

n

(hn

n

)2
+ O

( 1√
n

(hn

n

)3)
,

EN−1
n =

1
n
+

2
3n

(hn

n

)2
+ O

( 1
n

(hn

n

)4)
, EN−3/2

n =
1

n3/2 + O
( 1

n3/2

(hn

n

)2)
.

Proof. The desired statements follow from the relations

EN−1
n =

3n2 − h2
n

3n(n2 − h2
n)

=
1
n

(
1− h2

n
3n

)(
1 +

h2
n

n2 + O
(h4

n
n4

))
=

1
n
+

2
3n

(hn

n

)2
+ O

( 1
n

(hn

n

)4)
,

EN−3/2
n =

1
3n3/2

( 1
(1− hn/n)3/2 + 1 +

1
(1 + hn/n)3/2

)
=

1
n3/2 + O

( 1
n3/2

(hn

n

)2)
.

The formula for EN−1/2
n is established in a similar way.

Lemmas 10 and 11 imply the following statement.

Theorem 5. Assume that the normalized average loss has the form Ln =
√

nTn with Tn defined in
(7). Let the r.v. Nn be distributed according to (30) and condition (31) hold. Under the conditions of
Lemma 9, for the asymptotic α-reserve c̃α(n) corresponding to the normalized average loss

√
NnTNn

there holds the relation

c̃α(n) = cα(n)−
EX3

1(u
2
α − 1)

24
√

n

(hn

n

)2
+ o(n−1), n→ ∞.

Remark 1. In addition to the conditions of Theorem 5, let

hn = γnβ + o(nβ), γ ≥ 0, 0 ≤ β < 1.

Then, as n→ ∞,

n5/2−2β
(
cα(n)− c̃α(n)

)
→ γ2

24
EX3

1(u
2
α − 1).

Applying Lemma 9, by simple calculations we obtain the following statement.
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Lemma 12. Assume that conditions (9) and (10) hold with k = 4 and 0 < δ ≤ 1. Let conditions
(30) and (31) hold. Then

sup
x

∣∣∣∣P(√NnTNn < x
)
−Φ(x)−

(
1− h2

n
4n2

)
Q1(x)√

n
−
(

1 +
2h2

n
3n2

)
Q2(x)

n

∣∣∣∣ = O
(

h(4+2δ)/3
n

n7(2+δ)/6

)
.

Corollary 5. Let conditions of Lemma 12 hold and hn = n3/4. Then

sup
x∈R

∣∣∣P(√NnTNn < x
)
−Φ(x)− 1√

n
Q1(x)− 1

n

(
Q2(x)− 1

4
Q1(x)

)∣∣∣ = o(n−1).

Relations (12), Lemmas 10 and 11 yield the following theorem.

Theorem 6. Let the conditions of Corollary 5 hold. Then the asymptotic α-reserves cα(n) and
c̃α(n) related to the normalized average losses

√
nTn and

√
NnTNn have the form

cα(n) = uα +
EX3

1
6
√

n
(u2

α − 1) +
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)

]
+ o(n−1),

c̃α(n) = uα +
EX3

1
6
√

n
(u2

α − 1)+

+
1

12n

[E2X3
1

3
(5uα − 2u3

α) +
EX4

1 − 3
2

(u3
α − 3uα)−

1
2
EX3

1(u
2
α − 1)

]
+ o(n−1),

where uα satisfies the equation Φ(uα) = 1− α. The corresponding expected additional number d of
contracts has the form

d =
Q1(uα)

2ϕ(uα)uα
+ o(1) =

(1− u2
α)EX3

1
12uα

+ o(1).

