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Abstract: This paper considers the parameter estimation problems of Hammerstein finite impulse
response moving average (FIR-MA) systems. Based on the matrix transformation and the hierar-
chical identification principle, the Hammerstein FIR-MA system is recast into two models, and a
decomposition-based recursive least-squares algorithm is deduced for estimating the parameters
of these two models. In order to further improve the accuracy of the parameter estimation, a multi-
innovation hierarchical least-squares algorithm based on the data filtering theory proposed. Finally,
a simulation example demonstrates the effectiveness of the proposed scheme.
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o 1. Introduction

Hammerstein Finite Impulse

The idetification methods have been very mature for multivariable linear systems [1,2].

However, many systems in practical applications and industrial control are nonlinear
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multivariable systems [3,4]. Nonlinear multivariable systems are different from scalar
systems or linear systems, and each of their outputs is usually controlled and affected
by several inputs at the same time, so the parameter estimation of multivariable systems

is more difficult [5-7]. In recent years, many scholars have studied the parameter esti-
mation problem of nonlinear multivariable systems and proposed many identification
methods. You et al. proposed an iterative algorithm for the identification of multiple-input
single-output output-error systems with unknown time-delays, based on the basis pur-
suit denoising criterion and the auxiliary model identification idea [8]. Wang and Ding
presented a novel recursive least-squares algorithm for multiple-input multiple-output
(MIMO) systems with autoregressive moving average noise, employing the auxiliary model
and the data filtering technique [9]. Lenka studied the asymptotic stability of equilibrium
points of multivariable fractional order systems based on the fractional comparison princi-
ple and the Laplace transform [10]. Liu et al. investigated parameter estimation problems
for multivariable controlled autoregressive autoregressive moving average systems, and de-
rived a partially coupled generalized extended stochastic gradient algorithm by using the
auxiliary model [11].

Least-squares and stochastic gradient algorithms are two methods for parameter
estimation [12-15]. Compared with the stochastic gradient algorithm, the recursive least-
squares algorithm has fast convergence rate and high computational effort [16]. The re-
cursive least-squares algorithm needs to calculate the inverse of the covariance matrix in
the identification process; when the dimension of the covariance matrix is high, the com-
putational complexity is very large. In order to reduce the complexity of the calculation,
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the decomposition technique can effectively solve the problem of a large computational
burden in large-scale system identification [17-19]. The decomposition technique is used
to decompose the original system into multiple subsystems and to identify the parameters
in each subsystem separately [20,21]. For example, Wang et al. presented a hierarchical
least-squares iterative algorithm to solve the difficulty that the identification model contains
the unmeasurable variables and noise terms in the information matrix [22]. Ji et al. derived
a hierarchical least-squares algorithm for two-input Hammerstein finite impulse response
systems based on the hierarchical identification principle and the multi-innovation the-
ory [23]. Wang et al. transformed a MIMO Hammerstein system with different types of
coefficients into an over-parametrisation regression identification model, and then pro-
posed a hierarchical extended stochastic gradient algorithm [24].

In order to reduce the error of parameter estimation, the data filtering technique
can be used to get rid of the outliers and weaken the influence of noises to better extract
useful information in the data [25,26]. Chen et al. combined the maximum likelihood
principle, the decomposition technique and the data filtering technique, to present a
maximum likelihood generalized extended gradient algorithm, and a data filtering-based
maximum likelihood extended gradient algorithm [27]. Mao et al. presented a data filtering
multi-innovation stochastic gradient identification algorithm for Hammerstein output-
error autoregressive systems by means of the multi-innovation identification theory [28].
By eliminating the state variables in the systems, Li et al. proposed a filtering-based
least-squares iterative algorithm for estimating the parameters of bilinear systems with
colored noises [29]. The filtering technique can also be applied to signal processing and
communication [30-32], and neural networks [33,34].

The parameter estimation of the system models is important for control system analy-
sis and design. The parameters of the models can be estimated by using some identification
methods [35-37] such as the hierarchical algorithms [38,39]. This paper studies the param-
eter estimation problems of two-input two-output Hammerstein finite impulse response
moving average (FIR-MA) systems. The Hammerstein nonlinear system includes the
nonlinear block and the linear block and its identification face more difficulties such as high
computational complexity and parameter identifiability. In this paper, the decomposition
technique and data filtering technique are employed to solve these problems. The main
contributions of this paper lie in the following.

e  Based on the decomposition technique, we decomposed the Hammerstein system into
two models, each of which is expressed as a regression form in the parameters of the
nonlinear part or in the parameters of the linear part, and we propose a hierarchical
least-squares algorithm.

* By applying the data filtering technique, the input-output data are filtered, and a
filtering-based hierarchical least-squares algorithm is presented for Hammerstein
finite impulse response moving average systems to improve the accuracy of parame-
ter estimation.

Briefly, the structure of this paper is organized as follows. Section 2 describes a
two-input two-output Hammerstein FIR-MA system. Section 3 derives a hierarchical least-
squares algorithm for the TITO Hammerstein system. Section 4 derives a filtering-based
hierarchical least-squares algorithm for the TITO Hammerstein system. Section 5 provides
an illustrative example to show the effectiveness of the proposed algorithms. Finally, we
offer some concluding remarks in Section 6.
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2. System Description and Identification Model

Let us define some symbols. “A =: B” or “B := A” stands for “A is defined as
B”. The superscript T denotes the matrix/vector transpose; the norm of the matrix X is
defined by || X||? := tr[XX"]. The symbol I, stands for an identity matrix of size n x 1. 1,
represents a n-dimensional column vector whose elements are 1.

