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Abstract: I begin the study of a hierarchy of (hereditarily) <κ-blurrily ordinal definable sets. Here for
a cardinal κ, a set is <κ-blurrily ordinal definable if it belongs to an OD set of cardinality less than
κ, and it is hereditarily so if it and each member of its transitive closure is. I show that the class of
hereditarily <κ-blurrily ordinal definable sets is an inner model of ZF. It satisfies the axiom of choice
iff it is a κ-c.c. forcing extension of HOD, and HOD is definable inside it (even if it fails to satisfy the
axiom of choice). Of particular interest are cardinals λ such that some set is hereditarily <λ-blurrily
ordinal definable but not hereditarily <κ-blurrily ordinal definable for any cardinal κ < λ. Such
cardinals I call leaps. The main results concern the structure of leaps. For example, I show that if λ is
a limit of leaps, then the collection of all hereditarily <λ-blurrily ordinal definable sets is a model
of ZF in which the axiom of choice fails. Using forcing, I produce models exhibiting various leap
constellations, for example models in which there is a (regular/singular) limit leap whose cardinal
successor is a leap. Many open questions remain.
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1. Introduction

The concept of ordinal definability is a core notion in set theory, introduced by Gödel,
and developed by Myhill and Scott. Classically, a set a is ordinal definable, or OD, iff there
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are a formula ϕ(x,~y) and ordinals~α such that a is the unique set such that ϕ(a,~α) holds.
Although it is a classical fact due to Tarski that in general, the class of all definable sets is
itself not definable, allowing ordinal parameters results in a definable concept. A lot of
research on questions of definability has been done already in the first half of the twentieth
century, and there is a lot of recent research as well, which I will refer to later, but let me
mention [1] now for a very current article relating to the abovementioned result due to
Tarski.

The collection of ordinal definable sets is not necessarily transitive. For example,
the collection of all subsets of ω is definable, but there may be subsets of ω which are
not ordinal definable. Classically, the way around this defect is to define that a set a is
hereditarily ordinal definable if it is OD and every member of its transitive closure is also OD.
The collection of all hereditarily ordinal definable sets is denoted HOD, and is known to be
an inner model in which the axiom of choice holds, even if V is merely a ZF model.

Fairly recently, Hamkins and Leahy [2] introduced the concept of ordinal algebraicity: a
set a is ordinal algebraic if there is a finite OD set A such that a ∈ A. They showed that the
hereditary version of this concept, the class of all hereditarily ordinal algebraic sets, is no
different than HOD.

Taking the logical next step, in a recent manuscript, Tzouvaras [3] argues that one
can capture what Russell meant when he used the adjective “typical” in a somewhat
paradoxical statement, by defining a set to be nontypical, or NT, or NTℵ1 , if it belongs to a
countable OD set.

I follow a more liberal approach here, and I hope to convince the reader that this
results in a very rich and interesting hierarchy of definability notions. I use the notation a
for the cardinality of the set a in the following.

Definition 1 (ZF). Let κ be a cardinal. A set a is <κ-blurrily ordinal definable, or <κ-OD, if
there is an OD set A such that a ∈ A and A < κ. As usual, I will also write <κ-OD for the class of
all sets that are <κ-OD.

This definition is to be understood in ZF, i.e., A is required to have a cardinality,
and this cardinality is required to be less than κ. Nevertheless, I will mostly work in ZFC
models, where every set has a cardinality, and the concepts are a little more natural. Clearly,
<κ-OD = ∅ for κ < 2. The idea behind the concept is this: when a is <κ-OD, we may not
be able to single out a as the only set with a certain property (with respect to some ordinal),
as was the case with ordinal definability, but we may narrow it down so that a is one of
fewer than κ many sets with that property, just as though our memory of the exact identity
of a became a little blurry. The set A in Definition 1 can hence be thought of as a blurry
definition of a .

Thus, a set is OD iff it is <2-OD, and it is ordinal algebraic iff it is <ω-OD. The
abovementioned “nontypical” sets are the ones that are <ω1-OD in the current terminology.
The hereditary versions of the <κ-OD sets are defined in the usual way. I denote the
transitive closure of a set x by TC(x).

Definition 2. Let κ be a cardinal. A set a is hereditarily <κ-blurrily ordinal definable,
denoted <κ-HOD, iff TC({a}) ⊆ <κ-OD. As before, I also write <κ-HOD for the class of
all <κ-HOD sets.

Again, <0-HOD = <1-HOD = ∅ (this is why I will always assume that κ > 1),
<2-HOD = HOD, <ω-HOD is the collection of all hereditarily algebraic sets, and <ω1-HOD
is the class of the hereditarily nontypical sets, or HNTℵ1 , in the terminology of Tzouvaras. I
refrained from employing the notation HNTκ , which was used by Tzouvaras, but only to
rule out the relevance of the case κ > ω1; he argues that in this case, the resulting concept
would be unnatural, contradicting his interpretation of nontypicality. Thus, for κ > ℵ1, we
are not dealing with nontypicality, and I call it blurry definability instead.
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One simple fact that I will frequently use is that a set a is <κ-HOD iff a is <κ-OD and
a ⊆ <κ-HOD.

This article is a first exploration of the structure of this hierarchy of blurry definability
and the associated hierarchy of classes <κ-HOD. Although in the existing literature, the
focus was always on one particular κ (namely 2, ω or ω1), here, I am more interested in
questions such as at which κ does a new set become hereditarily <κ-blurrily definable? What can
the class of such κ’s be like? What can be said in general about <κ-HOD and its relationship to
HOD, say? There are many questions such as this that are worthwhile.

The article is organized as follows.
In Section 2, I prove some general ZF/ZFC results about <κ-HOD: that it is an in-

ner model (Proposition 2) and that it satisfies a “blurry” version of the axiom of choice
(Theorem 2). Turning to the question how close HOD is to <κ-HOD, I show that HOD sat-
isfies Hamkins’ λ-approximation and -cover properties in <κ-HOD, for every cardinal
λ ≥ κ (Theorem 3), that HOD and <κ-HOD have the same cardinals and cofinalities above
κ (Proposition 6), and that <κ-HOD has no fresh sequences over HOD whose length has
cofinality at least κ (Proposition 4). Two of the main results in this section are Theorems 5
and 7, which state:

• Let κ be an infinite cardinal. If <κ-HOD satisfies the axiom of choice then it is a set
forcing extension of HOD by a κ-c.c. forcing notion.

• Let λ ≥ 2 be a cardinal. Let κ ≥ λ be regular. Then HOD is definable in <λ-HOD
using P(κ) ∩HOD as a parameter.

I also make a connection to Woodin’s work on the HOD conjecture by showing that if
δ is extendible, then the HOD hypothesis implies that [HOD]<δ ⊆ <δ-HOD (Proposition 8).
I further introduce the concept of a leap, which is a κ where a new set gets into <κ-HOD,
and I prove some basic facts about the class of leaps: that it is closed, that the least leap, if
existent, is a successor cardinal, and that successor leaps are successor cardinals (Lemma 2).
A maybe surprising result is Theorem 10:

• If λ is a limit leap, then <λ-HOD does not satisfy the axiom of choice; more precisely,
λ̄-AC fails in <λ-HOD, where λ is the λ̄-th leap.

Section 3 is concerned with the effects of forcing on blurry HOD and the leap structure.
I prove preservation facts for belonging to blurry HOD, as well as results on not adding
to blurry HOD. Specific forcing notions I investigate are Cohen forcing, a forcing due to
Kanovei and Lyubetsky, forcing with certain homogeneous Souslin trees and Příkrý forcing.
Strewn into this section are some relative consistency results, constructing models where
the least leap is the successor of a regular limit cardinal (Corollary 7), where the cardinal
successor of a regular limit leap is a leap (Theorem 14), where the least leap is the successor
of a singular limit cardinal (Theorem 16), and where the cardinal successor of a singular
limit leap is a leap (Theorem 17).

I close with Section 4, containing some open problems and directions for future research.
I would like to thank the two referees for thoroughly reading an earlier manuscript of

this article, and for providing very useful feedback.

2. ZF(C) Results

In this section, I will prove some results on the structure of <κ-HOD—in some cases, I
will work in ZF, and in others, I will also assume the axiom of choice.

2.1. Basic Observations

Let us begin by making some simple observations.

Proposition 1. Let 2 ≤ κ < λ be cardinals.

(1) OD ⊆ <κ-OD ⊆ <λ-OD.
(2) <κ-HOD is transitive, and HOD ⊆ <κ-HOD ⊆ <λ-HOD.
(3) OD∩ Hκ ⊆ <κ-HOD.
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(4) Under AC, Hκ ⊆ <(2<κ)+-HOD.
(5) So under AC, V is the increasing union

⋃
κ∈Card <κ-HOD.

Proof. Points (1) and (2) are obvious.
For point (3), let a ∈ Hκ be OD. To show that a ∈ <κ-HOD, we must check that every

x ∈ TC({a}) is <κ-OD. However, TC({a}) is definable from a and hence OD, and the
cardinality of TC({a}) is less than κ, as a ∈ Hκ . So TC({a}) witnesses that x is <κ-OD.

For point (4), note that the cardinality of Hκ is 2<κ . So Hκ is an OD set of size less than
(2<κ)+ that witnesses that a is <(2<κ)+-OD, for every a ∈ Hκ . It follows that every a ∈ Hκ

is <(2<κ)+-HOD, as claimed.
Point (5) is again obvious.

Hamkins-Leahy [2] introduced the notion of ordinal algebraicity by defining that
a set a is ordinal algebraic iff it belongs to a finite OD set, and denoted the class of all
ordinal algebraic sets by OA. They further defined a to be hereditarily ordinal algebraic
if TC({a}) ⊆ OA, and denoted the class of all hereditarily ordinal algebraic sets by HOA.
Thus, using the notation introduced here,

OA = <ω-OD and HOA = <ω-HOD.

Theorem 1 (Hamkins-Leahy [2]). <ω-HOD = HOA = HOD.

Proposition 2 (ZF). Let κ ≥ 2 be a cardinal. Then <κ-HOD is an inner model, i.e., a transitive
class containing the ordinals such that the ZF axioms hold when relativized to it.

Proof. If 2 ≤ κ ≤ ω, then by Proposition 1 (2) and Theorem 1, HOD ⊆ <κ-HOD ⊆
<ω-HOD = HOD, so that <κ-HOD = HOD certainly is an inner model (even satisfying the
axiom of choice).

So let us assume that κ > ω. It suffices to show that <κ-HOD satisfies the following
condition: for every u ⊆ <κ-HOD, there is a transitive v ∈ <κ-HOD such that u ⊆ v and
Def(〈v,∈〉) ⊆ <κ-HOD (see [4], Thm. 13.9; the stated condition implies the assumption of
the theorem.) Here is the short proof that this condition is satisfied:

So let u ⊆ <κ-HOD be given. Let u ⊆ Vα, and set v = Vα ∩<κ-HOD. Clearly, v is
transitive, OD (so also <κ-OD), contained in <κ-HOD, so v ∈ <κ-HOD, and u ⊆ v. To show
that Def(〈v,∈〉) ⊆ <κ-HOD, let ϕ(x,~y) be a formula, and let~a = a0, . . . , an−1 ∈ v. We must
show that z = {x ∈ v | 〈v,∈〉 |= ϕ(x,~a)} ∈ <κ-HOD. Since z ⊆ v ⊆ <κ-HOD, it suffices to
show that z is <κ-OD. For each i < n, let Ai be an OD set containing ai such that Ai < κ.
Since ai ∈ v, we may assume that each b ∈ Ai is in v, by adding this requirement to the
definition of Ai if necessary, and this can be done for every i < n. Then z is in the set

B = {w | ∃b0 ∈ A0 . . . ∃bn−1 ∈ An−1 w = {x ∈ v | 〈v,∈〉 |= ϕ(x,~b)}},

B is OD, as A0, . . . , An−1 and v are, and obviously, B ≤ A0 · . . . · An−1 < κ, as κ is an infinite
cardinal.

2.2. Blurry Choice

Even though <κ-HOD is an inner model, we do not know that it satisfies AC, see [5,6],
where it is shown that <ω1-HOD (there referred to as HNT) may be strictly between HOD
and V, while satisfying or not satisfying AC. However, it does satisfy a “blurry” form of AC,
as we shall see presently.

However, first, I would like to say a few words about the definability of <κ-OD. I
will work with some simple Gödelization of formulas as natural numbers. If ϕ is an actual
formula, then I denote its Gödel number by pϕq. When working inside a model of set
theory, I will also sometimes write pϕq for a natural number in the sense of the model
which it believes to be the code of a formula (even though there may be no actual formula
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ϕ of which it would be the code, e.g., if pϕq is a nonstandard number), and it is useful
to think of pϕq just as a formula in the sense of the model. There is a set-theoretic Σ1
formula Sat which defines the satisfaction relation in any model M of set theory. Working
inside a model M of set theory, if pϕq is a formula in the sense of M, A is a model of the
corresponding language, and s is an assignment of the free variables of pϕq with values
in the universe of A, then Sat(A, pϕq, s) expresses that A |= ϕ[s]. We can now define that
a ∈ <κ-OD iff there is a formula pϕ(x, y)q in the language of set theory with two free
variables (so we are quantifying over a certain set of natural numbers) such that for some
ordinals α and β < α, the set A = {z | Sat(〈Vα,∈〉, pϕq, 〈z, β〉)} has cardinality less than κ,
and a ∈ A. The reason that this works is that if this property holds, then the set A is OD,
since A is defined using the parameters α, pϕq and β, which all are ordinals (even if pϕq
may be a nonstandard natural number in the particular model we are working in—Sat is
an actual formula.) Vice versa, if there is a set A = {z | ϕ(z, β)}M of M-cardinality less
than κ, where ϕ is an actual formula, and a ∈ A, then by the Levy reflection theorem, there
is an α such that in M, A = {z | Sat(〈Vα,∈〉, pϕq, 〈z, β〉)}. I will often be a little sloppy in
the notation, and write “A |= ϕ[s]” in place of the more precise, but maybe less suggestive
“Sat(A, pϕq, s).” I also used the fact that in ZF, any finite sequence of ordinals can be coded
by a single ordinal, using Gödel’s pairing function, for example. I will tacitly keep using
this throughout.

Theorem 2 (ZF). Let κ > 1 be a cardinal. Then, whenever C ∈ <κ-HOD is a set consisting of
nonempty sets, there is a function f : C −→ ([

⋃
C]<κ)V such that f ∈ <κ-HOD, and such that

for every c ∈ C, ∅ 6= f (c) ⊆ c.

Remark: So while in this situation, AC would guarantee a function that picks, for every
c ∈ C, an element of c, which is equivalent to picking a one element subset of c, the theorem
guarantees the existence of a function in <κ-HOD that picks, for every c ∈ C, a nonempty
subset of c of size less than κ (as computed in V).

Proof. For every c ∈ <κ-HOD, let us say that a triple 〈α, β, pϕq〉 is a code for c if pϕq is the
Gödel number of a formula in the language of set theory with the two free variables v0 and
v1, and, letting Z = {x | Vα |= ϕ(x, β)}, we have that Z < κ and c ∈ Z. Every element of
<κ-HOD has such a code, and the codes are canonically well-ordered, for example using
the lexicographical order.

