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Abstract: The loss function plays an important role in Bayesian analysis and decision theory. In
this paper, a new Bayesian approach is introduced for parameter estimation under the asymmetric
linear-exponential (LINEX) loss function. In order to provide a robust estimation and avoid making
subjective choices, the proposed method assumes that the parameter of the LINEX loss function
has a probability distribution. The Bayesian estimator is then obtained by taking the expectation
of the common LINEX-based Bayesian estimator over the probability distribution. This alternative
proposed method is applied to estimate the exponential parameter by considering three different
distributions of the LINEX parameter, and the associated Bayes risks are also obtained in consequence.
Extensive simulation studies are conducted in order to compare the performance of the proposed
new estimators. In addition, three real data sets are analyzed to investigate the applicability of
the proposed results. The results of the simulation and real data analysis show that the proposed
estimation works satisfactorily and performs better than the conventional standard Bayesian approach
in terms of minimum mean square error and Bayes risk.

Keywords: Bayesian estimation; LINEX loss function; expected LINEX; exponential distribution;
Bayesian risk

1. Introduction

In Bayesian analysis and decision theory, the loss function plays an important role as it
can be used to describe the overestimation and underestimation in analysis. Conventionally
used loss functions include symmetric loss and asymmetric loss. In the symmetric loss
function, the estimation treats overestimation and underestimation equally, whereas the
asymmetric loss function gives different weights to overestimation and underestimation.
Compared with the symmetric loss, the asymmetric loss is more realistic and useful in
practical applications. For example, in reliability and survival analysis, overestimation of
the reliability function or average failure time is usually much more serious than underesti-
mation of the reliability function or mean failure time. Similarly, an underestimate of the
failure rate results in more serious consequences than an overestimate of the failure rate.
Moreover, many other authors, including Zellner [1], Chang and Huang [2] and Khatun and
Matin [3], also pointed out that commonly used symmetric loss functions such as squared
error (SE) loss may be inappropriate in practical applications. In consequence, asymmetric
loss functions are widely applied in statistical inference; see, for example, Ali [4,5]. One
of the most useful asymmetric loss functions is called LINEX loss, first introduced by
Klebanov [6] and used by Varian [7] in his study of real estate assessment. The LINEX loss
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function rises approximately exponentially on one side of zero and approximately linearly
on the other side.

Let θ be the unknown parameter to be estimated and θ̃ be an estimate of θ; in this case,
the LINEX loss function can be written as

L(θ̃, θ) = eϕ(θ̃−θ) − ϕ(θ̃ − θ)− 1, ϕ 6= 0. (1)

From (1), the sign and magnitude of the shape parameter ϕ represent the direction and
degree of symmetry of LINEX loss. Several comments are necessary regarding (1). First,
for ϕ > 0, overestimation is more serious than underestimation, and vice versa. When
ϕ is close to zero, the LINEX loss is approximately the squared error loss and therefore
almost symmetric. For clarity of illustration, various plots of the LINEX loss function L(∆)
with ∆ = θ̃ − θ are presented in Figure 1 under different choices of parameter ϕ. The
plots also demonstrate that positive, negative and small values of ϕ give more weight for
overestimating, underestimating and almost equal estimation, respectively. It is observed
from Figure 1a that, for positive values of ϕ, the function is completely asymmetric, with
overestimation being more harmful than underestimation. For negative values of ϕ, as
in Figure 1b, the function grows approximately exponentially when ∆ < 0 and almost
linearly when ∆ > 0. Moreover, when ϕ tends towards zero, as in Figure 1c, the function is
approximately symmetric as the squared error loss function.

Let g(θ|data) be the posterior distribution of the parameter θ; then, the Bayesian
estimator of θ using the LINEX loss function, denoted by θ̃BL, is given by

θ̃BL = − 1
ϕ

{
log
[

Eθ

(
e−ϕθ

)]}
, ϕ 6= 0, (2)

where Eθ [·] is the expectation with respect to g(θ|data).
Due to the practicality of the asymmetric LINEX loss in many applications, includ-

ing reliability, economic and social studies, among others, many authors have studied
the Bayesian inference and decision analysis problems using the LINEX loss function.
Dey et al. [8] explored the robustness properties of classes of LINEX losses under expo-
nential and discrete power series families of distributions. Soliman [9] compared the
Bayesian estimators of the parameters and reliability characteristics for Rayleigh distribu-
tion using quadratic and LINEX loss functions. Misra and Meulen [10] investigated the
estimation of the mean of two normal populations with unknown means and common
known variance using the LINEX loss function. Micheas [11] investigated robustness to
loss functions employing the LINEX loss function and applied the methods to standard
examples. Hoque et al. [12] analyzed the performance of the unrestricted estimator and
preliminary test estimator of the linear regression model based on the LINEX loss func-
tion. Kazmi et al. [13] studied the properties of Bayesian estimators of the parameter of a
class of lifetime distributions, employing various loss functions, including the LINEX loss,
through simulation and real data. Theoretical results were obtained for various lifetime
distributions under different data types by many authors; see, for example, the works of
Pandey et al. [14], Jaheen [15], Azimi et al. [16], Ahmed [17,18], Ashour and Nassar [19],
Nassar et al. [20], Kotb and Raqab [21], Chen and Gui [22] and Nassar et al. [23], among
others. From practical perspectives, due to its flexibility of measuring the overestimation
and underestimation and its more appropriate data fitting feature in data analysis, the
LINEX loss is also widely used in many practical discussions. For instance, in order to
estimate the mean of the selected normal population from two normal populations with
unknown means and common known variance, Misra and Meulen [10] proposed some
admissibility results for a subclass of equivalent estimators, and a sufficient condition for
the inadmissibility of an arbitrary equivalent estimator was also provided. In the classical
Taguchi quality model, Chang and Hung [2] used the LINEX loss to measure the loss of
quality to determine optimum process parameters for the product quality. By inheriting
the asymmetric merit of LINEX loss, Tang et al. [24] proposed a general multi-view LINEX
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SVM framework to improve the performance of multi-view learning. Estimation of the
costs of non-conforming products is one of the most important inputs in the economic
design of control charts. Abolmohammadi et al. [25] proposed an extending control chart
by considering the LINEX loss on the basis of the Markov chain approach, and the results
showed that the practical VSIX control chart based on the LINEX loss was more efficient
in terms of the expected cost per hour. However, it should be mentioned here that, after
extensive documentation retrieval, the statistical inferential results were obtained under
LINEX loss with fixed parameter ϕ, where a random chosen positive or negative ϕ was
taken for indicating overestimation and underestimation, respectively, but there was no
discussion on how to choose a proper value for the LINEX parameter ϕ.
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Figure 1. Plots of LINEX loss function for: (a) positive values of ϕ, (b) negative values of ϕ and
(c) small values of ϕ.