Consider the following Hammerstein FIR-MA system, depicted in Figure 1,

y(t) = 0()u(t) +a(z)o(t), @
where u(t) := [ (t), #2(t)]" € R? is the system nonline input, y(t) € R? is the system
output, v(t) € R? is the stochastic white noise with zero mean, 6(z) := [01(z), 82(z)]

and a(z) are two matrix polynomials in the unit backward shift operator z=! [z71y(t) =
y(t —1)], and defined by

0:(z) = 601z '+ 0,0z 2+ +0,,z"€R?, i=12, )
w(z) = l14+az ' 4+az 2+ -4z " €eR (3)

The unknown nonlinear input i;(t) is assumed to be a static nonlinear function of the
known basis d; ; with v; ; as its parameters:

Gt = b)) = Y vidilus ()] @
k=1

Assume that the orders n and s are known and #(t) = 0, y(f) = 0 and v(t) = 0 for
t <0.
The purpose of this paper is to estimate three parameters 0; ,,, v; x and a;.

0 ey —

RCIOMN YA

Figure 1. The two-input two-output Hammerstein FIR-MA system.

3. The Hierarchical Least-Squares Algorithm

From Equation (1), we have

y(t) = Ai(2)in(t) + Ax(2)iz(t) + a(z)o(h). ®)
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The first two terms of the right hand side can be expressed by

Ai@)a(t) = [Ajpz ' +Apz 2+ + Az "a(t)
= Az,lul(t_1)+Az,2uz( _2)+ +A‘,nﬂi<t_n)
[ i(t—1)

(t —2)
= [Ai,lr Ai,2/ Tty Ai,i’l] :
L_li(t - 7’[)
[ Y1 Yixdig[ui(t —1)]

Y1 Yikdixlui(t —2)]
= [Ai1,Ain Ayl : . (6)

L Yo Yigdig[ui(t — n)]

Define
Yia diafui()] 7"
Vi = 7f2 eRS, di(t) = di'zl.l't RS, i=1,2
Tis ()]

Then Equation (5) can be rewritten as

y(t) = [611,612,...,01,]

+ [62,11 62,2/ ceey 62,1’1}

+ a(z)o(t). (7)
Define
0; = [911,912,' -, 0 zn Rbm
—1)]
—2)]
Di(t) =
d;u;( t —n)]
zl ul(t_l dl2 1)] di,s[ui(t_l)]
| dialut—2) %ﬂm@—@] 2] |
L diglui(t—m)]  diplui(t =nm)] o dis[ui(t —n)]
Then, Equation (7) can be rewritten in the following matrix form:
y(t) = (011,012, 004]D1(t)y1 + [621,022, ..., 02,4 D2(t) v, + a(z)0(t)
= 01D1(t)7; + 02D2(t) 7, +a(z)o(t) ®)

2
= ZBZ‘Di<t)’)’i —|—¢X(Z)U(t)~
i=1



Mathematics 2022, 10, 438

50f16

Notice that in the identification model (8), it is difficult to simultaneously estimate the ma-
trix 6; and the vector v;. Here we use the hierarchical identification principle to transform
the Hammerstein identification model into two different forms.

Define
Dy (t)y, 2 2%2n
D.(t) = eR“", 0:=1604,0,] €R ,
7() |: Dz(t)')’z [ 1 2]
Dg(t) = [61D1(t),0:D(t)] € RP*%, 4 := { 1; } € R%,
8 = [aao...an €RY, (1) = [o(t—1),0(t—2),...,0(t —n)]' € R"*2,

The identification model in (8) can be transformed into the following two forms:

Si: y(t) = 6D, (t)+ ¢i(t)a+v(t), 9)
Si y(t) = Da(t)y+gl(Ha+o(t). (10)

The parameter matrices 0, « and + to be identified are included in these two new
models. Then, define two cost functions about the parameter matrices 6, « and +:

J(6,&) = — 0D, (1) — ¢pi(D)al?,

B(y) = Dy — ¢i(Dal?.

t
LIy
t
LIy

There are several difficulties in minimizing the two cost functions to obtain the param-
eter estimates. As the information matrix Dy(t) contains the unknown parameter matrix 6;,
the information vector D.,(t) contains the unknown parameter vector v;, the information
matrix ¢ (t) contains the unmeasurable noise term v(t — i). The problem is solved by
replacing the unknown parameter matrix 6; with its estimate ;(t), replacing the unknown
parameter vector 7; with its estimate 4,(t), replacing the unmeasurable v(t — i) with its
estimate 0 (f — i).