Now, given C ∈ <κ-HOD as in the theorem, define a function f = f C : C −→ [
⋃

C]<κ

as follows. Given c ∈ C, or any nonempty set c ⊆ <κ-HOD, really, let τc = 〈αc, βc, pϕcq〉 be
the least code of any element of c, and let

f (c) = {x ∈ c | Vαc |= ϕc(x, βc)}.

Thus, letting τc be a code for d ∈ c, we have that d ∈ f (c) ⊆ c and f (c) < κ. Therefore,
it remains to show that f ∈ <κ-HOD. To this end, since C ∈ <κ-HOD, we can let A be an OD

set such that C ∈ A and A < κ. By adding a requirement to the definition of A if necessary,
we may assume that every D ∈ A is a set of nonempty sets, and that D ∈ <κ-HOD. We can
then define a function f D as above. Then, the set

{ f D | D ∈ A}

has cardinality less than κ, and it contains f = f C. So f is <κ-OD. To see that f ∈ <κ-HOD,
it remains to show that f ⊆ <κ-HOD. Every member of f is a pair of the form 〈c, f (c)〉,
where c ∈ dom( f ). It suffices to show that c, f (c) ∈ <κ-HOD, since <κ-HOD is closed
under ordered pairs. Now c ∈ dom( f ) = C ∈ <κ-HOD, so c ∈ <κ-HOD, since <κ-HOD
is transitive. In addition, f (c) is of the form {x ∈ c | Vαc |= ϕc(x, βc)}. So f (c) ⊆ c ∈
<κ-HOD, and so, f (c) ⊆ <κ-HOD, again since <κ-HOD is transitive. Therefore, all we
must show is that f (c) ∈ <κ-OD. However, this follows by an argument which is standard
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by now: since c ∈ <κ-HOD, there is an OD set B of cardinality less than κ, with c ∈ B. Since
c is a nonempty set and c ∈ <κ-HOD, we may assume that B consists of nonempty sets
which belong to <κ-HOD, by adding these requirements to the definition of B, if necessary.
We can now let E be the set consisting of all sets of the form

{x ∈ b | Vαb |= ϕb(x, βb)}

where b ∈ B. The set E is OD, has size less than κ, since B has, and since c ∈ B, we have
that f (c) ∈ E. This shows that f (c) ∈ <κ-HOD, as required.

Remark 1. The proof of the previous theorem shows that there is a V-definable prewellorder R
of <κ-HOD such that for every x ∈ <κ-HOD, the set of y which are not comparable with x
has cardinality less than κ. In other words, this prewellorder splits <κ-HOD into equivalence
classes, each in <κ-HOD, of size less than κ, and these equivalence classes are strongly well-ordered,
meaning that the collection of predecessors of any given set forms a set.

A defect of this is that <κ-HOD may not know that these equivalence classes have
cardinality less than κ. This can be fixed, however, if κ has a nice closure property.

Proposition 3 (AC). Let κ be a strong limit cardinal. Suppose that a ∈ <κ-HOD, and that
aV

< κ. Then a<κ-HOD
= aV.

Proof. Let κ̄ = a < κ. It suffices to show that there is a bijection between a and κ̄ in
<κ-HOD.

There are κ̄κ̄ many bijections between κ̄ and a. Each of them is in <κ-HOD, as I will
show presently. First, let A be an OD set of cardinality λ < κ, such that a ∈ A. We may
assume that every element of A belongs to <κ-HOD and has cardinality κ̄, since a has
these properties, so that we otherwise may add these requirements to the definition of A.
Consider the set

B = { f | there is a b ∈ A such that f : κ̄ −→ b is a bijection}.

For every fixed b ∈ A, there are κ̄κ̄ < κ such bijections, and there are fewer than κ
many elements of A, so in total, the cardinality of B is λ · κ̄κ̄ < κ. In addition, since A is OD,
so is B. It follows that B ⊆ <κ-HOD, because if f ∈ B, then f ⊆ <κ-HOD, as f : κ̄ −→ b,
for some b ∈ B, so f ⊆ κ̄ × b ⊆ <κ-HOD. Hence, there is a bijection between κ̄ and a in
<κ-HOD.

Corollary 1. If κ is a strong limit cardinal, then <κ-HOD satisfies the following form of the Axiom
of Choice: for every collection C of nonempty sets, there is a function f : C −→ [

⋃
C]<κ such that

for every c ∈ C, ∅ 6= f (c) ⊆ c.

2.3. How Close Is HOD to Blurry HOD?

The main theme in this subsection is to find ways in which HOD and <κ-HOD are
close to each other. The following definition captures two important forms of closeness,
introduced by Hamkins [7] (Def. 2).

Definition 3. Let M ⊆ N be transitive classes, and let κ be a cardinal in N.
M satisfies the κ-cover property in N if for every set a ∈ N with a ⊆ M and aN

< κ, there
is a set c ∈ M such that a ⊆ c and cM

< κ. M satisfies the strong κ-cover property if this is true
for every set a ∈ N with a ⊆ M and aV

< κ.
Let a ∈ N be a set with a ⊆ M. A set of the form a ∩ c, where c ∈ M and cM

< κ, is called a
κ-approximation to a in M. The set a is said to be κ-approximated in M if every κ-approximation
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to a in M belongs to M. M satisfies the κ-approximation property in N if whenever a ∈ N with
a ⊆ M is κ-approximated in M, then a ∈ M.

Note that in the notation of this definition, if κ < λ are cardinals in N, and M satisfies
the κ-approximation property in N, then M also satisfies the λ-approximation property in
N, because if x ∈ N, x ⊆ M is λ-approximated in M, then it is also κ-approximated in M.

Theorem 3. Let κ ≤ λ be infinite cardinals. Then HOD satisfies the strong λ-cover property and
the λ-approximation property in <κ-HOD.

Proof. To verify the strong λ-cover property, let a ∈ <κ-HOD, a ⊆ HOD, with γ = a < λ.
As a side remark, note that any subset of HOD is well-ordered by the canonical well-
ordering of HOD, restricted to the set, and hence, it has a cardinality in V, even without
assuming the axiom of choice.

Let A be OD with a ∈ A and A < κ. Since a ⊆ HOD and a = γ, we may assume that
for all b ∈ A, b ⊆ HOD and b = γ, since these requirements may be added to the definition
of A if necessary. Set c =

⋃
A. Then c ≤ γ · A < λ, c is OD, and c ⊆ HOD. Thus, c ∈ HOD,

and clearly, a ⊆ c. Since AC holds in HOD, c has a cardinality in HOD, and hence, cHOD
< λ,

because if it were the case that cHOD ≥ λ, then λ would be collapsed as a cardinal. This
verifies the strong λ-cover property. Note that consequently, since HOD ⊆ <κ-HOD, it is
also true in <κ-HOD that the cardinality of a is less than λ.

Concerning the λ-approximation property, by the remark after Definition 3, we may
assume that λ = κ, i.e., it suffices to prove the κ-approximation property. So let a ∈
<κ-HOD, a ⊆ HOD be κ-approximated in HOD. Let A be OD, with a ∈ A and A < κ.
We may assume that every b ∈ A is a subset of HOD that is κ-approximated in HOD. Let
T =

⋃
A. Then T is OD and T ⊆ HOD, so T is in HOD.

For every c ∈ ([T]<κ)HOD, the set

A u c = {b ∩ c | b ∈ A}

is an OD subset of HOD, and hence an element of HOD. Moreover, the function F :
([T]<κ)HOD −→ HOD defined by

F(c) = A u c

belongs to HOD as well.
Define, for distinct b0, b1 ∈ A, d(b0, b1) to be the least (in the canonical well-ordering

of HOD) element of b04b1. Let

∆ = {d(b0, b1) | b0, b1 ∈ A, b0 6= b1}.

Then ∆ ∈ HOD, and ∆ < κ. Since κ is a cardinal in V, ∆
HOD

< κ as well, so that
∆ ∈ ([T]<κ)HOD. Thus, Au∆ ∈ HOD. Note that if b, b′ ∈ A are distinct, then b∩∆ 6= b′ ∩∆.

Consequently, for ∆ ⊆ c ∈ ([T]<κ)HOD and b̄ ∈ A u ∆, there is a unique b̄′ ∈ A u c
such that b̄′ ∩ ∆ = b̄. Therefore, we can define in HOD:

B(b̄) =
⋃
{b̄′ | ∃c ∈ ([T]<κ)HOD (∆ ⊆ c and b̄′ ∈ A u c and b̄′ ∩ ∆ = b̄)}.

It follows that B(b̄) is the unique b ∈ A such that b ∩ ∆ = b̄. Since for b ∈ A,
b = B(b ∩ ∆), it follows that

A = {B(b̄) | b̄ ∈ A u ∆}

and hence, A ∈ HOD. In particular, a ∈ HOD.

As a side, note that the fact that HOD satisfies the ω-approximation property in
<ω-HOD implies directly that HOD = <ω-HOD, reproving the Hamkins-Leahy result,
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Theorem 1. The approximation property also sheds a light on fresh sequences in blurry
HOD over HOD. The terminology follows Hamkins [8].

Definition 4 (Hamkins). Let M ⊆ N be inner models, and let θ be an ordinal. A sequence
a : θ −→ M is a fresh sequence in N over M if a ∈ N, a /∈ M, but for all ξ < θ, a�ξ ∈ M.

Note that for there to be a fresh sequence of length θ, the ordinal θ must be a limit.
The following proposition expresses another way in which <κ-HOD is close to HOD. It will
turn out later that it is optimal, in a sense.

Proposition 4. Let κ be an infinite cardinal. If θ is a limit ordinal with cf<κ-HOD(θ) ≥ κ, then
<κ-HOD has no length θ sequence that is fresh over HOD.

Proof. This follows from the fact that HOD satisfies the κ-approximation property in
<κ-HOD, by Theorem 3—here is the argument. Let f : θ −→ HOD, f ∈ <κ-HOD,
be such that for every α < θ, f �α ∈ HOD. As a set, f is a subset of HOD, and the
point is that f is κ-approximated in HOD. To see this, let a ∈ HOD, aHOD

< κ. Since
cf<κ-HOD(θ) ≥ κ, it follows that {ξ < θ | 〈ξ, f (ξ)〉 ∈ a} is bounded in θ, say by α.
Then, f ∩ a = ( f �α) ∩ a ∈ HOD.

The fact that HOD satisfies the κ-approximation and -cover properties in <κ-HOD
suggests that the relationship between these models is in some sense similar to that between
a ground model and its forcing extension by a forcing with a closure point below κ,
see [7] (Lemma 13), although <κ-HOD may not satisfy the axiom of choice. In fact, using a
criterion for when a ZFC model of set theory is a set forcing extension of an inner model
proved in Bukovský [9], it can be seen that <κ-HOD actually is a forcing extension of HOD
by a set-sized κ-c.c. forcing, if <κ-HOD satisfies ZFC.

Definition 5 ([9] (1.6)). Let M1 ⊆ M2 be transitive models, and let κ be a cardinal in M2. Then
AprM1,M2

(κ) says that whenever f ∈ M2 is a function from an ordinal α to an ordinal β, then there

is a function g : α −→ P(β) in M1 such that for every ξ < α, f (ξ) ∈ g(ξ) and g(ξ)
M1

< κ.

The remarkable main theorem of [9] is the following.

Theorem 4 (ZFC). Suppose M is a transitive inner model of ZFC, and κ is an infinite cardinal.
Then the following conditions are equivalent:

1. V is a forcing extension of M by a κ-c.c. forcing notion.
2. AprM,V(κ) holds.

The point now is:

Proposition 5. Let κ be a cardinal. Then AprHOD,<κ-HOD(κ) holds.

Proof. I will prove a more general condition, namely that if f : d −→ HOD is a function in
<κ-HOD with d ∈ HOD, then there is in HOD a function g : d −→ HOD such that for every

x ∈ d, f (x) ∈ g(x) and g(x)
HOD

< κ. To see this, let f be as described. Let F be OD with

f ∈ F and F
V
< κ, and such that for every h ∈ F, h : d −→ HOD. Define a function g with

domain d by
g(x) = {h(x) | h ∈ F}.

Then g ∈ HOD, and for x ∈ d, f (x) ∈ g(x) and g(x)
HOD

< κ. So g is as wished.

Consequently, we obtain the following result.
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Theorem 5. Let κ be an infinite cardinal. Then the following are equivalent:

1. <κ-HOD satisfies the axiom of choice.
2. <κ-HOD is a set forcing extension of HOD by a κ-c.c. forcing notion.

Proof. The direction from 1 to 2 follows by Proposition 5 and Theorem 4. For the converse,
since HOD satisfies the axiom of choice, so does <κ-HOD if the latter is a set forcing
extension of the former.

Even if <κ-HOD fails to satisfy the axiom of choice, Bukovský’s condition is useful.

Proposition 6. Let κ be an infinite cardinal. Then HOD and <κ-HOD have the same cardinals
and cofinalities above κ, in the following sense:

(a) If λ is a limit ordinal such that cfHOD(λ) ≥ κ, then cfHOD(λ) = cf<κ-HOD(λ).
(b) For λ ≥ κ, λ is regular in HOD iff λ is regular in <κ-HOD.
(c) CardHOD \ κ = Card<κ-HOD \ κ.

In fact, this is true of any two models M (in place of HOD) and N (in place of <κ-HOD) such
that AprM,N(κ) holds; for (c), we assume that the axiom of choice holds in M.

Proof. I will use only that AprHOD,<κ-HOD(κ) holds, by Proposition 5.
To prove (a), assume the contrary. Then λ̄ = cf<κ-HOD(λ) < cfHOD(λ). Let f : λ̄ −→ λ

be cofinal, with f ∈ <κ-HOD. By AprHOD,<κ-HOD(κ), let g : λ̄ −→ P(λ), g ∈ HOD, so

that for all ξ < λ̄, f (ξ) ∈ g(ξ) and g(ξ)
HOD

< κ. Since cfHOD(λ) ≥ κ, it follows that
sup g(ξ) < λ. In HOD, define h : λ̄ −→ λ by h(ξ) = sup g(ξ). Since f (ξ) ≤ g(ξ), ran(g) is
cofinal in λ, contradicting that λ̄ < cfHOD(λ), and showing (a).

Claim (b) follows immediately from (a).
Turning to (c), it suffices to show that every cardinal λ ≥ κ in HOD is also a cardinal in

<κ-HOD. Assume the contrary, and let λ be the least cardinal of HOD that is greater than or
equal to κ and not a cardinal in <κ-HOD. Since κ itself is a cardinal in <κ-HOD, it follows
that λ > κ, and obviously, λ must be a successor cardinal in HOD. However, then, λ is
regular in HOD, by the axiom of choice, so λ = cfHOD(λ) = cf<κ-HOD(λ), showing that λ
is a cardinal in <κ-HOD after all.

I would like to give an application of the approximation and cover properties of HOD
in <κ-HOD, namely that HOD is definable in <κ-HOD. In view of Theorem 5, this is clear
if <κ-HOD is a model of the axiom of choice, modulo Laver’s ground model definability
result [10]. Therefore, the main case of interest is going to be that it is not. Note that
this result is not at all obvious; HOD is highly non-absolute to inner models—see, for
example, [11]. It can be viewed as expressing a certain closeness between <κ-HOD and V,
because it says that <κ-HOD can tell what is hereditarily ordinal definable in V. I will use
the following theorem, the proof of which is a variation of an argument due to Hamkins to
prove Laver’s abovementioned result, as exhibited in more detail in Reitz [12] (Lemma 7.2).
The new point is that the ambient model is not required to satisfy any form of the axiom of
choice (so that it will be possible to apply the result in <κ-HOD.)