In the practical Bayesian inferential approach, with respect to LINEX loss and even
other asymmetric losses, it is an inevitable challenge issue to choose the values of the LINEX
parameter in practice. To balance the overestimation and underestimation for practical
data analysis and to give relatively explicit weights between over- and underestimation,
the value(s) of the LINEX parameter ϕ are usually determined through historical infor-
mation, expert experience, as well as some other strategies. Obviously, inference using
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a fixed parametrization has limitations and the randomly given value of the parameter
ϕ merely provides overestimation or underestimation in general and cannot provide a
proper balance between overestimation and underestimation in practice. To overcome this
drawback, it is more reasonable to take the idea that there are many values of the parameter
ϕ in a given issue, and these potential values feature different weights. Therefore, it is
assumed that the LINEX parameter ϕ is a random variable. In Bayesian inference, the main
advantage of such an assumption is that, if the number of choices for the parameter ϕ is
sufficient, the subjective prefixed value of parameter ϕ can be viewed as a good choice
in analysis. However, within the extensive literature research and empirical illustrations,
such an arbitrary subjective approach may lead to poor inferential results if there is not
enough information available. The value of the parameter ϕ is given randomly in many
practical studies, and the final “proper value” may be determined by empirical comparison
and cross-validation approaches. Therefore, compared with the conventional subjective
procedure, it is necessary and important to adopt an alternative method for the determi-
nation of the parameter ϕ, where relatively objective value(s) of ϕ will provide a more
effective balance between overestimation and underestimation in Bayesian inference. It
should be mentioned here that, from the perspective of physical application, for complex
macroscopical or microcosmic systems, the system has multiple normal states in its operat-
ing cycle, and the observed condition is the superposition across different detailed state
combinations. Therefore, the presented approach may have potential benefits in studies of
statistical physics.

Motivated by such reasons, the main aim of this paper is to introduce an alternative
Bayesian analysis for parameter estimation with respect to the LINEX loss function. To
overcome the subjective method for the choice of the parameter ϕ, it is assumed that the
parameter ϕ is denoted by a random variable with a proper probability distribution. By
taking the expectation of the Bayesian estimator using the usual LINEX loss function over
the distribution of ϕ, the proposed Bayesian estimator can be obtained in consequence.
The new Bayesian estimator is called the Bayesian estimator using the expected LINEX
loss function. When the lifetime data come from an exponential distribution, Bayesian
estimation using the expected LINEX loss is discussed and empirical illustrations are
carried out to show the associated effect in the estimator(s) behavior compared with some
arbitrary considered value(s) of the parameter ϕ.

The concept of the loss (or cost) function is employed in different optimization pro-
cedures in statistical theory and the decision-making process to scheme an event in a real
number and the associated loss or cost. An optimization problem always aims to minimize
a loss function. As shown by the empirical results in Sections 4 and 5, the expected LINEX
loss function provides Bayesian estimators with minimum loss as measured through the
Bayes risks. Therefore, we can conclude that the Bayesian estimators obtained based on
the suggested technique are good estimators and can be used effectively in various fields,
including reliability analysis, estimation processes, financial investment, forecasting and
decision-making processes.

The rest of this paper is organized as follows. The expected LINEX and model
description are discussed in Section 2. In Section 3, we obtain the Bayesian estimator of
the exponential distribution using the expected LINEX loss function as well as the Bayes
risk. Extensive simulation studies are presented in Section 4. Section 5 demonstrates the
usefulness of the new estimators by analyzing three real data sets. Finally, the paper is
concluded in Section 6.
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2. Expected LINEX and Model Description

Let π(ϕ) be the probability density function (PDF) of ϕ with range (−∞, ∞); then,
from (2), one can obtain the Bayesian estimator of the unknown parameter θ using the
expected LINEX loss function as follows:

θ̃BEL =
∫ ∞

−∞
θ̃BL(ϕ)π(ϕ) dϕ, (3)

where θ̃BL(ϕ) ≡ θ̃BL is the Bayesian estimator of the unknown parameter θ given by (2).
One can choose a proper probability model π(ϕ) to reflect being symmetric, positive or
negatively skewed, which will, in turn, give proper weights to balance overestimation
and underestimation. It is noted that, compared with the conventional prefixed choice
of the parameter ϕ, the Bayesian estimation (3) under expected LINEX loss takes all
possible values of the parameter ϕ into account, and gives different probabilistic weights
to each value. Then, the overall balance between overestimation and underestimation is
characterized by the weighted sum in the full range (−∞, ∞) of the parameter ϕ, which
may be more objective and robust than the conventional approach in Bayesian analysis.