The estimate of ¢ (t), D, (t) and Dy(t) can be written as

¢s(t) = [o(t—1),0(t=2),...,0(t—n)]
2 (t) — D, (t)/)\/l (t - 1)
K Dy (t)42(t=1) |’

Then, the estimate 9() can be computed by

A ~

o(t) = y(t) — 8()D (1) — . (Ha(t).
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Then, we obtain the hierarchical least-squares (HLS) parameter estimation algorithm

for the TITO Hammerstein FIR-MA models as follows:

0'(t) = 0'(t—1)+Le(t)[y(t) —B(t —1)D,(t) — ( Ja(t—1), (11)
Lo(t) = Py(t—1)Dy(H)[1+ D (t)Py(t — 1)Dy (1) (12)
Py(t) = [I,—Le(t)D,()]Pg(t—1), Py(0) = Poln, (13)
&(t) = &(t—1)+La(t)[y(t) — 0(t)Dy (1) — Pg(t)& (t— b, (14)
Ly(t) = (f—l)fl’s( )i+ () Pa(t — 1) y(t)] ! (15)
Py(t) = [In— La(t)e(H)]Pult — ), Py (0) = poln, (16)
yt) = 4¢t-1)+ L'y(f)[?/ t) = Do(t)4(t—1) — ‘2’2( Ja(t—1)], (17)
Ly(t) = Pyt —1)Dy(t)[Is + Dy(t )Pw(t —1)D(H)] ! (18)
Py(t) = [Is—Ly(t )f) ()P (t — 1) P, (0) = POIs/ (19)
di(t) = [dialwi()], di[wi(B)],... dis[u;(1)]] RS, i=1,2, (20)
[ di[ui(t—1)] [ (f -] dis[u(t—1)]
Dt — dia {”i(.t —-2)]  diplu ( 2)] e dig [”i(.t —2)] ——
L dia[ui(t —n)] dialu;(t —n)] dis[ui(t —n)]
by = [ Do | @)
Dy(t) = [B1(t)D1(t), 02(t)Da(t)], (23)
p.(t) = [o(t—1),0(t—2),...,0(t—n)], (24)
o(t) = y(t) = 6(H)D, (1) — g, (Da(t), (25)
Bi(t) = [01i(t), 02i(t), ..., B (1)], (26)
Yi(t) = [Fi1(t), Fi2(t), -, Fis()], (27)
0(t) = [61(t),6:()], (28)
) = [H1(), ()] (29)

The steps of computing the parameter estimation matrices 8(t), &(t) and 4(t) by the

HLS algorithm in (11)—(29) are summarised as follows.

1.

Set the initial values: let t = 1, Pg(0) = pol,, Pa(0) = pol,, P,(0) = pols, 6(0
12521/ Po, 5&(0) = 1,/po, ’AY(O) = 1o5/po, po = 106,' u(t) =0and y( ) =0 fort
and set a small positive number e.

Collect the input and output data u(t) and y(t), and form D;(t) by (21), ¢, (t) by (24).
Compute D, (t), Lg(t) and Py(t) by (22), (12) and (13), and update the parameter
estimate 8(t) by (11).

Compute Dy(t), L,(t) and P, (t) by (23), (18) and (19), and update the parameter
estimate 4(t) by (17).

Compute L,(t) and P, (t) by (15) and (16), and update the parameter estimate &(t)
by (14).

Compute the noise term 9(t) using (25).

Compare 8(t) with (t — 1) and compare 4(t) with 4(t — 1): if |8(t) —8(t —1)|| < e
and ||4(t) — 4(t — 1)|| < ¢, terminate recursive calculation procedure and obtain 8(t),
a(t) and 4(t); otherwise, increase t by 1 and go to step 2.

) =
<0

The flowchart of computing the parameter estimates 0(t), &(t) and 4(t) in the HLS

algorithm is shown in Figure 2.
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C Start: initialize t=1 )

I

Collect u(t) and y(t), form D;(t) and ¢(t)

]

t:=t+1

Compute D (t), Ly(t), Pg(t) and update 8(t)

]

Compute Dy(t), L, (t), Py (t) and update 4(t)

!

Compute Ly (t), Py (t) and update &(t)

I

Compute the noise term 9(t)

—08(t—1)|| <eand
)= A=) <e

16(t)
19 (¢

Obtain the estimate 8(t), &(t) and 4 (t)

!

( )

Figure 2. The flowchart of the HLS algorithm.

4. The Convergence Analysis of the Hierarchical Least-Squares Algorithm

The convergence analysis of the proposed hierarchical identification principle-based
least-squares algorithm for the TITO Hammerstein system is illustrated as follows. As-
sume the estimated information vectors D (), Dy(t), and ¢, (t) are persistently exciting,
i.e., there exist constants M; > 0 and an integer N such that for t > N, the following strong
persistent excitation conditions hold:

(Al Mll Z < le a.s.,

(A2) Mzl < — Z Do(t)Dp(t) < Myl, as.,
] 0 (30)

(A3) MsI< % Y $.(0L(H) < Mql, as.
j=0

Theorem 1. For the the hierarchical least-squares algorithm in (11)—-(29), suppose that (A1)—(A3)
hold. Additionally, assume that the o algebra sequence Fy = o(v(t),v(t —1),0(t —2),...),
which is generated by v(t), and {v(t), F +} is a martingale difference sequence on a probability
space (Q, F, P) [24]. The sequence v(t) satisfies

(B1) [()|Ft 1] =0,a.
(B2) E[l[o()IPIF -1 t] =
(B3) limsup, .1 ; ) < 0? < ,a.

s.,
o (t) < ot < ©0,4.5.,
o2 (i (31)
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Then, the parameter estimation vector 0;(t), 4(t), and O(t) consistently converges to the true
parameter vector 6;, vy and 6.