Theorem 6. Let W be a transitive model satisfying ZF. Let κ be a regular cardinal in W. Let
M,M′ ∈ W be transitive models of ZF without replacement, with θ =M∩On =M′ ∩On,
and each satisfying: if κ̄ ≤ κ and r ⊆ κ̄× κ̄ is such that 〈κ̄, r〉 a well-order, then there are an ordinal
α and a function π : κ̄ −→ α such that π : 〈κ̄, r〉 −→ 〈α,<〉 is an isomorphism, and every set of
ordinals has a monotone enumeration. Moreover, suppose that every a ∈ M∪M′ is well-orderable
in W.

Let Wθ = (Vθ)
W , and suppose that both M and M′ satisfy the κ-cover and approxima-

tion properties in Wθ . Suppose, moreover, that P(κ) ∩M = P(κ) ∩M′, and that (κ+)M =

(κ+)M
′
= (κ+)W .

Then it follows that P(θ) ∩M = P(θ) ∩M′.
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Proof. As a first step, I will show

(∗) If A ∈ W is a bounded subset of θ and A
W

< κ, then there is a B ∈ M∩M′ such that

B ≤ κ in any of the modelsM,M′ and W, and A ⊆ B.

To prove (∗), let A ⊆ α < θ, and fix well-orderings <M, <M′ in W of P(α)M, P(α)M′ ,
respectively. By the power set axiom inM/M′, these are sets inM/M′, so by assumption,
they are well-orderable in W. Note that A ∈Wθ .

Define in W a weakly increasing sequence 〈Aξ | ξ < κ〉 of subsets of α of cardinality
less than κ in W with the following properties: A ⊆ A0, if ξ is even (including when ξ
is a limit ordinal), then Aξ ∈ M, and if ξ is odd, then Aξ ∈ M′. The construction is
straightforward at successor stages, using thatM andM′ satisfy the κ-cover property in
Wθ . To make the sequence definable in W, we can always pick the <M/<M′ -least covering
set. At limit stage λ < κ, let Āλ =

⋃
ξ<λ Aξ . Since we do not assume that W satisfies the

axiom of choice, let me be careful in concluding that in W, Āλ has cardinality less than κ.
Assume this were not the case. Then Ω = otp(Āλ) ≥ κ. Let e : Āλ −→ Ω be the inverse of

the monotone enumeration of Āλ. For every ξ < λ, we inductively know that A
W
ξ < κ, so

otp(Aξ) < κ. The sequence 〈Aξ | ξ < λ〉 is in W, and so is the sequence 〈otp(Aξ) | ξ < λ〉.
Since κ is regular in W, it follows that this sequence of ordinals is bounded in κ, say by κ̄.
For each ξ < λ, let fξ : κ̄ −→ Aξ ∪ {0} be defined by letting fξ(ζ) be the ζ-th element of
Aξ according to its monotone enumeration, if ζ < otp(Aξ), and let fξ(ζ) = 0 otherwise. In
W, the function h : λ× κ̄ −→ Ω can now be defined by

h(ξ, ζ) = e( fξ(ζ)).

This function is onto Ω ≥ κ, but λ, κ̄ < κ, contradicting that κ is a cardinal in W. So Āλ

has cardinality less than κ in W, and one can define Aλ to be the <M-least set in P(α) ∩M
covering Āλ and with size less than κ inM.

This defines the sequence 〈Aξ | ξ < κ〉. Let B =
⋃

ξ<κ Aξ . A similar argument to the

above shows that B
W
≤ κ. If not, then Ω = otp(B) ≥ (κ+)W . However, for each ξ < κ,

otp(Aξ) < κ. Again, letting e : B −→ Ω be the inverse of the monotone enumeration of
B and letting, for each ξ < κ, fξ : κ −→ Aξ ∪ {0} be defined by letting fξ(ζ) be the ζ-th
element of Aξ if ζ < otp(Aξ) and fξ(ζ) = 0 otherwise, we can define h : κ × κ −→ Ω by
h(ξ, ζ) = e( fξ(ζ)), resulting in a function in W with domain κ × κ whose range contains
(κ+)W , a contradiction.

To see that B ∈ M, note that B is κ-approximated in M, because if C ∈ M has

C
M

< κ, then there is a ξ < κ such that C ∩ B = C ∩ Aξ , since κ is regular in W. So
C ∩ B = C ∩ Aξ = C ∩ Aξ+1 ∈ M, since at least one of Aξ and Aξ+1 is inM. The same
argument shows that B ∈ M′, and claim (∗) is proven.

Following Hamkins’ argument, the next step is to show that M and M′ have the
same sets of ordinals of cardinality less than κ. By symmetry, it suffices to show that given
a set of ordinals A ∈ M of cardinality less than κ inM, A ∈ M′. Note first that A must
be bounded in θ, sinceM satisfies ZF minus replacement. Let B ∈ M∩M′ be such that
A ⊆ B and B ≤ κ in all three models. Let Ω = otp(B) < κ+ (in the sense of any and
all of the models involved). InM, let κ̄ be the cardinality of Ω, and let h : κ̄ −→ Ω be a
bijection. Let w = {〈α, β〉 | α, β < κ̄ ∧ h(α) < h(β)}. Since P(κ) ∩M = P(κ) ∩M′, it
follows that w ∈ M′. By assumption onM′, there are a function h′ and an ordinal Ω′ in
M′ such that h′ : 〈κ̄, w〉 −→ 〈Ω′,<〉. However, since 〈κ̄, w〉 is actually a well-order, it must
be that h′ = h and Ω′ = Ω. The inverse of the monotone enumeration of B, e : B −→ Ω
is also both inM andM′. Let Ā = h−1 ◦ e[A]. Then Ā ∈ P(κ) ∩M, so Ā ∈ M′, and so,
A = e−1 ◦ h[Ā] ∈ M′.

The proof can now be completed by showing thatM andM′ have the same sets of
ordinals: let A ∈ M be a set of ordinals. It suffices to show that A ∈ M′. As before, note
that A is bounded in θ, so that A ∈Wθ . The point is now that A is κ-approximated inM′.
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Specifically, let B ∈ M′ be a set of ordinals of cardinality less than κ inM′. By the previous
point, B ∈ M. However, then, A ∩ B ∈ M, since both A and B are inM. In addition,
A ∩ B has cardinality less than κ inM, so A ∩ B ∈ M′, again by the same point. It now
follows by the κ-approximation property ofM′ in Wθ that A ∈ M′.

It would be possible in the previous theorem to strengthen the assumptions onM
andM′ to ensure that every set inM/M′ is coded by a set of ordinals inM/M′, and to
strengthen the conclusion toM =M′, as was done in the result due to Laver referenced
above. However, the present form of the result seems to be a little more convenient here.

Theorem 7. Let λ ≥ 2 be a cardinal. Let κ ≥ λ be regular. Then HOD is definable in <λ-HOD
using P(κ) ∩HOD as a parameter.

Remark: If λ ≤ ω, then HOD is trivially definable in <λ-HOD without parameters, since
then, <λ-HOD = HOD. For λ > ω, note that by a result of Gitik [13], it is consistent with
ZF (assuming the consistency of very large cardinals) that every uncountable cardinal is
singular, so there may be no κ as stated. However, of course, ZFC implies that λ+ is regular.

Proof. Let λ ≥ ω, and let κ ≥ λ be regular.
Let z = P(κ)HOD. Working in <λ-HOD, and using the fact that κ is regular, we

have that for every ordinal θ, if there is a transitive modelM satisfying the conditions of
Theorem 6 with θ = On∩M and P(κ) ∩M = z, which satisfies the κ-approximation and
cover properties in Vθ , such that (κ+)M = κ+, then for any other such model N , we have
that P(θ) ∩M = P(θ) ∩N . Let me denote this common value of P(θ) ∩M by Sθ . If such
anM does not exist, then let Sθ be undefined. Let I be the class of θ such that Sθ is defined.

If θ > κ+ and θ is a limit ordinal in <λ-HOD then VHOD
θ is a model as above, and so,

Sθ = P(θ)∩VHOD
θ . This is because (κ+)VHOD

θ = (κ+)<λ-HOD by Proposition 6, and because
HOD satisfies the κ-approximation and -cover properties in <λ-HOD by Theorem 3—this
easily implies that VHOD

θ satisfies the κ-approximation and -cover properties in V<λ-HOD
θ .

The other conditions are also easily seen to be satisfied by VHOD
θ .

Still working in <λ-HOD, let J = {θ ∈ I | θ > κ+ is a limit ordinal}. We can define in
<λ-HOD:

S =
⋃
θ∈J

Sθ .

Then S = P(On) ∩ HOD. It follows that the class Ŝ of sets coded by an element of
S is equal to HOD. Here, let me say that a code is just a relation r ⊆ α × α (which can
easily be coded as a set of ordinals), for some ordinal α, such that 〈α, r〉 is well-founded
and extensional. By Mostowski’s theorem, there are a unique transitive set u and a unique
bijective function π : α −→ u that constitutes an isomorphism between 〈α, r〉 and 〈u,∈ �u〉.
The set coded by r is π(0). Since HOD is a model of ZFC, every element a of it has a code
r ∈ HOD, which is in S, and consequently, a ∈ Ŝ. Moreover, S ⊆ HOD, and so, Ŝ ⊆ HOD.
Thus, Ŝ = HOD is definable in <λ-HOD using P(κ) ∩HOD as a parameter, as claimed.

The original use of the approximation and cover properties in [7] was that the passage
from the smaller to the larger model does not create new large cardinals of various types. I
will just mention two instances of this phenomenon here. If <κ-HOD satisfies the axiom of
choice, then all the results from [7] apply.

Proposition 7. Let κ be an infinite cardinal, and let λ ≥ κ be inaccessible in HOD.

(1) If λ weakly compact in <κ-HOD, then it is weakly compact in HOD.
(2) If λ is measurable in <κ-HOD, then it is measurable in HOD.

Proof. To see (1), let T be a λ-tree in HOD. Since λ is weakly compact in <κ-HOD, T has
a cofinal branch b there. However, <κ-HOD has no fresh λ-sequence over HOD, by 4, so
b ∈ HOD.
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For (2), the argument of [7] (Theorem 10) applies verbatim.

This shows that <κ-HOD does not capture that much more of the large cardinal
structure of V than HOD does. On the one hand, if κ is inaccessible, then Vκ ∩<κ-HOD = Vκ ,
so that large cardinal properties of V witnessed by Vκ are inherited by <κ-HOD. However,
recall that it was shown in [14] (Theorem 4) that it is consistent that a supercompact cardinal
λ is not weakly compact in HOD – so if κ ≤ λ, then λ is not weakly compact in <κ-HOD
either, by Proposition 7.

Finally, I would like to make a quick connection to Woodin’s work on the HOD
dichotomy. Without going into too many details, it can be formulated as follows.

Theorem 8 (HOD dichotomy theorem , Woodin [15] (Thm. 3.39)). Suppose that δ is an
extendible cardinal. Then exactly one of the following holds:

(1) Every regular cardinal ≥ δ is ω-strongly measurable in HOD.
(2) No regular cardinal ≥ δ is ω-strongly measurable in HOD. Furthermore, HOD is a weak

extender model for the supercompactness of δ.

Here, an inner model N of ZFC is called a weak extender model for the supercompact-
ness of δ if for every γ > δ, there is a δ-complete, normal, fine measure U on Pδ(γ) such
that N ∩ Pδ(γ) ∈ U and U ∩ N ∈ N. To be able to follow, it is not necessary to know what
it means that a cardinal is ω-strongly measurable in HOD; suffice it to say that it implies
that the cardinal in question is measurable in HOD. The HOD hypothesis says that there is a
proper class of regular cardinals which are not ω-strongly measurable in HOD. Thus, if the
HOD hypothesis holds and there is an extendible cardinal δ, then HOD is a weak extender
model for the supercompactness of δ. Here is the salient fact on weak extender models
from Woodin’s analysis.

Lemma 1 (Woodin [15] (Lemma 3.8)). If N is a weak extender model for the supercompactness
of δ, then N satisfies the δ-cover property in V.

I can now make the connection to blurry HOD I was aiming at.

Proposition 8 (ZFC). Suppose δ is extendible. Then the HOD hypothesis implies that

[HOD]<δ ⊆ <δ-HOD.

Proof. Let a ⊆ HOD, with a < δ. By our assumption, HOD is a weak extender model
for the supercompactness of δ, so by Lemma 1, HOD satisfies the δ-cover property in V.
This means that there is a c ∈ HOD such that a ⊆ c and c < δ. Let A = P(c). Since δ is
inaccessible, A < δ. Since c ∈ HOD, A is OD. In addition, clearly, a ∈ A, showing that
a ∈ <δ-HOD, as claimed.

Recent work of Goldberg [16] reduces the assumption in Proposition 8 from an ex-
tendible cardinal to a strongly compact one.

2.4. Leaps

Clearly, in a model where V = HOD, we have that for every cardinal κ > 1, V =
HOD ⊆ <κ-HOD ⊆ V, so that HOD = <κ-HOD. On the other hand, if V 6= HOD is a ZFC
model, then since by Proposition 1 (5), V =

⋃
κ∈Card <κ-HOD is an increasing union, there

must be stages γ at which <γ-HOD contains something new. These stages are obviously
interesting, and I call them leaps.

Definition 6. A cardinal λ > 2 is a leap if

<δ-HOD $ <λ-HOD,
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for every cardinal δ < λ. I write 〈Λα | α < Θ〉 for the monotone enumeration of the leaps (it is the
empty sequence, i.e., Λ0 is undefined, if there is no leap). A leap λ is a successor leap if λ = Λξ+1,
for some ξ, and it is a limit leap if it is of the form λ = Λξ , where ξ is a limit ordinal.

Lemma 2. Leaps have the following properties.

(1) The class of leaps is closed in the ordinals.
(2) Λ0, if defined, is an uncountable successor cardinal.
(3) Successor leaps are successor cardinals.

Proof. (1) is trivial.
(2): Λ0 must be uncountable by Theorem 1. Now assume Λ0 is a limit cardinal. Let

a be ∈-minimal in <Λ0-HOD \ HOD. So a ⊆ HOD. Since a ∈ <Λ0-OD, and Λ0 is a limit
cardinal, it follows that a is <λ-OD, for some λ < Λ0. However, then a ∈ <λ-HOD \HOD
(as a ⊆ HOD ⊆ <λ-HOD). However, then λ is a leap less than Λ0, a contradiction.

(3): Assume Λξ+1 were a limit cardinal. Pick a ∈-minimal in <Λξ+1-HOD \<Λξ-HOD.
Since a ∈ <Λξ+1-HOD, it follows that a ⊆ <Λξ+1-HOD, and hence that a ⊆ <Λξ-HOD,
by ∈-minimality. In addition, since a ∈ <Λξ+1-OD and Λξ+1 is a limit cardinal, it follows
that a ∈ <λ-OD, for some cardinal λ < Λξ+1 which we may choose so that λ ≥ Λξ .
Since a ⊆ <Λξ-HOD, it follows that a ⊆ <λ-HOD, and so, since a ∈ <λ-OD, a ∈ <λ-HOD.
However, since there is no leap in (Λξ , λ], <λ-HOD = <Λξ-HOD. So a ∈ <Λξ-HOD,
a contradiction.