Let X be a random variable following the exponential distribution with parameter β
with the PDF

f (x; β) = βe−βx, x > 0, β > 0, (4)

where β is the scale parameter. Suppose that X1, X2, . . . , Xn is a random sample of size
n from the exponential distribution (4), and x1, x2, . . . , xn is the associated observation of
X1, X2, . . . , Xn. Then, the likelihood function of β can be written as

L(β|data) = βne−β ∑n
i=1 xi . (5)

By direct computation, it is known that the maximum likelihood estimator (MLE) of
the parameter β is

β̂ =
n

∑n
i=1 xi

. (6)

To obtain the Bayesian estimator of the parameter β, we need to determine the prior
distribution, say g(β), of β. In this paper, a conjugate prior distribution of β is used as the
gamma distribution with density function

π(β) ∝ βa−1e−bβ, β > 0. (7)

It is seen that the prior distribution in (7) is a natural conjugate prior because it
generates a posterior distribution that relates to the same family. Furthermore, the posterior
distribution generated from the natural conjugate prior can be easily mathematically
manipulated. The researcher can select the values of the hyper-parameters a and b to
accommodate the prior knowledge. Moreover, the Jeffreys prior can be derived as a special
case of (7) by replacing a = b = 0; for more details, see Kundu and Howlader [26]. Then,
the posterior distribution of β is given by

g(β|data) ∝ βn+a−1e−β(b+∑n
i=1 xi). (8)

Under the symmetric squared error (SE) loss function, the Bayesian estimator of β is
the posterior mean, i.e.,

β̃BS =
n + a

b + ∑n
i=1 xi

. (9)
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Similarly, the Bayesian estimator of β using the LINEX loss function can be written
from (2) as

β̃BL =
n + a

ϕ
log
(

1 +
ϕ

b + ∑n
i=1 xi

)
. (10)

Further, to obtain the Bayesian estimator of β using the expected LINEX loss function,
we propose the following three probabilistic distributions for the parameter ϕ ∈ (−∞, ∞) as

π1(ϕ) =
ce−ϕ

(1 + e−ϕ)c+1 , c > 0,

π2(ϕ) =
1√
2π

e−
(ϕ−µ)2

2 ,−∞ < µ < ∞,

π3(ϕ) = exp
(
−e−(ϕ−d) − ϕ + d

)
,−∞ < d < ∞.

(11)

From (11), it is noted that π1(ϕ) is the generalized logistic type-I (this type has also
been called the “skew-logistic”) distribution with shape parameter c, π2(ϕ) is the normal
distribution with scale parameter 1 and location parameter µ, and π3(ϕ) is the standard
Gumbel or extreme value distribution with location parameter d. It is seen that, in differ-
ent distributions π1(ϕ), π2(ϕ) and π3(ϕ), the parameter ϕ features different probability
weights at different values in full range (−∞, ∞), and that overestimation and underesti-
mation could be well modeled by choosing constants c, µ and d properly. For illustration,
the cumulative probability weight for the parameter ϕ is calculated and the associated
plots are presented in Figure 2 with a change in parameters c, µ and d, respectively. One
could see that when parameters c > 1 µ > 0 and d > −0.36651, the weights of overestima-
tion are more serious than underestimation using distributions π1(ϕ), π2(ϕ) and π3(ϕ),
respectively. The distributions in (11) will be used to obtain the Bayesian estimator of the
parameter β using the expected LINEX loss function in the next section.

Remark 1. It should be mentioned here that the choice of the distribution for the parameter ϕ is
a tricky issue in practice. The main principle is that the model of ϕ should be a distribution with
full range (−∞, ∞). On this basis, due to historical information and expert experience, among
others, if there are sufficient extra data used regarding ϕ, one could use a goodness-of-fit technique
to find a proper model from among different candidates, whereas, if there is scarce information
about ϕ’s distributional characteristics, one could use a skewed distribution with concise expression
from an ease of computation perspective. Further, one could also refer to the maximum likelihood
and moment methods to give proper estimates for parameters c, µ and d, respectively, by using the
information of ϕ in consequence.

Remark 2. A proper probability model π(φ) provides weights to balance between overestimation
and underestimation compared with fixed φ. In general, when the random model π(φ) is available,
the optimal Bayesian estimator of θ from a decision-making perspective can be obtained as follows:

θ̃ = min
δ

{
EθEφL(θ, δ)

}
,

where L(·, ·) is the loss function, δ is the estimator of parameter θ, Eθ(·) denotes the expectation
with the posterior distribution of θ, and Eφ denotes the expectation with the random model of φ.
Under this approach, it is clear that the proposed expected Bayesian estimator can be viewed as the
mixture of conventional Bayesian estimation under the weight π(φ) at each value of φ, and that the
estimator refers to (3) under the expected LINEX loss from the decision-making procedure.
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Figure 2. Plots of cumulative probability for π1(ϕ), π2(ϕ) and π3(ϕ).

3. Bayesian Estimation Using Expected LINEX

In this section, the alternative Bayesian estimators of the exponential parameter β are
proposed under the expected LINEX approach with the different probability distributions
in (11), respectively. In addition, in order to investigate the behavior of the different
estimators, the Bayesian risks are also presented in this section.

3.1. Bayesian Estimation Using Expected LINEX

Using the following series (e.g., formula 1.511 of Gradshteyn and Ryzhik [27]),

log(1 + z) =
∞

∑
j=1

(−1)j+1zj

j
, |z| < 1,

the β̃BL in (10) with respect to the LINEX loss function can be rewritten as

β̃BL = (n + a)
∞

∑
j=1

vj ϕ
j−1 with vj =

(−1)j+1

j(b + ∑n
i=1 xi)

j . (12)

From (3), (11) and (12), the Bayesian estimator β̃BEL
1 of the parameter β using the

expected LINEX loss with respect to π1(ϕ) can be obtained as follows:

β̃BEL
1 = (n + a)

∞

∑
j=1

vj

∫ ∞

−∞
ϕj−1 ce−ϕ

(1 + e−ϕ)c+1 dϕ. (13)
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We use the generalized Hurwitz–Lerch Zeta function introduced by Goyal and Lad-
dha [28], defined by

ψ∗M(u, v, r) =
1

Γ(v)

∫ ∞

0
tv−1 e−rt

(1− ue−t)M dt

=
∞

∑
k=0

(M)kuk

(r + k)vk!
, (14)

where M ∈ C, r ∈ C \ Z−0 , |u| < 1, R{v − M} > 1 and (M)k = Γ(M+k)
Γ(M)

denotes the
Pochhammer symbol, with the convention (M)0 = 1; see Srivastava et al. [29]. Hence, the
Bayes estimator β̃BEL

1 takes the form

β̃BEL
1 = c(n + a)

∞

∑
j=1

vjΓ(j)

{
ψ∗c+1(−1, j, 1) + (−1)j−1ψ∗c+1(−1, j, c)

}
, j > c. (15)

Following the same approach, the Bayesian estimator β̃BEL
2 of the parameter β using

the expected LINEX loss with respect to π2(ϕ) is given by

β̃BEL
2 = (n + a)

∞

∑
j=1

vj

∫ ∞

−∞
ϕj−1 1√

2π
e−

(ϕ−µ)2
2 dϕ

=
(n + a)e−

µ2
2

√
2π

∞

∑
j=1

vj

∫ ∞

−∞
ϕj−1e−

ϕ2
2 +µϕ dϕ (16)

= (n + a)e−
3
4 µ2

∞

∑
j=1

vje
π
2 (j−1)Dj−1(µ),

where, Du(y) is the parabolic cylinder function (see Gradshteyn and Ryzhik [27], formula
9.24(0,1), page 1028).