5. The Filtering Based Recursive Least-Squares Algorithm

This section proposes the filtering-based recursive least-squares algorithm for the two-
input two-output system with MA noise by using the data filtering technique. The input-
output data are filtered through a rational polynomial a(z). Multiplying both sides of
Equation (8) by ﬁ yields

“(Z)y(t) _ ollll(it))'rwﬂzl;z’(g;)% +o(t). (32)

Define the filtered input and the filtered output as

yp(t) = (X(z)y(t)=y(t)+[1—tX(Z)]yf(t), (33)
D) = “(12)13,«@)=Di<t>+[1—a<z>]nf,i<t>. (34)

Then, Equation (32) can be rewritten as

ye(t) = 601Dg1(t)yy + 02D ()7, + (1) (35)

Substituted (33) into (35), we can have

y(t) = 01Dp1(t)yy +02Dpa(t) 1y + [a(z) — y,(t) +o(t). (36)
Define
D X218
Dgy(t) = { D?;Eigz; ] €R?, Dyy(t) :=[01Ds1(t),02Dpp(t)] € RPZ,
Pr(t) = [yp(t—1),yp(t=2),...,yp(t—n)] € R

Then, Equation (36) can be transformed into the following two forms:

Seit y(t)
Srat y(t)

0D, () + ¢(t)a+ (), (37)
Df,g(t)'y—i-tp}(t)‘x—l—v(t). (38)

The parameter matrices 0, « and v to be identified are included in these two new models.
Then, define two cost functions about the parameter matrices 6, « and +:

J3(6,0) =} [y(l) —6Dg,(I) = py(Dal?,

—
- Hl“‘w—
=

Ja(v) = Yly(l) = Dse(l)y — p}(1)al*.

N
I
—

There are several difficulties in minimizing the two cost functions to obtain the parameter
estimates. Since the information matrix Dy, (t) contains the unknown parameter matrix
6; and Dy (), the information vector D () contains the unknown parameter vector 7;
and Dy ;(t), the information matrix ¢ f(t) contains the unmeasurable noise term y f(t —1i).
The problem is solved by replacing the unknown parameter matrix 0; with its estimate
8;(t), replacing the unknown parameter vector -, with its estimate 4;(t), replacing the
unmeasurable D¢ ;(t) and y f(t — i) with their estimate D ri(t) and § f(t —1i).
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The estimate of Dy ;(t) can be computed by

2
Df,i(t) E t—l

Pp(t) = [9p(t=1),9,(t=2),.... 9t —n)]"
~ [ Dpa)a(t=1)
Pra® = | bt —1)

Dio(t) = [01()Dgq(t),02(t)Dyy(t)]

Then, we obtain the filtering-based hierarchical least-squares (F-HLS) parameter
estimation algorithm for the TITO Hammerstein FIR-MA models as follows:

A() = p(Dat—1)]", (39)

() 0' (t—=1)Dy,
Lo(t) = Po(t—1)Dy, ()1 + Dy, (H)Py(t —1)Dy, ()], (40)
Py(t) = [I,— Lg(t )ny(t)]P (t—1), Py(0) = poln (41)
&(t) = &(t—1)+La(H)[y(t) —8(1)Dy, (t) — P (Ha(t —1)], (42)
Lo(t) = Pu(t—1)gs(t)[In + ds(t)Pult — 1) (1)) " (43)
Py(t) = [In— er(ﬂ‘l’}(mpa(t —1), Pa(0) = poln (44)
() = =1+ Ly()[y(t) = Dpe()i(t —1) — g (ta(t —1)], (45)
Ly(t) = Py(t=1)Djg()[Is + Dpg(t)Py(t — 1)D}(H)] ", (46)
P,(t) = [Is— Lv(t)Df,G(t)]Pw(t —1), Py(0) = pols (47)
di(t) = |dia[wi(t)] dig[ui(t)], ..., dis[ui(£)] € RV, i=1,2, (48)
dig[ui(t =1)]  dip[ui(t —1)] dis[ui(t —1)]
D(H) — dig [”i(.t -2)]  dip [”i('t -2)] - di,s[“i('t -2)] o)
dia[ui(t —n)]  diplu;(t —n)] dis[ui(t —n)]

Dgi(t) = Di(t)— izxinl(t —1i), (50)
0 = | B e o
Dip(t) = [01(1)Ds1(t),02()Dsa(t)]. (52)
Pp(t) = [Jp(t=1),95(t=2),...,9;(t—n)]" (53)
gr(t) = y(t) - g(ha() (54)
0i(t) = [00(t),0(t),..., 8u(1)], (55)
Yit) = [T (), Yia (@), Fis (D] (56)
0(t) = [61(t),62(t)], (57)
@) = 1), 0] (58)
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The steps of computing the parameter estimation matrices 8(t), &(t) and 4(t) by the

F-HLS algorithm in (39)—(58) are summarised as follows.

1. Set the initial values: let t = 1, Pg(0) = poI,, Pu(0) = poln, P,(0) = pols, 8(0) =
Lox2n/po, &(0) = 14/ po, #(0) = 1as/po, §¢(t — i) = 14/ po, po = 10% u(t) = 0 and
y(t) = 0 for t < 0 and set a small positive number .

2. Collect the input and output data u(t) and y(t), form D;(t) by (49), g?)f(t) by (53),
and compute D ;(t) by (50).

3.  Compute D £(t), Lo(t) and Py(t) by (51), (40) and (41), and update the parameter

estimate 8(t) by (39).