By Lemma 2, item (1), limit leaps occur automatically, in a sense. However, it is an
interesting question whether a stronger property can hold.

Definition 7. Say that a leap γ is a big leap if ⋃
δ<γ,δ∈Card

<δ-HOD

 $ <γ-HOD.

Successor leaps are always big leaps, but what can be said about limit leaps? Perhaps
somewhat surprisingly, they are also big.

Theorem 9. Every leap is big.

Proof. Assume the contrary. Let λ be the least counterexample. Since successor leaps are
clearly big leaps, λ must be a limit leap. Let S = {κ < λ | κ is a leap}. So S is unbounded
in λ, and by minimality of λ, every leap in S is a big leap. For κ ∈ S, let τκ = 〈ακ , βκ , pϕκq〉,
be the (lexicographically) least code for an element of <κ-HOD \⋃κ̄∈Card∩κ <κ̄-HOD, i.e.,
Aκ = {x | Sat(Vακ , pϕκq, βκ)} has cardinality less than κ, there is an a ∈ Aκ such that
a ∈ <κ-HOD \⋃κ̄∈Card∩κ <κ̄-HOD, and τκ is minimal with this property.

Note that the sequence 〈τκ | κ ∈ S〉 is ordinal definable from the parameter λ. Now define

Bκ = Aκ ∩<κ-HOD

for κ ∈ S. The sequence ~B = 〈Bκ | κ ∈ S〉 is then OD, and it is actually <λ-HOD, be-
cause every element of it is of the form 〈κ, Bκ〉, for some κ ∈ S. Now Bκ is OD, and
Bκ ⊆ <κ-HOD ⊆ <λ-HOD. Thus, Bκ ∈ <λ-HOD, and so, 〈κ, Bκ〉 is <λ-HOD. Therefore, the
whole sequence ~B is, as a set, contained in <λ-HOD, and it is OD, hence it is <λ-HOD.

However, clearly, ~B /∈ <κ-HOD, for κ ∈ Card∩ λ, because we can pick κ′ ∈ S \ (κ + 1),
so that there is an a ∈ Bκ′ with a /∈ <κ-HOD. Clearly then, ~B cannot belong to <κ-HOD,
since <κ-HOD is transitive.

Theorem 10. If λ is a limit leap, then <λ-HOD does not satisfy the axiom of choice; more precisely,
λ̄-AC fails in <λ-HOD, where λ = Λλ̄.
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Proof. Let us improve the sequence ~B of the proof of Theorem 9 slightly. First, let us
work with

T = {κ < λ | κ is a successor leap}.

For a successor leap κ, let κ− be its predecessor leap. For κ ∈ T, let τ′κ = 〈α′κ , β′κ , pϕ′κq〉
be the least code for an ∈-minimal element of <κ-HOD \<κ−-HOD (in the same sense as in
the previous proof), and let A′κ = {x | Sat(Vα′κ , pϕ′κq, β′κ)}. Let

B′κ = {x ∈ A′κ | x is ∈-minimal in <κ-HOD \<κ−-HOD}.

Therefore, for every b′ ∈ B′κ , b′ ∈ <κ-HOD, b′ /∈ <κ−-HOD, but b′ ⊆ <κ−-HOD; the
latter by ∈-minimality. As above, ~B′ = 〈B′κ | κ ∈ T〉 is OD, and ~B′ belongs to <λ-HOD.
It is a sequence of nonempty sets, and I claim that it has no choice function in <λ-HOD:
suppose it did. Let ~b′ = 〈b′κ | κ ∈ T〉 ∈ <λ-HOD be such that for every κ ∈ T, b′κ ∈ B′κ .
Since ~b′ ∈ <λ-HOD, it is <γ-OD, for some cardinal γ < λ. Let X witness this, i.e., let X be
OD and of cardinality less than γ, so that ~b′ ∈ X. Let

Y = X ∩∏
κ∈T

B′κ .

Clearly, Y is still OD, has cardinality less than γ, and has ~b′ ∈ Y.
Now pick κ ∈ T such that γ ≤ κ−. I claim that b′κ ∈ <κ−-HOD, a contradiction.

Specifically, let
Z = {x(κ) | x ∈ Y}.

This is an OD set of cardinality at most Y < γ ≤ κ−, and b′κ belongs to it. So b′κ is
<κ−-OD. In addition, since b′κ ∈ B′κ , we know that b′κ ⊆ <κ−-HOD. Thus, b′κ ∈ <κ−-HOD,
as claimed. This contradiction completes the proof.

In the notation of the previous proof, the question arises naturally, at which level δ a
choice function for ~B′ gets into <δ-HOD. This may depend on cardinal arithmetic. Clearly,
all such choice functions are in <(2λ)+-HOD. Can one be in <λ+-HOD already? We do
not know.

Corollary 2. In a ZFC model, the largest leap, if there is one, is a successor leap.

Therefore, both the first and the last leap, if they exist, are successor cardinals.

3. Effects of Forcing on Blurry Definability

The main method for producing models of set theory with interesting leap structures is
going to be forcing. In this section, I will investigate how <κ-HODV relates to <κ-HODV[G],
where G is generic over V for certain notions of forcing. First, let me find ways to ensure
that being in <κ-HOD is preserved, i.e., that <κ-HODV ⊆ <κ-HODV[G].

3.1. Preserving Blurry Definability

Proposition 9. Suppose that P is a notion of forcing, G is generic for P over V, and V is a class in
V[G] definable from ordinal parameters. Let κ be a cardinal in V[G]. Then <κ-ODV ⊆ <κ-ODV[G],
and so, <κ-HODV ⊆ <κ-HODV[G] as well.

Proof. Let a ∈ <κ-OD, and let A witness this, i.e., A = {x | ϕ(x, α)}, for some formula
ϕ and some ordinal α, where a ∈ A and A < κ. Let ψ(x, β) define V in V[G]. Then

A = {x | ψ(x, β) ∧ ϕ{z | ψ(z,β)}(x, α)}V[G], and A
V[G]

< κ, so a ∈ <κ-ODV[G]. It follows
immediately that <κ-HODV ⊆ <κ-HODV[G].

The assumption that V is definable from ordinals in V[G] can be weakened as follows.
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Proposition 10 (ZFC). Suppose that P is a notion of forcing, G is generic for P over V, κ is a
cardinal in V[G], and V is definable in V[G] from a parameter in <κ-ODV[G]. Then

<κ-ODV ⊆ <κ-ODV[G]

and so, <κ-HODV ⊆ <κ-HODV[G] as well.

Proof. Let b ∈ <κ-ODV[G] and ψ(x, y) be a formula such that

V = {x | ψ(x, b)}V[G].

Since b ∈ <κ-ODV[G], we can also let B be ODV[G] so that b ∈ B and B has cardinality
less than κ in V[G].

Now, in V, let a ∈ <κ-OD, and let A witness this, i.e., A = {x | ϕ(x, α)}, for some

formula ϕ and some ordinal α, where a ∈ A and A
V
< κ. We must show that a is also

<κ-ODV[G].

To this end, let A
V[G]

= κ̄ < κ, and let χ(x, y) be a formula and β an ordinal such that
B = {x | χ(x, β)V[G]}. We can now define

A′ =
{

z | ∃b′∃w (χ(b′, β) ∧ w = {x | ϕ(x, α){x | ψ(x,b′)}} ∧ w = κ̄ ∧ z ∈ w
}V[G]

.

Clearly, a ∈ A′, as witnessed by b′ = b (and w = {x | ϕ(x, α)V}), and A′ < κ in V[G],
since in V[G], A′ is a union of fewer than κ sets, each of cardinality κ̄ < κ. Since A′ is
ODV[G], it follows that a ∈ <κ-ODV[G], as claimed.

As a corollary, one obtains a preservation by small forcing result.

Corollary 3. Let κ be a cardinal, and let P be a notion of forcing of cardinality γ, where 2(2
γ) < κ.

If G is P-generic over V, then
<κ-HODV ⊆ <κ-HODV[G].

Proof. By a result of Woodin [17], V is (uniformly) definable in V[G] from the parameter
P(γ)V. This parameter is an element of Z = P(P(γ))V[G]. Since P is γ+-c.c., it preserves

cardinals above γ, so the cardinality of Z in V[G] is 2(2
γ)V

< κ, so Z is <κ-ODV[G]. The
claim now follows from Proposition 10.

3.2. Not Adding to Blurry HOD

Having seen how to preserve membership to <κ-HOD when passing to a forcing
extension, let us now turn to the converse problem, ensuring that nothing is added to
<κ-HOD. Homogeneity properties of the forcing notions in question will play an important
role. The following is a folklore concept; I follow the terminology of [18].

Definition 8. Let P be a forcing notion. For p ∈ P, let the cone below p in P be the set

P≤p = {q ∈ P | q ≤ p}

equipped with the restriction of the ordering of P.
P is called cone homogeneous if for any two conditions p, q ∈ P, there are p′ ≤ p and

q′ ≤ q such that P≤p′ and P≤q′ are isomorphic.

First, let me prove two general lemmas. I say that a forcing notion P is <κ-closed,
where κ is a regular cardinal, if every decreasing sequence in P of length less than κ has a
lower bound. The following lemma generalizes the well-known folklore fact that if G is
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generic for a cone homogenous forcing notion, then HODV[G] ⊆ V—note that any forcing
notion is <ω-closed.

Lemma 3. Let κ be a regular cardinal, P a cone homogeneous, <κ-closed forcing notion, and let
G ⊆ P be P-generic over V. Then

<κ-HODV[G] ⊆ V.

Proof. Assume the contrary, and let a be ∈-minimal in <κ-HODV[G] \V. Then a ⊆ V, and

there is an ODV[G] set A = {x | ϕ(x, ρ)}V[G] such that a ∈ A and A
V[G]

= κ̄ < κ. Let a = ȧG,
and let p ∈ P force all of these facts: that ȧ is ∈-minimal in <κ̌-HODV[Ġ] \ V̌, that ϕ(ȧ, ρ̌)
holds, and that {x | ϕ(x, ρ̌)} has cardinality ˇ̄κ.

In V, note that for every condition q ≤ p, there are q0, q1 ≤ q and a set d such
that q0 
 ď ∈ ȧ while q1 
 ď /∈ ȧ, because otherwise, q would decide, for every d, the
statement “ď ∈ ȧ”. However, since q ≤ p, q also forces that ȧ ⊆ V. It would follow that
a = {d | p 
 ď ∈ ȧ} ∈ V, contradicting our assumption that p forces that ȧ /∈ V̌.

This enables us to construct, in V, sequences 〈qs | s ∈ ≤κ̄2〉 and 〈ds | s ∈ <κ̄2〉 with the
following properties:

1. q∅ = p,
2. qs ∈ P, and s ⊆ t =⇒ qt ≤P qs,
3. qs_0 
P ďs ∈ ȧ and qs_1 
P ďs /∈ ȧ, for s ∈ <κ̄2.

To define qs when dom(s) is a limit ordinal, we use that fact that this limit ordinal is at
most κ̄, which is less than κ, and that P is <κ-closed.

Let me temporarily fix a function s : κ̄ −→ 2 in V. Consider the set

Ds = {p′ ≤ p | ∃q′ ≤ qs P≤p′ is isomorphic to P≤q′}.

It is easily seen that Ds is dense below p, since P is cone homogeneous. It follows that
there is a condition ps ∈ G ∩ Ds. Let q′s ≤ qs and πs ∈ V witness this, i.e.,

πs : P≤ps −→ P≤q′s

is an isomorphism. Then, Gs = πs[G] is generic for P≤q′s . Gs generates a generic filter 〈Gs〉
in P that contains qs, and since πs ∈ V, it follows that

V[G] = V[〈Gs〉] |= ϕ(ȧ〈Gs〉, ρ).

However, note that if t 6= s is another member of κ̄2, then ȧ〈Gs〉 6= ȧ〈Gt〉, because if
δ = min{i < κ | s(i) 6= t(i)}, then qs 
P ďs�δ ∈ ȧ ⇐⇒ qt 
P ďs�δ /∈ ȧ.

Since P is <κ-closed, it follows that (κ̄2)V = (κ̄2)V[G]. Therefore, in V[G], the set

{ȧ〈Gs〉 | s : κ̄ → 2}

is a 2κ̄-sized subset of A. This contradicts that A has cardinality κ̄ in V[G].

Lemma 4. Let κ̄ be a cardinal, and let P be a cone homogeneous forcing that preserves cardinals up
to κ̄, such that whenever G is P-generic over V, then

<κ̄-HODV[G] ⊆ V.

If P is <κ̄-OD, then for any P-generic filter G, we have that

<κ̄-HODV[G] ⊆ <κ̄-HODV.

Proof. Assume the contrary. Let a be ∈-minimal in <κ̄-HODV[G] \ <κ̄-HODV. So a ⊆
<κ̄-HODV. We also know that a ∈ V. Since a is <κ̄-ODV[G], we can pick an ODV[G] set
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A = {ϕ(x, ρ)}V[G] such that a ∈ A and such that in V[G], A = δ < κ̄. By the cone
homogeneity of P it follows that every condition in P forces that A = δ̌—this is one of
the folklore consequences of cone homogeneity of P: if some condition r ∈ P forces a
statement of the form ψ(ǎ0, . . . , ǎn), then every condition in P forces this. This is easily seen,
because otherwise we would have another condition, say s, forcing the negation of the
statement. We could then find extensions r′ ≤ r and s′ ≤ s such that P≤r′ is isomorphic
to P≤s′ . If H is generic for P≤r′ , then H generates a filter H′ which is generic for P, and in
V[H′], ϕ(a0, . . . , an) holds, since r ∈ H′. However, applying the isomorphism to H gives a
P≤s′ -generic, say I, which also generates a P-generic filter I′, and in V[I′], ϕ(a0, . . . , an) fails,
since s ∈ I′. However, clearly, V[H′] = V[I′], a contradiction. I will use this consequence of
cone homogeneity in the future without further justification.

Furthermore, since P is <κ̄-ODV, there is a set B = {x | ψ(x, τ)}V such that P ∈ B and
B < κ̄. We may assume that all elements of B are cone homogeneous forcing notions that
preserve cardinals up to κ̄ and force that the cardinality of the set {x | ϕ(x, ρ̌)} is δ, since
we can add these requirements to the definition of B if necessary.

Fixing a Q ∈ B, consider the set

AQ = {x | 
Q ϕ(x̌, ρ̌)}.

Since Q preserves cardinals up to κ̄ and forces that the set {x | ϕ(x, ρ̌)} has cardinality
δ, and since obviously, 
Q ǍQ ⊆ {x | ϕ(x, ρ̌)}, it follows that AQ has cardinality at most δ
in V. Moreover, we have that a ∈ AP, because 
P ϕ(ǎ, ρ̌).

To conclude, the set
C =

⋃
Q∈B

AQ

is ODV and has cardinality at most B · δ < κ̄, and it contains a, since P ∈ B and a ∈ AP. So
a is <κ̄-ODV. Since a ⊆ <κ̄-HODV, this shows that a ∈ <κ̄-HODV, contradicting the choice
of a.