Further, the Bayesian estimator β̃BEL
3 of the parameter β using π3(ϕ) under the ex-

pected LINEX loss can be expressed as

β̃BEL
3 = (n + a)

∞

∑
j=1

vj

∫ ∞

−∞
ϕj−1 exp

(
−e−(ϕ−d) − ϕ + d

)
dϕ

= (n + a)
∞

∑
j=1

vj

∫ ∞

0
(d− log(y))j−1e−ydy, (with y = e−ϕ+d). (17)

Using the binomial expansion for (u + v)m = ∑m
n=0 (

m
n)u

m−nvn in the last integral (17),
one further has

β̃BEL
3 = (n + a)

∞

∑
j=1

j−1

∑
m=0

(−1)m
(

j− 1
m

)
vjdj−m−1

∫ ∞

0
(log(y))me−ydy, (18)

Using the result by Nadarajah [30],

I(m, ω) =
∫ ∞

0
[log(y)]me−y(ω+1)dy

=

(
∂

∂s

)m[
(ω + 1)−sΓ(s)

]
|s=1 . (19)
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Then, by combining (18) and (19), the estimator β̃BEL
3 reduces to

β̃BEL
3 = (n + a)

∞

∑
j=1

j−1

∑
m=0

(−1)m
(

j− 1
m

)
vjdj−m−1

(
∂

∂s

)m
Γ(s) |s=1 . (20)

Clearly, the Monte Carlo integration technique can be used to approximate the
Bayesian estimators (15), (16) and (20) of the parameter β under the expected LINEX
loss with respect to the different probability distributions in (11). In this case, we can obtain
β̃BEL

k , k = 1, 2, 3 based on β̃BL in (10) as follows:

β̃BEL
k ≈ n + a

N

N

∑
t=1

y−1
kt log

(
1 +

ykt
b + ∑n

i=1 xi

)
, k = 1, 2, 3,

where yk1, . . . , ykN are the generated random numbers from πk(ϕ), k = 1, 2, 3, respectively.

3.2. Bayes Risks

In order to compare the behavior of different Bayesian estimators using the expected
LINEX loss function, the Bayes risks are also provided in this section. We denote by β̃
the estimator of β, and then the associated Bayes risk of β̃ is defined as Eβ[L(β̃, β)], where
L(β̃, β) is any loss function and the expectation is taken over the posterior distribution of β.
Therefore, the Bayes risk using the LINEX loss function can be obtained from (1) and (8) as

BRL =
∫ ∞

0

[
eϕ(β̃BL−β) − ϕ(β̃BL − β)− 1

]
βn+a−1e−β(b+∑n

i=1 xi)dβ

= ϕ

[
n + a

b + ∑n
i=1 xi

− n + a
ϕ

log
(

1 +
ϕ

b + ∑n
i=1 xi

)]
. (21)

Correspondingly, the Bayes risk using the expected LINEX loss function can be defined
as follows:

BREL =
∫ ∞

−∞
BRL(ϕ)π(ϕ)dϕ, (22)

where BRL(ϕ) ≡ BRL. Therefore, from (11) and (22), the Bayes risk of β̃BEL
1 using the

expected LINEX loss function with respect to π1(ϕ) can be expressed as

BREL
1 =

∫ ∞

−∞
ϕ

{
n + a

b + ∑n
i=1 xi

− n + a
ϕ

log
(

1 +
ϕ

b + ∑n
i=1 xi

)}
ce−ϕ

(1 + e−ϕ)c+1 dϕ

=
∫ ∞

−∞
ϕ

{
n + a

b + ∑n
i=1 xi

− (n + a)
∞

∑
j=1

vj ϕ
j−1

}
ce−ϕ

(1 + e−ϕ)c+1 dϕ

=
c(n + a)

b + ∑n
i=1 xi

{
ψ∗c+1(−1, 2, 1)− ψ∗c+1(−1, 2, c)

}

− c(n + a)
∞

∑
j=1

vjΓ(j + 1)

{
ψ∗c+1(−1, j + 1, 1) + (−1)jψ∗c+1(−1, j + 1, c)

}
, j > c− 1. (23)
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Similarly, using π2(ϕ) in (11) and (22), the Bayes risk of β̃BEL
2 using the expected

LINEX loss function can be obtained as

BREL
2 =

∫ ∞

−∞
ϕ

{
n + a

b + ∑n
i=1 xi

− n + a
ϕ

log
(

1 +
ϕ

b + ∑n
i=1 xi

)}
1√
2π

e−
(ϕ−µ)2

2 dϕ

=
∫ ∞

−∞
ϕ

{
n + a

b + ∑n
i=1 xi

− (n + a)
∞

∑
j=1

vj ϕ
j−1

}
1√
2π

e−
(ϕ−µ)2

2 dϕ

=
µ(n + a)

b + ∑n
i=1 xi

− (n + a)e−
3
4 µ2

∞

∑
j=1

vje
π
2 jDj(µ). (24)

Finally, the Bayes risk of β̃BEL
3 using the expected LINEX loss function based on π3(ϕ)

can be expressed as

BREL
3 =

∫ ∞

−∞
ϕ

{
n + a

b + ∑n
i=1 xi

− (n + a)
∞

∑
j=1

vj ϕ
j−1

}
e(−e−(ϕ−d)−ϕ+d)dϕ

=
(n + a)(d + γ)

b + ∑n
i=1 xi

− (n + a)
∞

∑
j=1

j−1

∑
m=0

(−1)m
(

j− 1
m

)
vjdj−m−1

(
∂

∂s

)m
Γ(s)|s=1, (25)

where γ ' 0.5772156649 . . . is known as Euler’s constant.
Another simple way to obtain the Bayes risk of β̃BEL

k , k = 1, 2, 3 is to use the Monte
Carlo integration routine. In this case, we have from (22) the following:

BREL
k ≈ 1

N

N

∑
t=1

[
ykt(n + a)
b + ∑n

i=1 xi
− (n + a) log

(
1 +

ykt
b + ∑n

i=1 xi

)]
, k = 1, 2, 3,

where yk1, . . . , ykN are the generated random numbers from πk(ϕ), k = 1, 2, 3, respectively.