4.  Compute D ro(t), Ly(t) and Py (t) by (52), (46) and (47), and update the parameter
estimate 4(t) by (45).

5. Compute L, (t) and P,(t) by (43) and (44), and update the parameter estimate &(t)
by (42).

6.  Compute the noise term 9(t) using (54).

7. Compare 8(t) with (t — 1) and compare 4(t) with 4(t — 1): if |0(t) —8(t —1)|| < e
and ||§(t) — 4(t — 1)|| < ¢, terminate recursive calculation procedure and obtain (t),
&(t) and 4(t); otherwise, increase ¢ by 1 and go to step 2.

6. Examples
Consider the following TITO Hammerstein FIR-MA system:

y(t) = 0@@)a(t) +a(z)v(b),

a(t) = i1 (t) —0.35u1 (t) — 0.40u3(t)
| m(t) 0.14uy(t) — 0.34u5(t) |’
_ [ n@®) _ | wu(®)
A BN e OB
a(z) = 1+1.00z71+0.11z72,
[ 0287 ., [ 0347
01(2) = | 006 }Z +[—o.27}7‘ /
o [1107 -y, [041] 2,
6202) = | 140 }Z + [ 0.54 ] /
[ —0.28 —0.34 1.10 0.41
b1 = | 0.06 } 012 = [ —0.27 } 021 = [ 1.40 ] 022 = { 0.54 }
[ —035 [ 014 [m] ,_[1ro0
T 040 P 2T —03a ) YTy YT o

In the simulation, the input #(t) was taken as an uncorrelated persistent excitation signal
vector sequence with zero mean and unit variance, v(f) was taken as a white noise sequence
with zero mean and variance 02 = 1.00? and we applied the HLS algorithm and the F-HLS
algorithm to identify this example system. The parameter estimates and the errors are

shown in Tables 1-4. The parameter estimation errors: J := 160)- Ol +11 (1)1 versus t
1012+ yII2

are shown in Figures 3 and 4.
From Tables 1-4 and Figures 3-8, we can draw the following conclusions.

¢ The estimation errors given by the HLS algorithm and the F-HLS algorithm become
generally smaller and smaller as f increases.

¢  Compared with the HLS algorithm, the F-HLS algorithm has higher parameter esti-
mation accuracy.

¢ The predictions of the residuals are close to the true residuals, and the estimated
outputs are close to the true outputs.
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Table 1. The HLS estimates and their errors with ¢? = 1.002.

t 100 200 500 1000 2000 3000 True Values
01,11 —0.50914 —-0.30750 —0.19701 —0.22835 —0.29013 —0.29596 —0.28000
01,12 0.97766 0.56617 0.51217 0.32163 0.14490 0.13167 0.06000
601,21 0.11384 0.21689 0.03764 —0.11184 —0.19503 —0.25967 —0.34000
01,22 —0.80709 —0.63473 —0.25479 —0.17204 —0.24346 —0.25086 —0.27000
0211 0.74403 0.81074 0.74457 0.81258 0.92845 0.91909 1.10000
602,12 0.44263 1.10990 0.95009 1.12074 1.14401 1.21750 1.40000
0221 —0.12767 0.00039 0.27178 0.21795 0.28146 0.33896 0.41000
02,22 0.28715 0.69936 0.51335 0.40011 0.43399 0.42026 0.54000
71,1 —0.52470 —0.44508 —0.39763 —0.37525 —0.37048 —0.39093 —0.35000
71,2 —0.20855 —0.21843 —0.24514 —0.25373 —0.27027 —0.27842 —0.40000
721 0.28346 0.34036 0.27891 0.26296 0.23975 0.23523 0.14000
72,2 —0.29712 —0.34020 —-0.32389 —0.33012 —0.33797 —0.34912 —0.34000

w1 0.14994 0.26180 0.45948 0.68975 0.90551 1.01653 1.00000
i) 0.50161 0.40490 0.23834 0.11798 0.06374 0.06636 0.11000
6 (%) 83.88885 57.71077  44.53619 30.11516 18.88155 15.33941
Table 2. The HLS estimates and their errors with o2 = 0.502.

t 100 200 500 1000 2000 3000 True Values
01,11 —0.44432 —0.40006 —0.38992 —0.31198 —0.26693 —0.26510 —0.28000
01,12 0.56573  —0.09028 0.00964 —0.06114 —0.06901 0.00239 0.06000
601,21 —0.12045 —0.04354 —0.31996 —0.30311 —0.33949 —0.33982 —0.34000
91,22 —0.22202 —0.11342 0.01576  —0.12291 —0.19827 —0.23634 —0.27000
0211 1.04323 1.00861 1.21022 1.08627 1.01177 1.03408 1.10000
62,12 0.80616 1.08325 1.03559 1.20325 1.32250 1.35832 1.40000
92,21 0.41692 0.42105 0.36272 0.43777 0.45083 0.41805 0.41000
02,22 1.13348 0.87373 0.73620 0.53233 0.49740 0.50385 0.54000
71,1 —0.37277 —0.35597 —0.40370 —0.38316 —0.40989 —0.42941 —0.35000
1,2 —0.41897 —0.38966 —0.42279 —0.39275 —0.41758 —0.43019 —0.40000
721 —0.05560 0.01713 0.03196 0.08860 0.11363 0.12266 0.14000
72,2 —0.40705 —0.38088 —0.38310 —0.35594 —0.35451 —0.36378 —0.34000

o 0.72392 0.83949 1.00022 1.05937 1.10617 1.14589 1.00000
) —0.20897 —0.13856 —0.02692 0.09362 0.15665 0.18479 0.11000
6 (%) 48.67846 29.82225 24.42703 12.72200 10.38521 9.39920
Table 3. The F-HLS estimates and their errors with o2 = 1.002.