The following corollary again nicely generalizes a well-known folklore fact, that
if P is a cone homogeneous forcing notion that is OD, and G is P-generic over V, then
HODV[G] ⊆ HODV.

Corollary 4. Let κ be a regular cardinal, P a cone homogeneous, <κ-closed forcing notion, κ̄ ≤ κ a
cardinal such that P is <κ̄-OD, and let G ⊆ P be P-generic over V. Then

<κ̄-HODV[G] ⊆ <κ̄-HODV.

Proof. By Lemma 3, it follows that <κ̄-HODV[Ḡ] ⊆ V, whenever Ḡ is P-generic over V.
Hence, Lemma 4 applies, immediately showing the claim.

3.3. Cohen Forcing

By “Cohen forcing” I mean the standard forcing to add a subset to a regular cardinal κ
by approximations of size less than κ, often denoted Add(κ, 1). In this case, we can do a
little better.

Theorem 11 (ZFC). Let κ be an infinite regular cardinal such that 2<κ < 2κ , and let G be generic
for P = Add(κ, 1). If κ̄ is a cardinal less than or equal to 2κ in V[G], then

<κ̄-HODV[G] ⊆ <κ̄-HODV.

Note: P is (2<κ)+-c.c, so under the assumptions of the theorem, P preserves 2κ as a cardinal,
and we have that (2κ)V = (2κ)V[G]. The forcing collapses 2<κ to κ and preserves all
cardinals up to κ.
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Proof. I take P to consist of all functions of the form f : α −→ κ, where α < κ, ordered by
reverse inclusion. This forcing is <κ-closed, and hence does not add a new <κ-sequence of
ground model elements.

(1) <2κ-HODV[G] ⊆ V.

Proof of (1). Assume the contrary, and let a ∈ <2κ-HODV[G] \ V be ∈-minimal. Then
a ⊆ V. Let ȧ ∈ VP be such that a = ȧG. Since a ∈ <2κ-HODV[G], there is an ODV[G] set A

such that a ∈ A and A
V[G]

< 2κ . Let A = {x | ϕ(x, α)}V[G], where α is some ordinal. Let
p ∈ G force that ϕ(ȧ, α̌) holds and that ȧ is contained in V̌, but is not an element of V̌.

Define

G = {H ∈ V[G] | p ∈ H ⊆ P, H is a P-generic filter over V, and V[H] = V[G]}.

It is easy to see that G ∈ V[G].

(1.1) If H ∈ G, then ȧH ∈ A.

Proof of (1.1). Since p ∈ H, V[H] |= ϕ(ȧH , α), so since V[H] = V[G], V[G] |= ϕ(ȧH , α),
and this means that ȧH ∈ A.

The strategy is going to be to show that G is very rich: there are 2κ filters in G that
interpret ȧ differently. This, together with (1.1), will produce a contradiction.

Let us now work in V for a while.

(1.2) For every q ≤ p, there are a set d and conditions r1, r2 ≤ q such that r1 
 ď ∈ ȧ and r2 

ď /∈ ȧ

Proof of (1.2). A condition q constituting a counterexample would decide, for every d, the
statement “ď ∈ ȧ”. It would also force that ȧ ⊆ V̌, since q ≤ p. Hence, it would force that
ȧ ∈ V, while p forces that ȧ is not in V, a contradiction.

Now, fix a condition q ≤ p. Let d(q) be such that there are q0, q1 ≤ q that decide
“(d(q))̌ ∈ ȧ” in different ways. Let Aq be a set of conditions such that

(a) for every r ∈ Aq, r < q,
(b) Aq is an antichain,
(c) Aq is maximal with (a) and (b),
(d) every r ∈ Aq decides “(d(q))̌ ∈ ȧ,”
(e) both of the sets

A+
q = {r ∈ Aq | r 
P (d(q))̌ ∈ ȧ} and

A−q = {r ∈ Aq | r 
P (d(q))̌ /∈ ȧ}

have cardinality κ.

Let EVEN be the collection of the even ordinals below κ (including the limit ordinals),
and let ODD consist of the odd ones. Let eq : κ −→ Aq be a bijection such that eq[EVEN] =
A+

q and eq[ODD] = A−q .
Define a function F : P≤p −→ P≤p by recursion, as follows. To begin, set F(p) = p.
Given that F(r) = s is defined, let, for i < κ,

F(r_〈i〉) = es(i).

Finally, if dom(r) = λ < κ is a limit ordinal and F(r�α) has been defined for all
dom(p) ≤ α < λ, then set

F(r) =
⋃

dom(p)≤α<λ

F(r�α).

(1.3) F : P≤p −→ P≤p is a dense embedding.
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Proof of (1.3). Let t ≤ p be given. I will define a condition s ≤ p such that F(s) ≤ t. This
will be done by defining s�α, for dom(s) ≥ α ≥ dom(p). It will be maintained that either
F(s�α) ≤ t (in which case we let α = dom(s) and s is completely defined), or t ≤ F(s�α).

To begin, let s�dom(p) = p. We have F(p) = p ≥ t.
Now suppose α > dom(p) and for all β < α, s�β has been defined.
If α is a limit ordinal, then s�α is already determined as

⋃
β<α s�β. Then, F(s�α) =⋃

dom(p)≤β<α F(s�β). Inductively, we have that F(s�β) ≥ t, for every dom(p) ≤ β < α, and
so, F(s�α) ≥ t as well.

Now suppose α = β + 1 is a successor ordinal. We have that q = F(s�β) ≥ t. If
there is an i < κ such that F(s�β_i) ≤ t, then let s(β) = i, and we are done. If not, then
no condition in Aq is below t, and since Aq is a maximal antichain below q, there is a
(unique) r ∈ Aq with t ≤ r—there cannot be more than one such r, since Aq is an antichain,
and there must be at least one such r, because Aq is a maximal antichain below q: some
r ∈ Aq must be compatible with t, and r 6≤ t, so it must be that t ≤ r, since P is a tree.
Letting r be the unique condition in Aq with t ≤ r, let eq(i) = r and set s(β) = i. Then
F(s�α) = eq(i) = r ≥ t.

Now clearly, this process must stop at some point, or else we end up with a function
s : κ −→ κ such that s ⊆ t, but dom(t) < κ. This means that a condition s is reached with
s ≤ t, as claimed.

Since F ∈ V is a dense embedding from P≤p to P≤p, it follows that if I ⊆ P is a generic
filter, then F[I] generates a generic filter 〈F[I]〉, and V[I] = V[〈F[I]〉].

Now, for every x ⊆ [dom(p), κ), x ∈ V, let πx : P −→ P be the automorphism of P
defined as follows. First, πx does not change the domains of conditions, i.e., for q ∈ P,
dom(πx(q)) = dom(q). In addition, for i ∈ dom(q), define

(πx(q))(i) =


q(i) if i /∈ x,
q(i) + 1 if i ∈ x and q(i) is even,
q(i)− 1 if i ∈ x and q(i) is odd.

Note that πx ∈ V, and that the restriction of πx to P≤p is an automorphism as well. It
follows that

V[G] = V[πx[G]] = V[〈F[πx[G]]〉].

Thus, writing Hx for 〈F[πx[G]]〉, we have that Hx ∈ G, and so, by (1.1), ȧHx ∈ A.
However, if x0 6= x1 are any two distinct subsets of [dom(p), κ), both in V, then ȧHx0 6= ȧHx0 .
This is because if we let g =

⋃
G and δ = min(x04x1), then dF(g�δ) is going to belong to

exactly one of ȧHx0 , ȧHx1 . Hence, we have that {ȧHx | x ∈ P(κ)V} ⊆ A, which means that
the cardinality of A is at least 2κ in V[G], a contradiction.

Now let κ̄ ≤ 2κ be a cardinal in V[G].

(2) <κ̄-HODV[G] ⊆ V.

Proof of (2). This is because <κ̄-HODV[G] ⊆ <2κ-HODV[G], as κ̄ ≤ 2κ , and since
<2κ-HODV[G] ⊆ V by (1).

(3) <κ̄-HODV[G] ⊆ <κ̄-HODV.

Proof of (3). Again, assume the contrary. Let a be ∈-minimal in <κ̄-HODV[G] \<κ̄-HODV.
Then a ⊆ <κ̄-HODV. I will show that a is <κ̄-ODV, which then implies that a ∈ <κ̄-HODV,
contradicting the choice of a.

Let a ∈ A = {x | ϕ(x, α)}V[G], where A
V[G]

< κ̄. Since a ∈ <κ̄-HODV[G], we know by
(2) that a ∈ V. By the weak homogeneity of P, 
P ϕ(ǎ, α̌). Define in V:

B = {x | 
P ϕ(x̌, α̌)}.
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Since P is OD, this is a definition of B using only ordinal parameters. Clearly, a ∈ B ⊆

A. So B
V[G]
≤ A

V[G]
< κ̄. However, then, B

V
< κ̄ as well (otherwise, there would be in V a

surjection from B onto κ̄, and this surjection would also exist in V[G], but in V[G], B < κ̄).
So a ∈ <κ̄-ODV, which yields the desired contradiction.

This completes the proof of the theorem.

Corollary 5. Assume V = L, and let κ be an infinite regular cardinal. If G is generic for
P = Add(κ, 1), then

L = HODL[G] = <κ+-HODL[G] $ <κ++-HODL[G] = L[G].

In particular, ΛL[G]
0 = κ++.

Proof. Again, view P as consisting of all functions of the form f : α −→ κ, where α < κ. P is
κ-closed and κ+-c.c., by the GCH in L, and hence preserves cardinals. Since <κ+-HODL triv-
ially is equal to L, we have that <κ+-HODL ⊆ <κ+-HODL[G]. By Theorem 11,
<κ+-HODL[G] ⊆ <κ+-HODL. However, clearly, L ⊆ <κ+-HODL ⊆ L, and we have seen
that HODL[G] ⊆ <κ+-HODL[G]. Putting this together gives L = HODL[G] = <κ+-HODL[G].

Now let us consider
⋃

G, a function from κ to κ, as a subset of κ × κ. Then
⋃

G ∈
P(κ× κ)L[G], andP(κ× κ)L[G] is an ODL[G] set of cardinality κ+. Thus,

⋃
G is <κ++-ODL[G],

and since
⋃

G ⊆ κ × κ ⊆ ODL[G], it follows that
⋃

G ∈ <κ++-HODL[G]. Therefore, since G
is absolutely definable from

⋃
G, G ∈ <κ++-HODL[G]. However, since <κ++-HODL[G] is

an inner model of L[G], this implies directly that <κ++-HODL[G] = L[G].
The statement about ΛL[G]

0 is immediate.

This may be a good place to make a connection to ordinal indiscernibility and the
Leibniz–Mycielsky axiom. For a nice summary of the history and some recent results on
the subject, see [19], and for a connection to Ehrenfeucht’s lemma, see [20]. Two sets a
and b are called ordinal indiscernible if for every formula ϕ(x, y) in the language of set
theory and every ordinal α, ϕ(a, α) holds iff ϕ(b, α) holds. Since ordinal parameters are
used in this definition, the concept of ordinal indiscernibility is first order definable, just
as ordinal definability. The Leibniz–Mycielsky axiom says that no distinct elements a and
b are ordinal indiscernible, i.e., whenever a 6= b, then a and b can be distinguished by a
property with an ordinal parameter.

There is an obvious connection between ordinal indiscernibility and blurry ordinal
definability: suppose that I = {ai | i < κ} is a set of κ many ordinal indiscernible elements.
Then none of them can be <κ-OD, because if some ai belongs to {x | ϕ(x, α)}, then every ai
does, and so the set {x | ϕ(x, α)}, if it contains one of the ordinal indiscernibles, must have
cardinality at least κ. However, note that the sets in <κ++-HOD \<κ+-HOD obtained in
the previous corollary are subsets of κ × κ, hence essentially sets of ordinals. As such, they
are clearly not ordinal indiscernibles, because given a 6= b, both sets of ordinals, if α is in
the symmetric difference of a and b, then the formula “α ∈ x” distinguishes a and b.

The process of adding Cohen subsets can be iterated transfinitely. The following
theorem is just an example. It is interesting to note that iterated Cohen forcing has been put
to good use in the context of ordinal definability in [21] as well.

Theorem 12. Assume V = L. Let λ be a cardinal, and let 〈〈Pi | i ≤ λ〉, 〈Q̇i | i < λ〉〉 be the
reverse Easton iteration whose only nontrivial stages are when i = κ is an infinite regular cardinal,
1lPκ

Pκ

Q̇κ = Add(κ, 1). Let G be P = Pλ-generic over L. Then:

(a) For regular κ < λ, L[G�(κ + 1)] = <κ++-HODL[G], and
G(κ) ∈ <κ++-HODL[G] \<κ+-HODL[G]. So κ++ is a leap in L[G].

(b) L = <ω1-HODL[G], so ω1 is not a leap in L[G].
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(c) For any limit cardinal κ ≤ λ, G�κ ∈ <κ++-HODL[G] \<κ+-HODL[G]. So κ++ is a leap
in L[G].

Remark 2. Thus, in L[G], if ω ≤ κ ≤ λ, and either κ is regular and κ < λ, or κ is a limit cardinal,
then κ++ is a leap. All limit cardinals up to λ are also leaps, but ω1 is not.

Proof. First, towards proving part (a), it is easy to see that

(1) L[G�(κ + 1)] = <κ++-HODL[G�(κ+1)].

This is because G�(κ + 1) is coded by a subset X of κ, and arguing in L[G�(κ + 1)], X belongs
to the OD set P(κ), which has cardinality less than κ++. Thus, X is <κ++-ODL[G�(κ+1)],
so since X is a set of ordinals, X ∈ <κ++-HODL[G�(κ+1)], and because X codes G�(κ + 1),
it follows that G�(κ + 1) ∈ <κ++-HODL[G�(κ+1)]. Since <κ++-HODL[G�(κ+1)] is an inner
model of L[G�(κ + 1)], it follows that L[G�(κ + 1)] ⊆ <κ++-HODL[G�(κ+1)] ⊆ L[G�(κ + 1)].

The same argument shows that

(2) L[G�(κ + 1)] ⊆ <κ++-HODL[G].

Therefore, we must prove the reverse inclusion. Of course, nothing needs to be shown
if κ+ = λ; in this case, L[G] = L[G�(κ + 1)], so we trivially have that <κ++-HODL[G] ⊆
L[G] = L[G�(κ + 1)]. Therefore, let us assume that κ+ < λ.

Now, κ+ is the next nontrivial stage of forcing. From the point of view of L[G�(κ + 1)],
L[G�(κ+ + 1)] is obtained by forcing with Add(κ+, 1). Applying Theorem 11 in L[G�(κ +
1)] yields:

(3) <κ++-HODL[G�(κ++1)] ⊆ <κ++-HODL[G�(κ+1)].

Now if κ++ = λ, then there is nothing left to show, because L[G] = L[G�(κ+ +

1)], so the previous displayed formula says that <κ++-HODL[G] ⊆ <κ++-HODL[G�(κ+1)].
Therefore, let us assume that κ++ < λ.

The passage from L[G�(κ+ + 1)] to L[G] is then the tail of the iteration, let us call it
Ptail. The next nontrivial stage in Ptail is κ++, and the forcing is <κ++-closed. Moreover,
each iterand is weakly homogeneous in the sense of [18] (called almost homogeneous in [22]),
which implies that Ptail is weakly homogeneous; see [18] (Lemma 4). Weak homogeneity
implies cone homogeneity, by [18] (Fact 1), so Corollary 4 can be applied in L[G�(κ+ + 1)],
showing that

(4) <κ++-HODL[G] ⊆ <κ++-HODL[G�(κ++1)].