4. Simulation Study

In this section, in order to investigate and compare the performance of different
Bayesian estimators using the expected LINEX loss function, along with those based on SE
and LINEX loss functions, extensive Monte Carlo simulations are carried out for illustration.
The simulation procedure can be described by the following steps.

Step 1 Determine the value of the parameter β and the sample size n.

Step 2 Generate a random sample from the exponential distribution, where xi = −
log(1−ui)

β ,
i = 1, . . . , n where U ∼ uni f orm(0, 1).

Step 3 For given values of gamma hyper-parameters a and b, generate β from the gamma
prior density (7).

Step 4 The Bayesian estimates β̃BS, β̃BL and the associated Bayesian estimates β̃BEL
1 , β̃BEL

2 , β̃BEL
3

using the expected LINEX loss of the parameter β are computed.

Step 5 Based on multiple replications, the performance of the different Bayesian estimates
is evaluated in terms of criteria quantities of the mean relative estimate (MRE) and
mean square error (MSE) as well as the Bayes risks.

In this procedure, the simulation is performed by considering different values of
β = 0.5, 2 and sample sizes n = 20, 40, 60, 80, 100, respectively. Meanwhile, the gamma
hyper-parameters are chosen in such a way that the prior mean becomes the expected value
of the corresponding parameters. We assume a = 1, b = 2 for β = 0.5 and a = 2, b = 1
for β = 2 in this simulation. Further, the Bayesian estimates with respect to the LINEX
loss function are calculated with selected ϕ = 1.5 in all the settings, whereas the Bayesian
estimates using the expected LINEX loss function are obtained under different parameter



Mathematics 2022, 10, 436 11 of 21

values c, µ and d of distributions πj(ϕ), j = 1, 2, 3, respectively. For each πj(ϕ), five config-
urations (Conf) are proposed, as shown in Table 1. As mentioned before, when c > 1 µ > 0
and d > −0.36651, the weights of overestimation are more serious than underestimation
employing the distributions π1(ϕ), π2(ϕ) and π3(ϕ), respectively. Therefore, the values
in Table 1 are selected to reflect the impact of these parameters on the performance of the
different estimates using the expected LINEX loss function. Based on 1000 replications, the
criteria quantities MRE, MSE and the Bayes risks are displayed in Tables 2–4 for β = 0.5
and β = 2, respectively.

Table 1. Selected parameter values of πj(ϕ), j = 1, 2, 3.

Distribution Parameter
Conf

1 2 3 4 5

π1(ϕ) c 0.2 0.5 1 2 5
π2(ϕ) µ −2 −0.5 0 2 5
π3(ϕ) d −2 −0.5 0 2 5

From the listed results in Tables 2–4, it is noted that

• With the increase in sample size n, the MREs tend towards one and the criteria MSEs
and Bayesian risks of both Bayesian estimates under common and expected losses
decrease, which indicates the consistency of the associated estimates when the sample
sizes increase;

• For a fixed sample size, the Bayesian estimates obtained under common LINEX loss
have relatively smaller MSE than that from SE loss, whereas the associated Bayesian
risks perform similarly under these two cases in general;

• In terms of minimum MSE, we can conclude that the Bayesian estimates using the
expected LINEX loss function perform better than all other estimates for π3(ϕ) with
d = 5 when β = 0.5;

• The Bayesian estimates using π3(ϕ) with d = 2 have the smallest MSE among all
other estimates when β = 2;

• The Bayesian estimates using the expected LINEX loss function using π2(ϕ) with
µ = 0 have the minimum Bayes risk when compared with all other estimates.

It can be observed that when µ = 0, π2(ϕ) reduces to the standard normal distribution.
In this case, we can see that, although the distribution does not contain any parameter,
it gives the best result based on the minimum Bayes risks in all cases. This is because,
when we obtain the Bayesian estimate using the expected LINEX loss function, we take
the expectation over all possible values for the parameter ϕ. The same result can also be
noted when d = 0 in π3(ϕ), where the Bayes risk obtained based on the expected LINEX
loss function is smaller than that based on the common LINEX loss. Therefore, when
the researcher does not have any information about the parameter ϕ, one could take the
expectation over all possible values for the parameter ϕ to obtain the Bayesian estimate
using the expected LINEX loss.
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Table 2. The MREs of the different estimators for β = 0.5 and 2.

Method Conf n = 20 n = 40 n = 60 n = 80 n = 100

β = 0.5

β̃BS - 1.0423 1.0218 1.0083 1.0132 1.0087

β̃BL - 1.0225 1.0121 1.0020 1.0084 1.0050

β̃BEL
1

1 1.1121 1.0472 1.0218 1.0215 1.0138
2 1.0634 1.0313 1.0144 1.0178 1.0123
3 1.0431 1.0220 1.0084 1.0133 1.0088
4 1.0295 1.0154 1.0041 1.0101 1.0062
5 1.0155 1.0085 0.9996 1.0066 1.0035

β̃BEL
2

1 1.0707 1.0351 1.0169 1.0197 1.0139
2 1.0494 1.0251 1.0104 1.0148 1.0100
3 1.0464 1.0189 1.0149 1.0118 1.0044
4 1.0164 1.0090 0.9999 1.0069 1.0037
5 0.9803 0.9906 0.9877 0.9975 0.9963