t 100 200 500 1000 2000 3000 True Values
91/11 —0.46534 —047768 —0.40413 —0.32596 —0.27511 —0.27812 —0.28000
01,12 0.54645 0.51758 0.32302 0.22073 0.12924 0.10861 0.06000
601,21 0.34879 0.18063 —0.05504 —0.22830 —0.36081 —0.33090 —0.34000
01,22 —1.13416 —1.18888 —0.91111 —0.53083 —0.36501 —0.39249 —0.27000
0211 1.37312 1.07871 0.98702 1.02387 1.06733 1.06065 1.10000
62,12 1.20017 1.40717 1.39712 1.26345 1.32548 1.35968 1.40000
02,21 —0.50420 —0.17069 0.29524 0.40066 0.39513 0.47011 0.41000
02,22 0.46208 0.26937 0.49625 0.60009 0.72538 0.68512 0.54000
71,1 —0.28981 —0.29722 —0.34828 —0.35355 —0.38810 —0.38610 —0.35000
71,2 —0.46484 —045777 —0.42673 —0.41237 —0.41568 —0.42091 —0.40000
Y21 0.19233 0.17823 0.17974 0.14425 0.14231 0.12582 0.14000
72,2 —0.18200 —0.18516 —0.18579 —0.19230 —0.22195 —0.23310 —0.34000

q 0.47710 0.58835 0.74277 0.88623 0.97788 1.02303 1.00000
1% —0.17863 —0.14081 —0.14153 —0.08345 0.01088 0.05732 0.11000
6 (%) 73.00597 61.84658 37.76548 19.80014 12.36094 10.78310
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Table 4. The F-HLS estimates and their errors with ¢ = 0.502.

t 100 200 500 1000 2000 3000 True Values
6111 —0.37740 —0.41815 —0.37182 —0.31015 —0.25496 —0.26324 —0.28000
01,12 0.51706 0.52888 0.34646 0.24585 0.14247 0.12024 0.06000
61,21 0.21828 0.05468 —0.08284 —0.18580 —0.31081 —0.27801 —0.34000
610 —0.88659 —0.96682 —0.73059 —0.42252 —0.26874 —0.30345 —0.27000
02,11 1.50800 1.15388 1.02343 1.05184 1.08214 1.07516 1.10000
62,12 1.27160 1.47267 1.42432 1.25340 1.32645 1.36304 1.40000
6hp1  —047274 —0.14330 0.25538 0.31426 0.32086 0.38596 0.41000
62,20 0.34738 0.16458 0.40585 0.52964 0.61534 0.57783 0.54000
Y1 —0.34054 —0.33682 —0.37719 —0.37203 —0.40047 —0.39525 —0.35000
71,2 —0.45282 —0.44870 —0.41742 —0.40349 —0.40820 —0.41487 —0.40000
Y21 0.21347 0.20244 0.21104 0.17728 0.17622 0.15573 0.14000
Y22 —0.22228 —0.22713 —0.22743 —0.22955 —0.26159 —0.27247 —0.34000

aq 0.52496 0.64401 0.80149 0.91977 1.00864 1.05000 1.00000

o —0.13503 —0.10317 —0.11367 —0.03595 0.05006 0.09420 0.11000

6 (%) 6449938 5352304 31.39408  17.18469 8.81068 6.52457
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Figure 3. The HLS estimation errors J versus t with ¢ = 0.50% and ¢ = 1.00%.
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Figure 4. The F-HLS estimation errors ¢ versus f with 02 = 0502 and 02 = 1.002.
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Figure 5. The F-HLS residual v; (t) (black line)/ 9; (t) (blue line) versus t unders ¢ = 1.00.

vz(t) estimated v 2(1‘)
o
—
/ —
——
\‘
=
—
*—
‘/
—
—
—
—
1

5 1 1 1 1 1
500 1000 1500 2000 2500 3000
t

Figure 6. The F-HLS residual v, (t) (black line)/ 9, (t) (blue line) versus t unders ¢ = 1.002.
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Figure 7. The F-HLS residual y; (t) (black line)/ #1(t) (blue line) versus t unders ¢ = 1.002.
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Figure 8. The F-HLS residual y, () (black line)/ 9 (t) (blue line) versus t unders ¢ = 1.002.

7. Conclusions

We derived a hierarchical least-squares algorithm and a filtering-based hierarchical
least-squares algorithm for the two-input two-output Hammerstein finite impulse response
moving average systems based on the hierarchical identification principle and the data
filtering theory. The proposed F-HLS algorithm can effectively identify the parameters of
the TITO Hammerstein FIR-MA systems and has a higher parameter estimation accuracy
compared with the HLS algorithm. The proposed model parameter estimation methods in
the paper can combine some mathematical strategiesand other estimation algorithms to
study the parameter identification problems of linear and nonlinear systems with different
disturbances, and can be applied to other fields, such as signal processing and engineering
application systems.