5. Conclusions

The paper deals with an approach to the comparison of distributions of sums of a
finite number of independent random variables by deficiency. The notion of asymptotic
deficiency of the distribution of a measurable R-valued function of a random vector with
respect to the distribution of the same function of another random vector was introduced.
Some formulas for the calculation of asymptotic deficiency were presented in the cases
where the function has the form of a normalized sum of independent identically distributed
r.v.s. The formulas for the asymptotic deficiency were obtained as the solution of two
problems, one of which deals with the description of the distribution of a separate summand
minimizing the number of summands and providing a prescribed value of the (1− α)-
quantile of the normalized sum for a given α ∈ (0, 1). The second problem deals with
minimization of the number of summands and guaranteeing a prescribed probability for
a normalized sum of r.v.s to fall into a given interval. These results were extended to the
case of a random number of summands in the sum (or random portfolio size, in terms of
the example dealing with an insurance company). For this case, an analog of deficiency
of the sum of a random number of summands with respect to the distribution of the sum
of a non-random number of summands was introduced. The problem of comparison of
these distributions by an analog of deficiency was considered in a special case of three-
point distribution of portfolio size. The main mathematical tools used in the paper were
asymptotic expansions for the distributions of average losses and their quantiles.

Author Contributions: Conceptualization, V.E.B. and V.Y.K.; Formal analysis, V.Y.K.; Funding acqui-
sition, V.Y.K.; Investigation, V.E.B. and V.Y.K.; Writing – original draft, V.E.B. and V.Y.K. All authors
have read and agreed to the published version of the manuscript.



Mathematics 2022, 10, 454 15 of 15

Funding: The research was supported by the Ministry of Science and Higher Education of the Russian
Federation, project No. 075-15-2020-799.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the anonymous referees for their comments and suggestions
that improved the paper. We also thank A. K. Gorshenin for his help in formatting the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Müller, A.; Stoyan, D. Comparison Methods for Stochastic Models and Risks; J. Wiley & Sons: Chichester, UK, 2002; 352p, ISBN 978-0-

471-49446-1.
2. Hodges, J.L.; Lehmann, E.L. Deficiency. Ann. Math. Stat. 1970, 41, 783–801._50. [CrossRef]
3. Torgersen, E. Comparison of Statistical Experiments; Printed online: May 2013; Cambridge University Press: Cambridge, UK, 1991;

doi:10.1017/CBO9780511666353.007. [CrossRef]
4. Xiang, X. Deficiency of the sample quantile estimator with respect to kernel quantile estimators for censored data. Ann. Stat. 1995,

23, 836–854. [CrossRef]
5. Bening, V.E.; Korolev, V.Y.; Zeifman, A.I. Calculation of the deficiency of some statistical estimators constructed from samples with

random sizes. Colloq. Math. 2019, 157, 157–171. [CrossRef]
6. Blackwell, D.; Girshick, M.A. Theory of Games and Statistical Decisions. Wiley Publications in Statistics; J. Wiley & Sons: New York, NY,

USA; Chapman & Hall: London, UK, 1954; pp. XI, 355.
7. Lehmann, E.L.; Casella, G. Theory of Point Estimation; Springer: Berlin, Germany, 1998; 589p.
8. Bening, V.E. Asymptotic Theory of Testing Statistical Hypotheses: Efficient Statistics, Optimality, Power Loss, and Deficiency; Walter de

Gruyter: Berlin, Germany, 2011; 277p, ISBN 978-3-11-093599-8.
9. Cramér, H. Mathematical Methods of Statistics; Princeton University Press: Princeton, NJ, USA, 1946; 647p.
10. Petrov, V.V. Limit Theorems of Probability Theory: Sequences of Independent Random Variables; Clarendon Press: Oxford, UK, 1985; 437p.

http://doi.org/10.1214/aoms/1177696959
http://dx.doi.org/10.1017/CBO9780511666353.007
http://dx.doi.org/10.1214/aos/1176324625
http://dx.doi.org/10.4064/cm7327-7-2018

	Introduction
	The Problem under Consideration and the Structure of the Paper
	Asymptotic Deficiency

	Asymptotic Expansions for the Distributions of Normalized Sums of Random Variables
	The Comparison of the Distributions of Two Normalized Sums of Random Variables
	The Asymptotic Deficiency of the Distributions of Summands Providing a Given (1-)-Quantile of the Normalized Sums
	The Asymptotic Deficiency of the Distributions of Summands Providing a Given Probability for the Normalized Sum to Fall into a Given Interval

	Random Number of Summands
	Asymptotic Expansions for the Asymptotic (1-)-Quantile of R-Valued Measurable Functions of a Random Number of Random Variables
	An Example of Three-Point Distribution of the Number of Summands

	Conclusions
	References