β̃BEL
3

1 1.0625 1.0313 1.0144 1.0178 1.0124
2 1.0416 1.0214 1.0080 1.0130 1.0086
3 1.0387 1.0152 1.0124 1.0100 1.0029
4 1.0093 1.0054 0.9976 1.0051 1.0023
5 0.9739 0.9871 0.9854 0.9958 0.9948

β = 2

β̃BS - 1.0410 1.0224 1.0178 1.0099 1.0090

β̃BL - 0.9710 0.9860 0.9932 0.9915 0.9942

β̃BEL
1

1 1.1452 0.9712 0.9331 0.9109 0.9019
2 1.1421 1.0567 1.0363 1.0212 1.0165
3 1.0535 1.0252 1.0190 1.0105 1.0094
4 0.9995 0.9994 1.0019 0.9979 0.9993
5 0.9518 0.9739 0.9845 0.9847 0.9886

β̃BEL
2

1 1.1669 1.0783 1.0538 1.0362 1.0299
2 1.0716 1.0363 1.0268 1.0165 1.0142
3 1.0402 1.0319 1.0200 1.0040 1.0099
4 0.9528 0.9753 0.9857 0.9858 0.9895
5 0.8477 0.9137 0.9417 0.9520 0.9619

β̃BEL
3

1 1.1299 1.0621 1.0434 1.0286 1.0239
2 1.0422 1.0218 1.0171 1.0093 1.0085
3 1.0129 1.0176 1.0105 0.9970 1.0041
4 0.9305 0.9630 0.9770 0.9791 0.9841
5 0.8197 0.9032 0.9340 0.9460 0.9569
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Table 3. The MSEs of the different estimators for β = 0.5 and 2.

Method Conf n = 20 n = 40 n = 60 n = 80 n = 100

β = 0.5

β̃BS - 0.0132 0.0066 0.0042 0.0035 0.0023

β̃BL - 0.0119 0.0062 0.0041 0.0034 0.0022

β̃BEL
1

1 0.0207 0.0078 0.0047 0.0037 0.0024
2 0.0149 0.0069 0.0044 0.0036 0.0023
3 0.0132 0.0066 0.0042 0.0035 0.0023
4 0.0123 0.0063 0.0042 0.0034 0.0022
5 0.0115 0.0061 0.0041 0.0033 0.0022

β̃BEL
2

1 0.0155 0.0071 0.0045 0.0036 0.0023
2 0.0137 0.0067 0.0043 0.0035 0.0023
3 0.0132 0.0066 0.0041 0.0031 0.0023
4 0.0115 0.0061 0.0041 0.0033 0.0022
5 0.0100 0.0057 0.0039 0.0032 0.0021

β̃BEL
3

1 0.0148 0.0069 0.0044 0.0036 0.0023
2 0.0131 0.0066 0.0042 0.0035 0.0023
3 0.0126 0.0065 0.0040 0.0031 0.0023
4 0.0112 0.0060 0.0040 0.0033 0.0022
5 0.0098 0.0056 0.0039 0.0032 0.0021

β = 2

β̃BS - 0.189 0.1025 10.0651 0.0465 0.0389

β̃BL - 0.1413 0.0876 0.0580 0.0431 0.0365

β̃BEL
1

1 0.5379 0.1172 0.0793 0.0729 0.0716
2 0.3810 0.1312 0.0754 0.0509 0.0415
3 0.2100 0.1049 0.0658 0.0467 0.0390
4 0.1576 0.0920 0.0600 0.9979 0.0371
5 0.1389 0.0857 0.0569 0.0426 0.0361

β̃BEL
2

1 0.4146 0.1499 0.0853 0.0565 0.0455
5 0.2289 0.1117 0.0691 0.0484 0.0402
3 0.2027 0.0963 0.0663 0.0470 0.0382
4 0.1374 0.0857 0.0569 0.0427 0.0361
5 0.1711 0.0942 0.0603 0.0456 0.0376

β̃BEL
3

1 0.3306 0.1334 0.0784 0.0530 0.0432
2 0.1928 0.1025 0.0649 0.0464 0.0388
3 0.1765 0.0885 0.0628 0.0457 0.0371
4 0.1343 0.0847 0.0563 0.0425 0.0359
5 0.2065 0.0990 0.0627 0.0472 0.0386
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Table 4. The Bayes risks of the different estimators for β = 0.5 and 2.

Method Conf n = 20 n = 40 n = 60 n = 80 n = 100

β = 0.5

β̃BS - 0.0135 0.0065 0.0042 0.0032 0.0025

β̃BL - 0.0148 0.0072 0.0047 0.0036 0.0028

β̃BEL
1

1 0.4061 0.1617 0.1003 0.0745 0.0583
2 0.0644 0.0291 0.0186 0.0140 0.0110
3 0.0224 0.0107 0.0070 0.0053 0.0042
4 0.0212 0.0105 0.0069 0.0052 0.0041
5 0.0394 0.0196 0.0129 0.0098 0.0078

β̃BEL
2

1 0.0357 0.0167 0.0108 0.0081 0.0064
2 0.0087 0.0041 0.0027 0.0020 0.0016
3 0.0068 0.0032 0.0021 0.0016 0.0013
4 0.0322 0.0159 0.0104 0.0079 0.0063
5 0.1606 0.0810 0.0534 0.0408 0.0324

β̃BEL
3

1 0.0258 0.0122 0.0079 0.0059 0.0047
2 0.0109 0.0053 0.0035 0.0026 0.0021
3 0.0129 0.0063 0.0042 0.0031 0.0025
4 0.0525 0.0262 0.0172 0.0131 0.0104
5 0.1997 0.1014 0.0670 0.0512 0.0408

β = 2

β̃BS - 0.2053 0.1019 0.0679 0.0503 0.0403

β̃BL - 0.2098 0.1092 0.0739 0.0552 0.0444

β̃BEL
1

1 3.1784 1.0846 0.6522 0.4615 0.3603
2 1.1929 0.4569 0.2841 0.2042 0.1608
3 0.3739 0.1701 0.1121 0.0828 0.0663
4 0.2875 0.1526 0.1045 0.0787 0.0636
5 0.5177 0.2808 0.1939 0.1466 0.1187

β̃BEL
2

1 0.6478 0.2826 0.1813 0.1321 0.1047
2 0.1430 0.0669 0.0438 0.0322 0.0257
3 0.1038 0.0519 0.0341 0.0249 0.0202
4 0.4338 0.2331 0.1597 0.1202 0.0971
5 1.9962 1.1251 0.7883 0.6006 0.4890

β̃BEL
3

1 0.4478 0.2019 0.1308 0.0957 0.0761
2 0.1576 0.0802 0.0542 0.0405 0.0326
3 0.1749 0.0940 0.0636 0.0471 0.0385
4 0.6967 0.3748 0.2591 0.1959 0.1588
5 2.6916 1.3873 0.9777 0.7474 0.6099

5. Data Analysis

In this section, three real life data sets are used to show the applicability of the proposed
estimators based on the expected LINEX loss function.