Author Contributions: Conceptualization, methodology and software, Y.J. and J.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Shandong Province
(ZR2020MF160 and SDYKC20090).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
article.

Acknowledgments: This work was supported by the Natural Science Foundation of Shandong
Province (ZR2020MF160 and SDYKC20090).

Conflicts of Interest: The authors declare no conflict of interest.

1. Pillonetto, G.; Chiuso, A.; Nicolao, G. Stable spline identification of linear systems under missing data. Automatica 2019, 108,

108493. [CrossRef]

2. Li, HY,; Zhang, K. Accurate and fast parameter identification of conditionally Gaussian Markov jump linear system with input
control. Automatica 2022, 137, 109928. [CrossRef]

3. Ding, E; Zhang, X.; Xu, L. The innovation algorithms for multivariable state-space models. Int. . Adapt. Control Signal Process.
2019, 33, 1601-1608. [CrossRef]
4. Li, X.D.; Li, P. Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 2021, 124, 109336.

[CrossRef]

5. Peng, HX.; He, W].,; Zhang, Y.L,; Li, X.; Ding, Y.; Menon, V.G.; Verma, S. Covert non-orthogonal multiple access communication
assisted by multi-antenna jamming Author links open overlay. Phys. Commun. 2022, 52,101598. [CrossRef]
6. Ding, F; Liu, G,; Liu, X.P. Parameter estimation with scarce measurements. Automatica 2011, 47, 1646-1655. [CrossRef]


http://doi.org/10.1016/j.automatica.2019.108493
http://dx.doi.org/10.1016/j.automatica.2021.109928
http://dx.doi.org/10.1002/acs.3053
http://dx.doi.org/10.1016/j.automatica.2020.109336
http://dx.doi.org/10.1016/j.phycom.2022.101598
http://dx.doi.org/10.1016/j.automatica.2011.05.007

Mathematics 2022, 10, 438 15 of 16

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Shu, J.; He, J.C.; Li, L. MSIS: Multispectral instance segmentation method for power equipment. Comput. Intell. Neurosci. 2022,
2022,2864717. [CrossRef] [PubMed]

You, J.Y,; Liu, Y.J. Iterative identification for multivariable systems with time-delays based on basis pursuit de-noising and auxiliary
model. Algorithms 2018, 11, 180. [CrossRef]

Wang, Y.].; Ding, F. Novel data filtering based parameter identification for multiple-input multipleoutput systems using the
auxiliary model. Automatica 2016, 71, 308-313. [CrossRef]

Lenka, B.K. Fractional comparison method and asymptotic stability results for multivariable fractional order systems. Commun.
Nonlinear Sci. Numer. Simul. 2019, 69, 398-415. [CrossRef]

Liu, Q.Y;; Ding, E; Yang, E.F. Parameter estimation algorithm for multivariable controlled autoregressive autoregressive moving
average systems. Digit. Signal Process. 2018, 83, 323-331. [CrossRef]

Pan, J.; Ma, H,; Liu, Q.Y. Recursive coupled projection algorithms for multivariable output-error-like systems with coloured noises.
IET Signal Process 2020, 14, 455-466. [CrossRef]

Xu, L.; Zhu, Q.M. Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse
responses. Int. J. Syst. Sci. 2021, 52, 1806-1821. [CrossRef]

Ding, F; Chen, T. Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom.
Control 2005, 50, 1436-1441. [CrossRef]

Zhang, X.; Yang, E.F. State estimation for bilinear systems through minimizing the covariance matrix of the state estimation errors.
Int. ]. Adapt. Control. Signal Process. 2019, 33, 1157-1173. [CrossRef]

Zhang, X. Hierarchical parameter and state estimation for bilinear systems. Int. J. Syst. Sci. 2020, 51, 275-290. [CrossRef]

Ding, F; Lv, L,; Pan, J.; Wan, X,; Jin, X.B. Two-stage gradient-based iterative estimation methods for controlled autoregressive
systems using the measurement data. Int. |. Control Autom. Syst. 2020, 18, 886-896. [CrossRef]

Xu, L.; Chen, FY.; Hayat, T. Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data.
Int. J. Adapt. Control Signal Process. 2021, 35, 676-693. [CrossRef]

Katahira, K. How hierarchical models improve point estimates of model parameters at the individual level. ]. Math. Psychol. 2016,
73, 37-58. [CrossRef]

Atitallah, A.; Bedoui, S.; Abderrahim, K. Multistage for identification of Wiener time delay systems based on hierarchical gradient
approach. Math. Comput. Model. Dyn. Syst. 2017, 23, 222-239. [CrossRef]

Wang, Y.J.; Wu, M.H. Recursive parameter estimation algorithm for multivariate output-error systems. J. Frankl. Inst. 2018, 355,
5163-5181. [CrossRef]

Ding, F; Wang, Y.J. The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 2016, 10, 894-902.
Ji, Y; Jiang, X.K.; Wan, L.]. Hierarchical least squares parameter estimation algorithm for two-input Hammerstein finite impulse
response systems. J. Frankl. Inst. 2020, 357, 5019-5032. [CrossRef]