Together with (3), this shows that

(5) <κ++-HODL[G] ⊆ <κ++-HODL[G�(κ+1)].

It follows that <κ++-HODL[G] ⊆ L[G�(κ + 1)], by (1).
The second claim in (a) is that G(κ) ∈ <κ++-HODL[G] \<κ+-HODL[G]. It is obvious

that G(κ) ∈ <κ++-HODL[G], because G(κ) is essentially a subset of κ, and hence an element
of the OD set P(κ). To see that G(κ) does not belong to <κ+-HODL[G], suppose it did.
Corollary 4 would then imply that G(κ) ∈ <κ+-HODL[G�(κ+1)], because the forcing leading
from L[G�(κ + 1)] to L[G] is <κ+-closed and cone homogeneous. However, then Theorem
11 would yield that G(κ) ∈ <κ+-HODL[G�κ], which is absurd.

Part (b), that L = <ω1-HODL[G], follows similarly, because <ω1-HODL[G�(ω+1)] ⊆ L
by Theorem 11, and because <ω1-HODL[G] ⊆ <ω1-HODL[G�(ω+1)] since the forcing from
L[G�(ω + 1)] to L[G] is <ω1-closed and weakly homogeneous (again using Corollary 4.)

Finally, let us turn to (c). First, it is obvious that G�κ ∈ <κ++-HODL[G], since it is
(coded by a set) in P(κ)L[G], which is ODL[G] and has cardinality κ+ there.

Next, let me show that

(6) G�κ /∈ <κ+-HODL[G�κ].

Assume the contrary. Let Ġ be the canonical Pκ-name for the generic filter, and let
p ∈ Pκ force that ϕ(Ġ, ρ̌) holds, for some formula ϕ and some ordinal ρ such that p also
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forces that A = {x | ϕ(x, ρ̌)} has cardinality at most κ̌. Arguing in the ground model L,
let, for every ordinal i < κ, Πi be the set of bijections between i and i. For regular γ, every
πγ ∈ Πγ induces an automorphism π∗γ of Add(γ, 1), as follows: for f ∈ Add(γ, 1), f is
a function from some ordinal α = dom( f ) < γ to γ. Then π∗γ( f ) = πγ ◦ f . It is easily
seen that π∗γ is an automorphism of Add(γ, 1). Let R be the set of regular cardinals less
than κ. Let Π = {〈πγ | γ ∈ R | for every γ ∈ R, πγ ∈ Πγ〉. Every sequence ~π ∈ Π induces
an automorphism ~π∗ of Pκ as follows. Given a condition r = 〈ri | i < κ〉 ∈ Pκ , define
~π∗(r) = 〈qi | i < κ〉 by recursion on i: if i is not a regular cardinal, then qi = ri. If i is a
regular cardinal, then ri is a Pi-name such that r�i 
Pi ri ∈ Add(i, 1). Inductively, let us
assume that we have already defined the automorphism (~π�i)∗ of Pi. This automorphism
extends to a transformation of Pi names, which I also denote by (~π�i)∗. We then have
that (~π�i)∗(r�i) 
Pi (~π�i)

∗(ri) ∈ Add(i, 1). There is then a canonical Pi-name τ such that
(~π�i)∗(r�i) 
Pi τ = π̌∗i ((~π�i)

∗(ri)) ∈ Add(i, 1). I define qi to be this τ.
It is now easy to see that if ~π,~σ are distinct elements of Π, then 
Pκ

~π∗(Ġ) 6=~σ∗(Ġ).
The point is that there are κ+ many elements of Π which fix p. To see this, note that for
σ ∈ R, Pσ is σ-c.c. (if σ is a successor cardinal, then Pσ is forcing equivalent to Pσ̄+1, where
σ = σ̄+). It follows that there is an ordinal βσ < σ such that

(p�σ) 
Pσ
ran(p(σ)) ⊆ β̌σ.

Let
Πp = {~π ∈ Π | ∀γ ∈ R πγ�βγ = id�βγ}.

It follows that if ~π ∈ Πp, then ~π∗(p) = p. Denoting equinumerosity by the symbol ∼,
we have that

κ ∼
⋃

α∈R
Πα ∼ ∑

α∈R
2α < ∏

α∈R
2α ∼ Πp.

Therefore, there are κ+ many automorphisms of Pκ fixing p and giving distinct images
of G�κ. However, if ~π ∈ Πp is such an isomorphism, then

L[G�κ] = L[~π∗[G�κ]] |= ϕ(~π∗[G�κ], α),

that is, ~π∗[G�κ] ∈ A. However, Pκ preserves cardinals, so in L[G�κ], this set has cardinality
κ+, contradicting that it has cardinality at most κ.

Familiar arguments yield (c) now, using (6). Of course, there is nothing to prove
if κ = λ, so let us assume that κ < λ. We are left to show that G�κ does not belong to
<κ+-HODL[G]. Suppose it did. First, note that by Corollary 4

(7) <κ+-HODL[G] ⊆ <κ+-HODL[G�κ+ ].

since the forcing from L[G�κ+] to L[G] is <κ+-closed and cone homogeneous. This would
yield that G�κ ∈ <κ+-HODL[G�κ+ ]. If κ is singular, then L[G�κ+] = L[G�κ], so we would
have G�κ ∈ L[G�κ], contradicting (6). In addition, if κ is regular, then the forcing leading
from L[G�κ] to L[G�(κ + 1)] = L[G�κ+] is Add(κ, 1), so by Theorem 11, <κ+-HODL[G�κ+ ] ⊆
<κ+-HODL[G�κ], leading to the same contradiction.

Therefore, this theorem allows us to control <κ-HOD for double successors of regular
cardinals, and to introduce leaps at double successors of any cardinal.

3.4. The Forcing by Kanovei and Lyubetsky

Note that we are not able to introduce a leap at ω1 using Cohen forcing. This can be
achieved by the Kanovei-Lyubetsky forcing [23]. In this subsection, I only report on their
results and give an application.

Their forcing is used in L, where it is a finite support product of an OD forcing T whose
conditions are a certain collection of perfect trees, ordered by inclusion. This finite support
product is denoted by T<ω. It is a ccc forcing in L, and forcing with T<ω over L adds a
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sequence ~x = 〈xi | i < ω〉 of reals such that in L[~x], {xi | i < ω} is the set of T-generic reals
over L.

Proposition 11. Let ~x be a T<ω-generic sequence over L. Then

1. {xi | i < ω} is ODL[~x],
2. {xi | i < ω} ⊆ <ω1-HODL[~x],
3. {xi | i < ω} ∈ <ω1-HODL[~x],
4. ~x /∈ <ω1-HODL[~x],
5. in L[~x], L = HOD = <ω-HOD $ <ω1-HOD $ <ω2-HOD = V. In particular,

ΛL[~x]
0 = ω1.

Proof. Point 1 is because {~x} is the set of all reals which are T-generic over L—since T is
ODL, this is a definition of {~x} in L[~x] using ordinal parameters.

Point 2 follows from 1; for any i < ω, by the first point, xi is <ω1-ODL[~x], and of course,
xi, being a real, is a subset of ω×ω, and hence of HODL[~x].

Point 3 follows from 1 and 2.
Point 4 is because if ~x ∈ A, and A is ODL[~x], then A must be uncountable in L[~x].

Specifically, let A = {z | ϕ(z, α)}, and let Γ be the canonical name for the generic sequence.
Let p ∈ T<ω force that Γ ∈ A, i.e., that ϕ(Γ, α̌) holds. Then for any automorphism π ∈ L
which perturbs the coordinates of conditions in T<ω that fixes the coordinates in the support
of p, we have that p ∈ π(~x) and L[~x] = L[π(~x)] |= ϕ(Γ, α̌), so that π(~x) ∈ A. There are
2ω = ω1 such automorphisms, and any two distinct automorphisms give different generics.

Point 5 follows because T<ω is weakly homogeneous and ODL, so that L ⊆ HODL[~x] ⊆
L. The other relationships follow immediately from the previous points. Note that
~x ∈ <ω2-HODL[~x] because ~x ∈ (ωR)L[~x], and this set has cardinality ω1 < ω2 in L[~x].

This proposition shows that Proposition 4 is optimal in the case κ = ω1: in the model
constructed, there are subsets of ω in <ω1-HOD that are fresh over HOD. Proposition 4
shows that there can be no fresh subset of ω1 (or any κ with cf(κ) ≥ ω1) over HOD in
<ω1-HOD.

Note that if ~x = 〈xi | i < ω〉 is T<ω-generic, then L[~x] = L(R)L[~x]. If we proceed by
performing the iteration described in the previous subsection, then we end up with a model
in which ω1 is a leap, as well as all cardinals of the form κ++, for κ ≥ ω.

Corollary 6. Assume V = L. Let ~x be a T<ω-generic sequence over L. Working in L[~x], let λ be a
cardinal, and let 〈〈Pi | i ≤ λ〉, 〈Q̇i | i < λ〉〉 be the reverse Easton iteration whose only nontrivial
stages are when i = κ is an uncountable regular cardinal, 1lPκ


Pκ
Q̇κ = Add(κ, 1). Let G be

P = Pλ-generic over L[~x]. Then:

(a) For uncountable regular κ < λ, L[~x][G�(κ + 1)] = <κ++-HODL[~x][G], and
G(κ) ∈ <κ++-HODL[~x][G] \<κ+-HODL[~x][G]. So κ++ is a leap in L[~x][G].

(b) L[~x] = <ω2-HODL[~x][G].
(c) For any limit cardinal κ ≤ λ, G�κ ∈ <κ++-HODL[~x][G] \<κ+-HODL[~x][G]. So κ++ is a

leap in L[~x][G].
(d) {xi | i < ω} ∈ <ω1-HODL[~x][G], but ~x /∈ <ω1-HODL[~x][G].
(e) <ω-HODL[~x][G] = L.

Remark 3. Thus, in L[~x][G], if ω1 ≤ κ ≤ λ, and either κ is regular and κ < λ, or κ is a limit
cardinal, then κ++ is a leap. All limit cardinals up to λ are also leaps, and so are ω1 and ω2.

For example, if λ = ℵω, then in L[~x][G], all uncountable cardinals up to and including ℵω

are leaps, as is ℵω+2.
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Proof (sketch). To prove (a) and (c), the proofs of the corresponding statements in Theorem 12
relativize, because ~x is essentially a real number and hence it is <ω2-HODL[~x][G�κ], for any
cardinal κ, so Proposition 10 applies.

Turning to (b), the inclusion from left to right follows from the reason just given.
For the converse direction, the forcing leading from L[~x][G�(ω1 + 1)] to L[~x][G] is <ω2-
closed and weakly homogeneous, and the forcing leading from L[~x] to L[~x][G�(ω1 + 1)] is
Add(ω1, 1), so a combination of Corollary 4 and Theorem 11 shows that <ω2-HODL[~x][G] ⊆
<ω2-HODL[~x] ⊆ L[~x].

For the first part of (d), we know from Proposition 11.3 that {xi | i < ω} is <ω1-HODL[~x].
The reason is that {xi | i < ω} is the set of all T-generic reals over L. Since P is countably
closed, and hence does not add reals, the same definition of {xi | i < ω} works in L[~x][G].
For the second part, by now familiar arguments show that if we assume the contrary, that
~x ∈ <ω1-HODL[~x][G], then ~x ∈ <ω1-HODL[~x] by Corollary 4 since P is countably closed and
weakly homogeneous in L[~x]. However, this contradicts Proposition 11.4.

Part (e) follows because the combined forcing T<ω ∗ Ṗ is cone homogeneous; use
Lemma 3 with κ = ω.

3.5. Forcing with Homogeneous Souslin Trees

The forcings we have investigated so far were not able to introduce a leap at successors
of uncountable limit cardinals. In this subsection, we will achieve this. The forcing notions
in question will be Souslin trees with certain homogeneity properties. The following
definition uses terminology from [24].

Definition 9. Let κ be a regular cardinal. A streamlined (or sequential) κ-tree is a set T of functions
p such that the domain of p is an ordinal less than κ and the range of p is contained in κ, closed
under restrictions to ordinals, ordered by inclusion, such that for every α < κ, the α-th level of T,
T(α) = {p ∈ T | dom(p) = α} has cardinality less than κ and is nonempty. If p, q ∈ T, then
p ⊥ q (p, q are incompatible) iff neither p ⊆ q nor q ⊆ p. An antichain in T is a set A ⊆ T of
pairwise incompatible elements. T is a κ-Souslin tree if it has no antichain of cardinality κ. It is
coherent if whenever p, q ∈ T, then the set d(p, q) = {i ∈ dom(p) ∩ dom(q) | p(i) 6= q(i)}
is finite. It is uniformly homogeneous if whenever p, q ∈ T and dom(p) ≤ dom(q), then the
function p ∗ q = p∪ (q�(dom(q) \ dom(p))) ∈ T. It is uniformly coherent if it is coherent and
uniformly homogeneous.

Remark 4. Let T be a streamlined uniformly homogeneous κ-tree. Let s, t ∈ T with dom(s) =
dom(t). Let πs,t be the following function defined on T≥s = {u ∈ T | s ⊆ u}:

πs,t(u) = t ∗ u.

Then πs,t : T≥s −→ T≥t is an isomorphism. It follows that T is cone homogeneous, as a
forcing notion.

Proof. Clearly, πs,t : T≥s −→ T≥t, and it is order preserving. However, also, πt,s : T≥t −→
T≥s is order preserving, and it is the inverse function of πs,t. It follows that πs,t is an
isomorphism.

Remark 5. If T is a κ-Souslin tree, where κ is an uncountable regular cardinal, and P is a forcing
notion of cardinality less than κ, then whenever G ⊆ P is P-generic over V, T remains a κ-Souslin
tree in V[G].

Proof. If not, then let ḟ be a P-name and p ∈ G a condition forcing that ḟ : κ̌ −→ Ť is an
injective enumeration of an antichain in T. For every ξ < κ, there are a condition qξ ∈ G
and a ťξ such that qξ ≤ p and qξ 
P ḟ (ξ̌) = ťξ . Since κ is still a regular cardinal in V[G],
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and since the cardinality of P is less than κ, there must be a q ∈ P such that for κ many
ξ < κ, qξ = q. However, then, the set

A = {t | ∃ξ < κ q 
P ḟ (ξ̌) = ť}

is an antichain in T of cardinality κ that exists in V, contradicting that T is Souslin there.

When forcing with a tree, the nodes that are higher up in the tree are stronger. In other
words, I follow the Israel convention when forcing with trees.

Theorem 13. Let κ be a regular uncountable cardinal, and let T be a streamlined, uniformly
coherent κ-Souslin tree. Let G ⊆ T be T-generic over V. Then:

(1) <κ-HODV[G] ⊆ V.
(2) If T is <κ+-HODV[G], then G ∈ <κ+-HODV[G].
(3) If κ̄ ≤ κ is a cardinal and T is <κ̄-OD, then <κ̄-HODV[G] ⊆ <κ̄-HODV.