Example One. (Software reliability data) The first data set represents the time-between-
failures (time unit in milliseconds) of software reliability. The original data were firstly
presented by Lyu [31] and analyzed recently by Alotaibi et al. [32] and are also available in
the reliaR package. The complete data set that is transformed from time-between-failures
to failure times is presented in Table A1. Before proceeding further, we first check the
validity of the exponential distribution to model these data by using the Kolmogorov–
Smirnov (K-S) distance and the associated p-value based on the MLE of the parameter β.
By direct computation, it is noted that the MLE of β is 2.6240× 10−3, the K-S distance is
0.0788 and the corresponding p-value is 0.6591. Therefore, it is found that the exponential
distribution could be used as an appropriate model to fit the mentioned software reliability
data. For further illustration, the empirical cumulative distribution function (CDF) plot
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with overlaid theoretical exponential distribution and the probability–probability (P-P) plot
are also shown in Figure 3 to check the goodness of fit for the software reliability data. It is
also shown that the exponential distribution can be viewed as a proper model.
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Figure 3. Empirical distribution and P-P plots of the exponential distribution under software reliabil-
ity data.

Based on the software reliability data set, to find the different Bayesian estimates, we
select the hyper-parameters to be a = 0.011 and b = 2.25 in all the cases, where such choices
are obtained by equating the first two moments of the gamma distribution obtained from
the data with the corresponding theoretical moments. Using similarly designed scenarios
given in Table 1, various Bayesian estimates are presented in Table 5 under common SE,
LINEX and the proposed expected LINEX losses, respectively. Comparing the performance
of the different estimates, we can conclude that the Bayesian estimate using the expected
LINEX loss function using π2(ϕ) with µ = 0 performs better than other estimates in terms
of minimum Bayes risk.

Table 5. Different estimates of β using the software reliability data.

Method Conf Estimate Bayes Risk

β̃BS - 2.62418× 10−3 8.00631× 10−8

β̃BL - 2.62412× 10−3 9.00682× 10−8

β̃BEL
1

1 2.26912× 10−3 6.51752× 10−7

2 2.60649× 10−3 3.00326× 10−7

3 2.62394× 10−3 1.31255× 10−7

4 2.62390× 10−3 1.31247× 10−7

5 2.62350× 10−3 2.47330× 10−7

β̃BEL
2

1 2.62426× 10−3 2.00169× 10−7

2 2.62420× 10−3 5.00407× 10−8

3 2.62418× 10−3 4.00315× 10−8

4 2.62410× 10−3 2.00146× 10−7

5 2.62398× 10−3 1.04071× 10−6

β̃BEL
3

1 2.62423× 10−3 1.46892× 10−7

2 2.62417× 10−3 6.60856× 10−8

3 2.62415× 10−3 7.91824× 10−8

4 2.62407× 10−3 3.31714× 10−7

5 2.62395× 10−3 1.31088× 10−6
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Example Two. (Breakdown of insulating fluid data) The second data set is taken from Nel-
son [33] and has been analyzed by many authors (see, e.g., Balakrishnan and Cramer [34],
Dey and Nassar [35]). The data describe the times to breakdown of an insulating fluid
subjected to a voltage of 34 kV, and the detailed lifetime data are presented in Table A2. By
direct calculation, the MLE of the parameter β for these data is 0.06964. The K-S distance
and the corresponding p-value are obtained as 0.2464 and 0.1990, respectively. Therefore,
the exponential distribution is a suitable model to fit these data. For comparison, the associ-
ated empirical CDF plot with overlaid theoretical exponential distribution and the P-P plot
are provided in Figure 4 as well. They also indicate that the exponential distribution is an
acceptable model to fit the data.
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Figure 4. Empirical distribution and P-P plots of the exponential distribution under insulating
fluid data.

Using the breakdown data of an insulating fluid, and following a similar approach
as for example one, different Bayesian estimates are obtained under various designed
scenarios. The results are presented in Table 6, where the hyper-parameters are chosen
as a = 0.543 and b = 0.035 by equating the first two moments of the gamma distribution
obtained from the data with the corresponding theoretical moments. Based on the listed
results in Table 6, one could also observe that the Bayesian estimate using the expected
LINEX loss function using π2(ϕ) with µ = 0 has the smallest Bayes risk among all other
estimates.
Example Three. (COVID-19 data) The third data set consists of the COVID-19 recovery
cases in Pakistan from 24 March 2020 to 1 May 2020. This data set was originally analyzed
by Ali et al. [36]. The complete data set is presented in Table A3. From the data, the MLE
of β is 0.008282. Based on this result, the K-S distance and the corresponding p-value are
0.1213 and 0.6149, respectively. Hence, the exponential distribution is an appropriate model
to fit these data. Moreover, the empirical CDF plot with overlaid theoretical exponential
distribution and the P-P plot are presented in Figure 5. Figure 5 shows that the exponential
distribution is an adequate model to fit the data.
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Table 6. Different estimates of β using the breakdown of insulating fluid data.