Wang, D.Q.; Mao, L.; Ding, F. Recasted models-based hierarchical extended stochastic gradient method for MIMO nonlinear
systems. IET Control Theory Appl. 2017, 11, 476-485. [CrossRef]

Li, X.D.; Li, P. Input-to-state stability of nonlinear systems: Event-triggered impulsive control. IEEE Trans. Autom. Control 2021.
[CrossRef]

Li, P; Li, X.D.; Lu, J.Q. Input-to-state stability of impulsive delay systems with multiple impulses. IEEE Trans. Autom. Control 2021,
66, 362-368. [CrossRef]

Chen, EY,; Xu, L.; Hayat, T. Data filtering based maximum likelihood extended gradient method for multivariable systems with
autoregressive moving average noise. J. Frankl. Inst. 2018, 355, 3381-3398. [CrossRef]

Mao, Y.W.; Ding, F. Parameter estimation for nonlinear systems by using the data filtering and the multi-innovation identification
theory. Int. . Comput. Math. 2016, 93, 1869-1885. [CrossRef]

Li, M.H,; Liu, X.M. The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive
noise using the data filtering technique. Signal Process. 2018, 147, 23-34. [CrossRef]

Zhao, Z.Y.; Zhou, Y.Q.; Wang, X.Y.; Wang, Z.; Bai, Y. Water quality evolution mechanism modeling and health risk assessment
based on stochastic hybrid dynamic systems. Expert Syst. Appl. 2022, 193, 116404. [CrossRef]

Li, WL, Jia, YM.; Du, ]J.P. Event-triggered Kalman consensus filter over sensor networks. IET Control Theory Appl. 2015, 10,
103-110. [CrossRef]

Kruzick, S.; Moura, ]. M.F. Optimal filter design for signal processing on random graphs: Accelerated consensus. IEEE Trans. Signal
Process. 2018, 66, 1258-1272. [CrossRef]

Pan, X.; Zhao, J.; Xu, J. An object-based and heterogeneous segment filter convolutional neural network for high-resolution remote
sensing image classification. Int. |. Remote Sens. 2019, 40, 5892-5916. [CrossRef]

Zhou, Y.H.; Zhang, X. Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data
length. IEEE Trans. Circuits Syst. Express Briefs 2021, 68, 3597-3601. [CrossRef]

Ding, F; Chen, T. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 2004, 40,
1739-1748. [CrossRef]

Ding, F; Shi, Y.; Chen, Y.T. Auxiliary model-based least-squares identification methods for Hammerstein output-error systems.
Syst. Control Lett. 2007, 56, 373-380. [CrossRef]


http://dx.doi.org/10.1155/2022/2864717
http://www.ncbi.nlm.nih.gov/pubmed/35027923
http://dx.doi.org/10.3390/a11110180
http://dx.doi.org/10.1016/j.automatica.2016.05.024
http://dx.doi.org/10.1016/j.cnsns.2018.09.016
http://dx.doi.org/10.1016/j.dsp.2018.09.010
http://dx.doi.org/10.1049/iet-spr.2019.0481
http://dx.doi.org/10.1080/00207721.2020.1871107
http://dx.doi.org/10.1109/TAC.2005.854654
http://dx.doi.org/10.1002/acs.3027
http://dx.doi.org/10.1080/00207721.2019.1704093
http://dx.doi.org/10.1007/s12555-019-0140-3
http://dx.doi.org/10.1002/acs.3221
http://dx.doi.org/10.1016/j.jmp.2016.03.007
http://dx.doi.org/10.1080/13873954.2016.1242143
http://dx.doi.org/10.1016/j.jfranklin.2018.04.013
http://dx.doi.org/10.1016/j.jfranklin.2020.03.027
http://dx.doi.org/10.1049/iet-cta.2016.0017
http://dx.doi.org/10.1109/TAC.2021.3063227
http://dx.doi.org/10.1109/TAC.2020.2982156
http://dx.doi.org/10.1016/j.jfranklin.2018.02.025
http://dx.doi.org/10.1080/00207160.2015.1077949
http://dx.doi.org/10.1016/j.sigpro.2018.01.012
http://dx.doi.org/10.1016/j.eswa.2021.116404
http://dx.doi.org/10.1049/iet-cta.2015.0508
http://dx.doi.org/10.1109/TSP.2017.2784359
http://dx.doi.org/10.1080/01431161.2019.1584687
http://dx.doi.org/10.1109/TCSII.2021.3076112
http://dx.doi.org/10.1016/j.automatica.2004.05.001
http://dx.doi.org/10.1016/j.sysconle.2006.10.026

Mathematics 2022, 10, 438 16 of 16

37. Zhou, Y.H. Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE
Signal Process. Lett. 2020, 27, 1600-1604. [CrossRef]

38. Liu, Y.J.; Shi, Y. An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 2014, 50,
962-970. [CrossRef]

39. Zhang, X. Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 2022, 29, 399-403.
[CrossRef]


http://dx.doi.org/10.1109/LSP.2020.3021925
http://dx.doi.org/10.1016/j.automatica.2013.12.025
http://dx.doi.org/10.1109/LSP.2021.3136504

	Introduction
	System Description and Identification Model
	The Hierarchical Least-Squares Algorithm
	The Convergence Analysis of the Hierarchical Least-Squares Algorithm
	The Filtering Based Recursive Least-Squares Algorithm
	Examples
	Conclusions
	References