Proof. It is well-known that T is <κ-distributive, i.e., that forcing with T does not add a
new sequence of ground model elements of length less than κ. The generic filter G itself
can be identified with b =

⋃
G, a new such sequence of length κ, a function b : κ −→ κ

such that for all α < κ, b�α ∈ T, i.e., a cofinal branch of T. Since T is Souslin, it is also κ-c.c.
It follows that forcing with T preserves all cardinals and cofinalities.

To show (1), that <κ-HODV[G] ⊆ V, let us assume the contrary, and let a be ∈-minimal
in <κ-HODV[G] \V. So a ⊆ V, and there is an ODV[G] set A = {x | ϕ(x, ρ)}V[G] such that

a ∈ A and γ = A
V[G]

< κ. Let a = ȧG, and let p ∈ G force all the above: that ȧ is contained
in V but not an element of V, that it belongs to A, and that A has cardinality γ. I will carry
out the following construction in V[G]. For every q ≥ p with q ∈ G, there is a dq ∈ V and a
q− ≥ q such that

dq ∈ a ⇐⇒ (q− 
T (ďq /∈ ȧ))V.

This is because otherwise, q would decide membership to ȧ for every element of V,
and since q also forces that ȧ ⊆ V, q would force that ȧ ∈ V. Using this, one can now
define a sequence 〈〈αi, q−i , di〉 | i < κ〉 such that 〈αi | i < κ〉 is a strictly increasing sequence
of ordinals less than κ, q−i ∈ T, q−i ≥ b�αi, and b�αi+1, q−i decide “ďi ∈ ȧ” in different ways.
In the limit step, one uses the fact that κ remains regular in V[G].

For i < κ, let bi = q−i ∗ b =
⋃

dom(q−i )<α<κ q−i ∗ b�α. By uniform coherence of T, bi

is a cofinal branch of T, so, since T is Souslin, Gi = {bi�α | α < κ} is T-generic over V.
Moreover, if i < j < κ, then ȧGi 6= ȧGj . This is because di ∈ ȧGi 6⇐⇒ di ∈ a ⇐⇒ di ∈ ȧGj ,
as qj ≥ b�αi+1.

However, obviously, V[Gi] = V[G], since bi and b differ only on an initial segment.
Hence, we have

V[G] = V[Gi] |= ϕ(ȧGi , ρ)

so that {ȧGi | i < κ} ⊆ A. So A has cardinality κ in V[G], a contradiction.
Towards claim (2), the crucial point is that

[T]V[G] = {b′ ∈ V[G] | b′ is a cofinal branch through T}

has cardinality κ in V[G]. First, note that if b′ ∈ [T]V[G], then d(b, b′) = {i < κ | b(i) 6= b′(i)}
is finite. For suppose it were not. Let θ be the supremum of the first ω elements of d(b, b′).
Clearly, θ cannot be less than κ, because if it were, then we would have that b�θ, b′�θ ∈ T,
so that by coherency of T, d(b�θ, b′�θ) < ω, a contradiction. Therefore, then it would have
to be that θ = κ, but that would mean that the cofinality of κ is collapsed to ω in V[G],
which contradicts that T preserves cofinalities. Thus, every b′ ∈ [T]V[G] can be obtained
from b by modifying it in finitely many places. Clearly, there are only up to κ many ways
to do this. Therefore, the cardinality of [T]V[G] is at most κ in V[G]. However, it is also at
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least κ, because for every q ∈ T, q ∗ b ∈ [T]V[G]. A by now familiar argument shows that
if T is <κ+-ODV[G], then b (and hence G) is <κ+-HODV[G]. Specifically, if A is ODV[G], has
cardinality less than κ+ there, and contains T, then the set

⋃
{[S] | S ∈ A and S is a κ-tree with [S] = κ}

is ODV[G], has cardinality κ, and contains b. Every element of b is a pair of ordinals
less than κ, so that clearly, b ⊆ <κ+-HODV[G]. Hence, b ∈ <κ+-HODV[G]. In addition,
G = {b�α | α < κ} is definable in and hence a member of the inner model <κ+-HODV[G].

Turning to item (3), let κ̄ be as stated, and assume that T is <κ̄-OD. By item (1), it fol-
lows that whenever G is T-generic over V, then <κ̄-HODV[G] ⊆ V. Hence, the assumptions
of Lemma 4 are satisfied, and that lemma gives the result.

It follows from Brodsky and Rinot [24] that in L, for every regular cardinal κ that
is not weakly compact, there is a streamlined, uniformly coherent κ-Souslin tree. Since
the relevant reference points are somewhat scattered within [24], here are the details. [24]
(Thm. 6.1.(21)) says that if V = L and κ is an uncountable regular cardinal that is not
weakly compact, then the “parametric proxy principle” P•(κ, 2,v, κ,S , 2) holds for S =
{Eκ
≥χ | χ ∈ Reg(κ) and κ is (<χ)-closed}. Here, κ is (<χ)-closed iff for every λ < κ,

λ<χ < κ, and the principle, with a subscript called ξ, is defined in [24] (Def. 5.9) . According
to [24] (Convention 4.3), if the subscript is omitted, then it is understood to be κ. It is obvious
from the definition that the principle becomes weaker if one shrinks S or expands any
element of S ; see also [24] (Remark 4.11). Since κ trivially is (<ω)-closed, it follows that
in L, P•(κ, 2,v, κ, {κ}, 2) holds, assuming that κ is an uncountable, regular cardinal that
is not weakly compact in L. Now [24] (Thm. 6.35) concludes the existence of a uniformly
coherent κ-Souslin tree (which has some additional properties that are not needed here)
from this assumption. Hence, we obtain the following corollary.

Corollary 7. Assume V = L, and let λ be an uncountable regular cardinal that is not weakly
compact. Then there is a forcing extension L[G] of L such that ΛL[G]

0 = λ+.

Proof. We can let T be the <L-least streamlined, uniformly coherent λ-Souslin tree and let
G be T-generic over L. By Theorem 13, L[G] is as wished.

In particular:

Corollary 8. If ZFC is consistent with the existence of an inaccessible cardinal, then it is consistent
that Λ0 is the successor of an inaccessible cardinal.

Note that Corollary 7 shows that Proposition 4 is optimal in the sense that in the model
constructed, <λ+-HOD has a subset of λ that is fresh over HOD. The proposition says that
it cannot have such a subset of a cardinal of cofinality greater than or equal to λ+.

It is also possible to combine forcing with a uniformly coherent Souslin tree with an
iteration of Cohen forcings as in the proof of the following theorem.

Theorem 14. If ZFC is consistent with the existence of an inaccessible cardinal, then ZFC is
consistent with the existence of a regular (in fact inaccessible) limit leap whose successor cardinal is
also a leap.

Proof. Under the assumption of the theorem, ZFC is consistent with V = L together with
the existence of an inaccessible cardinal. Therefore, let us assume V = L, and let λ be
inaccessible, but not weakly compact. Let T be the <L-least streamlined uniformly coherent
Souslin tree on λ, and let b be a T-generic branch over L. We know from Theorem 13 that
in L[b], b is one of altogether λ many cofinal branches of T.
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In L[b], let P be an iteration of Cohen forcings Add(ρ, 1), for regular ρ < λ, as described
in Lemma 12.

In the terminology of [7] (Def. 12), the forcing P has a closure point at every regular
cardinal δ < λ, because P factors as Pδ+1 ∗ Q̇, where Pδ+1 = δ and 
Pδ+1 “Q̇ is strategically
≤δ-closed. As a result, by [7] (Lemma 13), letting G be P-generic over L[b], it follows that
L[b] satisfies the δ+-approximation and -cover properties in L[b][G]. In particular, by the
argument of the proof of Proposition 4, L[b][G] has no fresh sequence of length λ over L[b].
This means that P cannot add a cofinal branch to T over L[b], so that in L[b][G], b is still one
of λ many branches through T. However, by the special way T was chosen, it is ODL[b][G].
It follows that:

(A) b ∈ <λ+-HODL[b][G].

Since T adds no bounded subsets to λ, the iteration P of length λ is the same as
defined in L or in L[b] (the point is that bounded support is used in forming Pλ), and
L[b][G] = L[G][b].

Imitating the argument of the proof of Theorem 12, let us check that

(B) for every regular cardinal κ < λ,

L[G�(κ + 1)] = <κ++-HODL[b][G].

First, we have

(1) L[G�(κ + 1)] = <κ++-HODL[b][G�(κ+1)].

The inclusion from left to right holds because G�(κ + 1) is (coded by) a subset X of κ,
and arguing in L[b][G�(κ + 1)], X belongs to the OD set P(κ), which has cardinality less
than κ++.

For the converse, we can change the order of forcing and write

<κ++-HODL[b][G�(κ+1)] = <κ++-HODL[G�(κ+1)][b].

Note that by Remark 5, T is still a λ-Souslin in L[G�(κ + 1)], and it obviously also
is uniformly coherent there. Moreover, T is ordinal definable in L[G�(κ + 1)]. Hence,
Theorem 13 applies, showing that

<κ++-HODL[G�(κ+1)][b] ⊆ <κ++-HODL[G�(κ+1)] = L[G�(κ + 1)].

This shows the inclusion from right to left.
The same argument shows that

(2) L[G�(κ + 1)] ⊆ <κ++-HODL[b][G].

Therefore, we must prove the reverse inclusion. We have κ+ < λ, since λ is inaccessi-
ble.

The next nontrivial stage of forcing is κ+. From the point of view of L[b][G�(κ +
1)], L[b][G�(κ+ + 1)] is obtained by forcing with Add(κ+, 1). Applying Theorem 11 in
L[b][G�(κ + 1)] yields:

(3) <κ++-HODL[b][G�(κ++1)] ⊆ <κ++-HODL[b][G�(κ+1)].

Furthermore, we have κ++ < λ, so the passage from L[b][G�(κ+ + 1)] to L[G], which
we again call Ptail, has as its next nontrivial stage κ++, and the forcing used is <κ++-
closed, as well as cone homogeneous, as we argued before. Hence, Corollary 4 can be
applied in L[G�(κ+ + 1)], showing that

(4) <κ++-HODL[b][G] ⊆ <κ++-HODL[b][G�(κ++1)].

Together with (3), this shows that

(5) <κ++-HODL[b][G] ⊆ <κ++-HODL[b][G�(κ+1)].
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However, again,

<κ++-HODL[b][G�(κ+1)] = <κ++-HODL[G�(κ+1)][b] ⊆ L[G�(κ + 1)].

It follows that <κ++-HODL[b][G] ⊆ L[G�(κ + 1)], by (5). This proves (B).
Clearly, (B) shows that λ is a limit leap. Let us now say something about <λ-HODL[b][G]:

(C) <λ-HODL[b][G] ⊆ L[G].

To see this, let us think of L[b][G] as L[G][b] instead, obtained by forcing with T
over L[G]. At first sight, it may seem as though the claim follows immediately from
Theorem 13 (1), but it is not clear that T is a Souslin tree in L[G] - Pλ is not small forcing
regarding λ! However, fortunately, the proof of the theorem still goes through—all it uses
is that forcing with T preserves λ as a regular cardinal, that the maps πs,t of Remark 4 are
isomorphisms, and that T is uniform. There is a small subtlety in the proof: we argued that
(using the notation from the proof) q−i ∗ b is T-generic because it is a cofinal branch of T,
and every cofinal branch in a Souslin tree is generic. Since T may not be Souslin in L[G],
one cannot argue that way now, but it is sufficient to know that, letting s = b�dom(q−i ),
and letting bi = πs,q−i

[{b�ξ | ξ < λ}], we have that πs,q−i
is an isomorphism between T≥s

and T≥q−i
, so that bi is generic for T. With these modifications, the proof goes through to

prove the current claim.
Therefore, by (B) and (C), b ∈ <λ+-HODL[b][G] \<λ-HODL[b][G], showing that λ+ is a

leap in L[b][G], and λ is a limit leap, as wished.

3.6. Příkrý Forcing

In the previous subsections, we saw how to produce models where Λ0 = κ+, for a
regular limit cardinal κ, or where such a κ is a limit leap whose successor cardinal is also a
leap. We will now see how this can be arranged for a singular limit cardinal. Recall Lemma
2.(2), which showed that Λ0 must be a successor cardinal.

To this end, I will use Příkrý forcing [25]: given a measurable cardinal κ and a normal
ultrafilter U on κ, the forcing notion consists of pairs 〈s, T〉, where s is a finite subset of
κ, T ∈ U, and s ⊆ min(T). The ordering is defined by declaring that 〈s1, T1〉 ≤ 〈s0, T0〉
iff T1 ⊆ T0, s0 ⊆ s1 and s1 \ s0 ⊆ T0. In this situation, 〈s1, T1〉 is called a direct extension of
〈s0, T0〉, denoted 〈s1, T1〉 ≤∗ 〈s0, T0〉, if s1 = s0. It is well-known that forcing with this poset
adds a set C (called a Příkrý sequence), cofinal in κ, of order type ω, and interdefinable
with the generic filter (using U as a parameter).

Theorem 15. Let κ be a measurable cardinal, let U be a normal ultrafilter on κ, let P be the Příkrý
forcing for U, and let G be P-generic over V. Then

(a) <κ-HODV[G] ⊆ V.
(b) If U is <κ+-ODV[G], then, letting C be the Příkrý sequence corresponding to G,

C ∈ <κ+-HODV[G].
(c) If κ̄ ≤ κ is a cardinal and U is <κ̄-OD, then <κ̄-HODV[G] ⊆ <κ̄-HODV.

Proof. Let C be the Příkrý sequence corresponding to G, i.e.,

C =
⋃
{s | ∃T 〈s, T〉 ∈ G}.

It is well-known that V[G] = V[C]. I will soon need the fact, due to Mathias [26], that
a subset D of κ with order type ω is the Příkrý sequence corresponding to some P-generic
H iff for every B ∈ U, D \ B is finite. I will also need a maximality fact, a proof of which
can be found in [27] (but in a much broader context), saying that if D is the Příkrý sequence
corresponding to some H which is P-generic over V, and this H is in V[C] (equivalently,
D ∈ V[C]), then D \ C is finite.
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Let G = GV[C] be the collection of Příkrý sequences D (again viewed as subsets of κ of
order type ω) such that V[C] = V[D].

(1) G = {D ⊆ κ | D4C is finite}.

Proof of (1). For the inclusion from right to left, if D4C is finite, then obviously, for any
X ∈ U, D \ X is finite, as C \ X is finite, and otp(D) = ω. Thus, by Mathias’ criterion for
Příkrý genericity, D is a Příkrý sequence over V. Moreover, V[C] = V[D].

For the other direction, suppose D ∈ G. Since D is a Příkrý sequence over V and
D ∈ V[C], it follows by the maximality of C that D \ C is finite. However, since C ∈ V[D],
it follows by the maximality of D that C \ D is finite. Thus, C4D is finite.

To prove (a), I must show that <κ-HODV[C] ⊆ V.
Assume the contrary, and let a ∈ <κ-HODV[C] \ V be ∈-minimal. So a ⊆ V. Let A

be an ODV[C] set such that a ∈ A and A
V[C]

= κ̄ < κ. Let A = {x | ϕ(x, α)}V[C], for some
ordinal α. Let a = ȧG, and let p ∈ G be a condition which forces over V that ȧ is contained
in V, but not an element of V, and that ϕ(ȧ, α̌) holds. Let us also assume that p forces that ȧ
is a subset of Vθ , for some sufficiently large ordinal θ, and moreover, that fixing a well-order
R of Vθ , the order type of ȧ under that well-order is the ordinal Ω. Let us write, for any
subset b of Vθ , b(ξ) for the ξ-th element of b in its enumeration according to R.