Method Conf Estimate Bayes Risk

β̃BS - 0.07163 2.62502× 10−4

β̃BL - 0.07143 2.94237× 10−4

β̃BEL
1

1 0.06229 2.17113× 10−3

2 0.07131 9.94977× 10−4

3 0.07162 4.30383× 10−4

4 0.07149 4.27258× 10−4

5 0.07134 8.03771× 10−4

β̃BEL
2

1 0.07189 6.60783× 10−4

2 0.07169 1.64589× 10−4

3 0.07163 1.31254× 10−4

4 0.07136 6.51803× 10−4

5 0.07098 3.36830× 10−3

β̃BEL
3

1 0.07181 4.84019× 10−4

2 0.07162 2.15802× 10−4

3 0.07155 2.57904× 10−4

4 0.07129 1.07746× 10−3

5 0.07090 4.23444× 10−3
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Figure 5. Empirical distribution and P-P plots of the exponential distribution under COVID-19 data.

To acquire the different Bayesian estimates, we set the hyper-parameter values to
be a = 0.0016 and b = 0.1230, which are obtained by equating the first two moments of
the gamma distribution got from the data with the associated theoretical moments. The
different Bayesian estimates as well as the corresponding Bayes risks are tabulated in
Table 7. From the detailed outcomes in Table 7, one could also observe that the Bayesian
estimate using the expected LINEX loss function employing π2(ϕ) with µ = 0 has the
smallest Bayes risk among all other estimates.
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Table 7. Different estimates of β using COVID-19 data.

Method Conf Estimate Bayes Risk

β̃BS - 8.28214× 10−3 1.75874× 10−6

β̃BL - 8.28082× 10−3 1.97817× 10−6

β̃BEL
1

1 7.16357× 10−3 1.43283× 10−5

2 8.22729× 10−3 6.60063× 10−6

3 8.28139× 10−3 2.88328× 10−6

4 8.28051× 10−3 2.88206× 10−6

5 8.27843× 10−3 5.43067× 10−6

β̃BEL
2

1 8.28390× 10−3 4.39860× 10−6

2 8.28258× 10−3 1.09942× 10−6

3 8.28214× 10−3 8.79372× 10−7

4 8.28038× 10−3 4.39512× 10−6

5 8.27774× 10−3 2.28462× 10−5

β̃BEL
3

1 8.28339× 10−3 3.22757× 10−6

2 8.28207× 10−3 1.45140× 10−6

3 8.28163× 10−3 1.73882× 10−6

4 8.27987× 10−3 7.28332× 10−6

5 8.27724× 10−3 2.87744× 10−5

The simulation outcomes as well as the analysis of the three real data sets show that
the performance of the Bayesian estimation using the expected LINEX loss function is
superior to that of the common Bayesian approach in terms of MSE and Bayes risks. The
proposed expected Bayesian estimation is a robust estimation approach that provides a
weight estimation for the common Bayesian estimates. The results also show that if we
select an appropriate probability distribution for ϕ, we can reduce the MSE and Bayes
risk of an estimator. The superiority of the Bayesian estimators using the expected LINEX
loss function can be interpreted based on the concept of the expected value, because this
estimator is obtained as the arithmetic mean of a large number of independent realizations
of ϕ. On the other hand, the usual Bayesian estimator using the LINEX loss function
is obtained by choosing an arbitrary value for ϕ. The new offered technique can be
utilized significantly in different fields; for instance, one can obtain accurate estimators
for some reliability indices, including reliability and hazard rate function. Moreover, in
regression analysis, new estimators of the regression models can be derived using the
proposed technique. Furthermore, the expected LINEX loss function can be employed in
volatility forecasting.

6. Conclusions

In this paper, a new approach to obtain the Bayesian estimator using the LINEX loss
function has been introduced. For avoiding the subjective choice of the LINEX parameter
and giving a relatively objective balance between overestimation and underestimation, the
proposed alternative method assumes that the parameter ϕ of the LINEX loss function
has a probability distribution in the range of (−∞, ∞). The Bayesian estimator in this
case is obtained by taking the expected value of the usual Bayesian estimator using the
LINEX loss function over the proposed distribution of ϕ. When an exponential sample
is available, the Bayesian estimator using the expected LINEX loss is presented for the
unknown exponential parameter by considering three different distributions to the LINEX
parameter ϕ. In addition, the Bayes risks are also obtained using the different distributions.
To compare the performance of the proposed Bayesian estimators with those based on the
squared error and LINEX loss functions, extensive simulation studies are carried out in
terms of different criteria quantities. Moreover, three real-life data sets are analyzed to
show the applicability of the new method. Based on the simulation and real data analysis
results, we can conclude that the Bayesian estimates using the expected LINEX loss function
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perform better than those based on the squared error and LINEX loss functions in terms of
minimum mean square error and Bayes risk. Finally, it is of interest to employ the same
approach discussed in this paper to estimate the parameters of two-parameter distributions
(or more) such as Weibull and gamma distributions. This work is in progress and will be
reported later.
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Appendix A

Table A1. Software reliability data set.

4.79 7.45 10.22 15.76 26.10 28.59 35.52 41.49 42.66 44.36 45.53
58.27 62.96 74.70 81.63 100.71 102.06 104.83 110.79 118.36 122.73 145.03
149.40 152.80 156.85 162.20 164.97 168.60 173.82 179.95 182.72 195.72 203.93
206.06 222.26 238.27 241.25 249.99 256.17 282.57 282.62 284.11 294.45 318.86
323.46 329.11 340.30 344.67 353.94 398.56 405.70 407.51 422.36 429.93 461.47
482.62 491.46 511.83 526.64 532.23 537.13 543.06 560.75 561.60 589.96 592.09
610.75 615.65 630.52 673.74 687.92 698.15 753.05 768.25 801.06 828.22 849.97
885.02 892.27 911.90 951.69 962.59 965.04 976.98 986.92 1025.94

Table A2. Breakdown of insulating fluid data set.

0.19 0.78 0.96 1.31 2.78 3.16 4.15 4.67 4.85 6.50
7.35 8.01 8.27 12.06 31.75 32.52 33.91 36.71 72.89

Table A3. COVID-19 data set.

13 2 2 2 3 4 26 24 25 19 4
40 87 172 38 105 155 35 264 69 283 68

199 120 67 36 102 96 90 181 190 228 111
163 204 192 627 263 400
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