I will use the following notation: if D is a Příkrý sequence, then GD denotes the P-
generic filter, i.e., the set of all conditions of the form 〈s, T〉 such that s is an initial segment
of D and D \ s ⊆ T. I will also use the following fact.

(2) For every condition q ∈ P, there is a D ∈ G such that q ∈ GD.

Proof of (2). Let q = 〈s, T〉. Since C is a Příkrý sequence, e = C \ T is finite. Let α =
sup({ξ + 1 | ξ ∈ s}). Then set D = s ∪ (C \ (e ∪ α)). Since C ∩ α is finite, it follows that
D4C is finite, so that D ∈ G, by (1). In addition, since s is an initial segment of D and
D \ s ⊆ T, it follows that 〈s, T〉 ∈ GD, as wished.

One more basic fact on Příkrý forcing will prove useful.

(3) Let ṫ be a P-name, let q ∈ P be a condition, and let Z be a set of size less than κ such that
q 
 ṫ ∈ Ž. Then there is a (unique) z ∈ Z such that for some direct extension q′ of q,
q′ 
 ṫ = ž.

Proof of (3). For each z ∈ Z, consider the statement ϕz =“ṫ = ž”. By the Příkrý property,
for each such z, there is a direct extension qz ≤∗ q deciding ϕz. Since all these conditions
have the same first coordinate, and there are fewer than κ of them, they have a common
extension, q′ ≤ qz for all z ∈ Z. It follows that there is a z ∈ Z such that qz 
 ṫ = ž, or else
q′ would force that ṫ /∈ Ž, a contradiction. In addition, this z is unique, or else, q would
both force that ṫ = ž and ṫ = ž′, for distinct z, z′ ∈ Z.

(4) If q ≤ p is a condition in P and ξ < Ω, then the collection

Pq = {z | ∃r ≤ q r 
 ȧ(ξ̌) = ž}

can have no more than κ̄ members.

Proof of (4). Assume the contrary. For notational simplicity, let us assume q = p, for if not,
then we may work with a different Příkrý sequence C′ instead of C whose generic contains q.

Let 〈Pi | i < κ̄+〉 be a partition of Pq, each Pi nonempty. Let A be a maximal antichain
below q such that for every r ∈ A, there is an i < κ̄+ with r 
 ȧ(ξ̌) ∈ P̌i. Let D = {s | ∃r ∈
A s ≤ r} be the dense open subset below q that is generated by A.

Now, for every i < κ̄+, there is an ri ∈ A forcing that ȧ(ξ̌) ∈ Pi. By (2), there is a
Di ∈ G such that ri ∈ GDi .
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However, then, for i < j < κ̄+, we have that ȧGDi 6= ȧ
GDj . However, each GDi contains

the condition p, so ϕ(ȧGDi , α) holds in V[GDi ] = V[C]. However, the set {z | V[C] |=
ϕ(z, α)} has size κ̄ in V[C], and (κ̄+)V is still a cardinal in V[C], since P preserves cardinals.
This is a contradiction.

In V, we will now recursively construct sequences 〈pi | i ≤ κ̄+〉, 〈qi+1 | i < κ̄+〉 and
〈ξi+1 | i < κ̄+〉 with the following properties:

• for i < j ≤ κ̄+, pj ≤∗ pi and qi+1 ≤ pi.
• for i < κ̄+, qi+1 and pi+1 decide the value of ȧ(ξ̌i+1) in different ways.

We begin by setting p0 = p. If j ≤ κ̄+ is a limit ordinal and 〈pi | i < j〉, 〈qi+1 | i < j〉
and 〈ξi+1 | i < j〉 have been defined already, then let pj be the limit of the sequence 〈pi |
i < j〉 (i.e., if pi = 〈s, Ti〉 for i < j, then pj = 〈s,

⋂
i<j Ti〉). Now suppose 〈pi | i ≤ j〉, 〈qi |

i ≤ j, i a successor〉 and 〈ξi | i ≤ j, i a successor〉 have been defined. Since pj ≤ p, there
must be a ξ j+1 < Ω such that pj does not decide the value of ȧ(ξ̌ j+1) (or else pj would force
that ȧ ∈ V). Since there are no more than κ̄ many possible values, there is a direct extension
pj+1 of pj that decides it. Now let qj+1 ≤ pj be some condition that decides ȧ(ξ̌ j+1) in a
different way. This finishes the construction.

Now, for every successor ordinal i < κ̄+, let Di be a Příkrý sequence such that Di4C
is finite, and such that, letting GDi be the generic filter corresponding to Di, qi ∈ GDi . Then

for i < j, both successor ordinals, ȧGDi 6= ȧ
GDj , because qi decides ȧ(ξ̌i) in a way that is

different from the way pi decides it, but since qj ≤ pj−1 ≤ pi, qj decides ȧ(ξ̌i) the same way

as pi. Thus, ȧGDi (ξi) 6= ȧ
GDj (ξi).

However, for each successor ordinal i < κ̄+, V[Di] = V[C], and since p ∈ GDi ,
V[C] |= ϕ(ȧGDi , α), while there are only κ̄ many b such that V[C] |= ϕ(b, α). This is a
contradiction.

To prove (b), assume that U is <κ+-HODV[G]. I must show that C ∈ <κ+-HODV[G]. Let
A be ODV[G], of cardinality at most κ in V[G], such that U ∈ A. Recall that G was defined
in V[C] to be the collection of all Příkrý sequences D over V with respect to U such that
V[C] = V[D]. Formalizing this definition of G would require us to talk about V, which may
or not be definable is a simple enough way. Instead, working in V[C], let me define a set D
to be a maximal Příkrý sequence (with respect to U) if:

(i) D ⊆ κ, and otp(D) = ω.
(ii) For every B ∈ U, D \ B is finite.
(iii) Call a set E satisfying (i) and (ii) a Příkrý sequence (with respect to U). Then for

every Příkrý sequence E (with respect to U), E \ D is finite.

It then follows that G is the set of all maximal Příkrý sequences (with respect to U). To see
this, for the inclusion from left to right, assume that D ∈ G. It then clearly satisfies (i) and
(ii). In addition, since V[D] = V[C] and D is maximal in V[D], it follows that D is also a
maximal Příkrý sequence with respect to U. Vice versa, suppose that D satisfies (i)–(iii). D
is then Příkrý-generic over V. To see that V[D] = V[C], it suffices to show that C ∈ V[D].
However, C is also a Příkrý sequence with respect to U, so by (iii), C \ D is finite. On the
other hand, D ∈ V[C], and C is maximal in V[C], so D \ C is finite. Hence, C ∈ V[D], so
that V[C] = V[D], as claimed.

For every W ∈ A, we may now define

GW = {D ⊆ κ | D is a maximal Příkrý sequence with respect to W}.

Note that the definition of GW only uses W (and κ) as a parameter, and that GU = G.
Therefore, by (1), GU has cardinality κ. Thus, by adding this requirement to the definition
of A if necessary, we may assume that for every W ∈ A, the cardinality of GW is κ. We
then have that C ∈ ⋃

W∈A GW , and this latter set is ODV[G] and has cardinality κ, making
C <κ+-HODV[G], as claimed.



Mathematics 2022, 10, 452 31 of 34

Finally, let me turn to (c). To be able to apply Lemma 4, note that P is cone homo-
geneous: given two conditions p = 〈s0, T0〉 and q = 〈s1, T1〉, let T = T0 ∩ T1, p′ = 〈s0, T〉
and q′ = 〈s1, T〉. Then p′ ≤ p, q′ ≤ q and P≤p′ is isomorphic to P≤q′ via the function that
maps 〈s, W〉 ∈ P≤p′ to 〈(s \ s0) ∪ s1, W〉. It is routine to check that this is an isomorphism
between the cones. Lemma 4 now proves the lemma.

Here is an application in a concrete scenario, producing a model whose least leap is
the successor of a singular cardinal.

Theorem 16. Assume V = L[U], where U is a normal ultrafilter on κ. Let P be the Příkrý forcing
for U, and let G be P-generic over V. Then

L[U] = HODL[U][G] = <κ-HODL[U][G] $ <κ+-HODL[U][G] = L[U][G].

In particular, Λ0 = κ+ is the successor of a limit cardinal of countable cofinality in L[U][G].

Proof. In L[U][G], L[U] is definable (it is the core model), and U is the unique normal measure
on κ in L[U], so U is definable in L[U][G]. Thus, the assumptions of Theorem 15(b) and (c) are
satisfied, yielding that <κ-HODL[U][G] ⊆ <κ-HODL[U] and letting C be the Příkrý sequence
corresponding to G, C ∈ <κ+-HODL[U][G]. However, L[U] = HODL[U] ⊆ HODL[U][G], since
L[U] is definable in L[U][G]; see Proposition 9. Therefore, we have that L[U] = HODL[U][G] =

<κ-HODL[U][G]. The rest follows because C ∈ <κ+-HODL[U][G], as this implies that L[U][G] =

L[U][C] ⊆ <κ+-HODL[U][G] ⊆ L[U][G].

Finally, here is another simple application, paralleling Theorem 14 and producing a
model with a singular limit leap whose successor cardinal is also a leap.

Theorem 17. If ZFC is consistent with a measurable cardinal, then ZFC is also consistent with the
existence of a singular limit leap of countable cofinality, whose cardinal successor is a leap.

Proof. Working in a model of ZFC with a measurable cardinal, we can form the canonical
inner model L[U] and work there, so let us assume that V = L[U]. Let κ be the measurable
cardinal (so U is the unique normal ultrafilter on κ). Let PU be the Příkrý forcing with
respect to U, and let C be a Příkrý sequence with respect to U.

In V[C], let P be the reverse Easton iteration employing Add(γ, 1) at stage γ when
γ < κ is an uncountable regular cardinal, and using trivial forcing at all other stages.

(1) C ∈ <κ+-HODV[C][G] \<κ-HODV[C][G].

To see that C ∈ <κ+-HODV[C][G], recall that C is one of κ many maximal Příkrý
sequences with respect to U in V[C], by Theorem 15. The forcing P is <ω1-closed in V[C],
so does not add any countable sequences of ordinals, and preserves cardinals. Moreover, U
is still definable in V[C][G]. Hence, C is still <κ+-HODV[C][G], using the same definition.

To see that C does not belong to <κ-HODV[C][G], suppose towards a contradiction that

it did. Let A = {x | ϕ(x, α)}V[C][G] be ODV[C][G] with C ∈ A and A
V[C][G]

< κ. Arguing in
V[C], since P is weakly homogeneous in V[C], we know that for every x, either 
P ϕ(x̌, α̌)
or 
P ¬ϕ(x̌, α̌). Therefore, define, still in V[C]:

Ã = {x | 
P ϕ(x̌, α̌)}.

Then Ã = A ∩V[C] ⊆ A, and in particular, C ∈ Ã. We have that

Ã
V[C]

= Ã
V[C][G]

≤ A
V[C][G]

< κ.
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Moreover, since P is ODV[C], Ã is ODV[C]. Taken together, this shows that
C ∈ <κ-HODV[C]. However, this contradicts Theorem 15 (a), which says that <κ-HODV[C] ⊆
V.

(2) Let γ < κ be regular and uncountable. Then

G(γ) ∈ <γ++-HODV[C][G] \<γ+-HODV[C][G].

Viewing G(γ) as a subset of γ as usual, it follows that it belongs to P(γ)V[C][G], an
ODV[C][G] set of cardinality less than γ++ in V[C][G], showing that G(γ) ∈ <γ++-HODV[C][G].

To see that G(γ) does not belong to <γ+-HODV[C][G], assume it did. As before, it would
follow that G(γ) ∈ <γ+-HODV[C][G�(γ+1)] by Corollary 4, and further, by Theorem 11, that
G(γ) ∈ <γ+-HODV[C][G�γ], which is absurd. This proves (2).

Now, in V[C][G], κ has countable cofinality, and by (2), κ is a limit of leaps, and by (1),
κ+ is a leap, as wished.

4. Questions and Directions for Future Research

Blurry definability is a new topic, and as such, there are many directions future
research could take.

Some research has been undertaken and some deep results have been obtained on
<ω1-HOD, the “hereditarily nontypical” sets, by Kanovei and Lyubetsky. Some of their
techniques might be usable at other stages of the blurry definability hierarchy. An intriguing
set of results concerns the status of the axiom of choice in <ω1-HOD. Specifically, in [6]
(Lemma 10.2), they show that in the forcing extension by their forcing P<ω, outlined in
Section 3.4, <ω1-HOD does not satisfy the axiom of choice. On the other hand, they provide
in [5] a different construction of a model in which <ω1-HOD is situated strictly between
HOD and V, but this time it does satisfy AC. It would be interesting to see whether one can
control the structure of leaps, while also controlling whether or not <κ-HOD satisfies the
axiom of choice. Of course, there is the limitation that at a limit leap κ, <κ-HOD cannot
satisfy AC. Given the nature of the forcing notions used by Kanovei and Lyubetsky, this
would probably entail analyzing forcing notions whose conditions are perfect trees on
some uncountable regular cardinal κ, as was done in [28], for example, and it might involve
techniques from the area of generalized Baire spaces.

Another topic of interest is the status of gaps between leaps. I did not verify that
successors of limit cardinals below the length of the iteration to produce the model of
Theorem 12 are not leaps there, but I suspect that an argument such as the one establishing
part (c) of the theorem, together with the techniques employed in the proof of Theorem 11
would show that - this is something that should be checked. Taking this further, one could
try to construct models where as many consecutive cardinals as possible are leaps. One
naive approach to constructing a model where this is true up to ℵω+2 would be to use the
method of Theorem 17 but use iterated collapse forcings (as in [29], for example) between
the elements of the Příkrý sequence to arrange that the formerly measurable cardinal
becomes ℵω . Analyzing the effect of collapse forcing itself on blurry definability would be
an interesting first step.

Relating to the use of Cohen forcing to produce leaps, the reason Add(κ, 1) introduced
a leap at κ++ was that GCH held in the models under consideration. Therefore, it would be
interesting to have failures of GCH, say at κ, but still have κ++, or even κ+ be a leap.

Another question concerns the use of large cardinals to produce models in which the
successor cardinal of a limit leap is a leap: are large cardinals necessary for this? Can
the presence of a core model be used, via covering, to rule out the occurrence of such
a situation?



Mathematics 2022, 10, 452 33 of 34

Furthermore, it seems as though the features of Příkrý forcing used to prove the
salient facts around blurry definability in its forcing extensions, Theorem 15, are shared
by Magidor forcing; see [30]. Therefore, it would seem promising to attempt to use it to
produce a model with a singular limit leap of higher cofinality, whose cardinal successor is
a leap.

Additionally, it seems that it should be possible to iterate adding Cohen sets past a
measurable cardinal and much more, preserving measurability, using lifting techniques,
and therefore producing models with many singular limit leaps whose successor cardinals
are leaps. I do not foresee any problems in performing a length On iteration, to produce
models with a proper class of leaps, etc.

Finally, and this may be a leap, but let me close with the question whether it is
consistent that every uncountable cardinal is a leap.
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