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Abstract: This paper features the search for common fixed points of two operators in the nonlinear
metric setting provided by CAT(0) spaces. The analysis is performed for the generalized nonexpansivity
condition known as condition (E), Garcia-Falset et al. , and relies on the three step iteration procedure
Sn by Sintunavarat and Pitea. The convergence analysis reveals the approximate solutions as limit
points for an iteration sequence, where both the nonexpansive mappings to be analyzed and the
specific curved structure of the framework interfere. To point out properly the meaning of this
approach, we provide also examples accompanied by numerical simulations. The Poincaré half-plane
is one of the non-positively curved setting to be used.
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1. Introduction

A CAT(0) space is a specific type of geodesic metric space, where every geodesic
triangle in is at least as ‘thin’ as its comparison triangle in the Euclidean plane. This
property is formally encrypted in the so-called CAT(0) inequality and ultimately stands as
source for the non-positive curvature. Henceforth, the geometry of CAT(0) spaces exceeds
any linear framework and goes toward a curved setting. We note in particular that all the
pre-Hilbertian spaces, as well as the hyperbolic spaces Hn or the R-trees, provide nontrivial
examples of CAT(0) spaces.

The original study of non-positively curved spaces belongs to Alexandrov and dates
from the 1950s, but the formalism related to CAT(0) spaces, still used today, was developed
later by Mikhael Gromov [1,2]. Initially, CAT(0) spaces played a central role in geometric
group theory (see [3–5]). More recently, they also provided a fit setting for nonlinear
analysis and fixed point theory, as proven in [6–10]. It was shown in [11,12] that several
methods and procedures specific to (uniformly convex) Banach spaces carry over to the
class of CAT(0) spaces, as well. For instance, the uniqueness of the asymptotic center is
guaranteed in this particular setting (see [13]). Moreover, CAT(0) spaces provide a natural
framework to define the so-called ∆-convergence (see also [14,15]), which shares many
properties of the usual notion of weak convergence in normed spaces. The CAT(0) spaces
for which completion is also assumed are known as Hadamard spaces.

Beyond the chosen framework, whether we are talking about a metric or a curved
one, a fixed point problem is primarily related to a specific class of operators. Banach’s
contraction principle has completely clarified the issue of the existence, uniqueness and
numerical approximation through Picard iterations for the fixed points of contractive
mappings. However, many nonlinear equations, variational inequalities or variational
inclusions often require nonexpansive mappings rather than contractions. Therefore, the
fixed point search is extended to more general classes of operators: nonexpansive [16],
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quasinonexpansive, asymptotically nonexpansive [17,18], or Suzuki mappings with con-
dition (C) [19,20]. In [21], Garcia-Falset et al. introduce two distinct, generally unrelated
nonexpansivity conditions, both intended primarily to generalize Suzuki’s condition (C):
condition (Eµ) and condition Cλ, respectively. Each of them generated important devel-
opments in fixed point theory and not only: conditions of type (Eµ) were analyzed in
connection with other nonexpansivity properties [22], various iterative processes including
polynomiographic techniques [23,24], or in connection with signal recovery problems [25].
On the other hand, the conditions of type (Cλ) were further extended in [26] to a wider
class of operators, the so-called “Suzuki type”. We can state without a doubt that condition
(E) introduced by Garcia-Falset et al. in [21], as well as the Suzuky-type mappings defined
by Dominguez Benavides and Lorenzo Ramirez in [26] are two of the most general nonex-
pansivity conditions subject to analysis so far, equally relevant in matters of fixed points
and, at the same time, not subordinate to each other.

On the other hand, when contractions are waived in favor of generalized nonexpansive
mappings, the iteration procedure to be used to numerically reckon the fixed points must be
updated as well. Several iterations schemes have been analyzed so far for various nonlinear
problems connected to fixed point or common fixed point theory. For instance, in [27],
the Ishikawa procedure was used for a pair of Suzuki–Karapinar-conditioned mappings in
CAT(0) spaces. A modified Ishikawa procedure was also used in [28], in connection with
a hybrid pair of nonexpansive single and multi-valued mappings. In [20], fixed points of
Suzuki-type mappings were searched via the so-called TTP-procedure. The Sn procedure
introduced in [29] was fit to solve the problem for Berinde mappings.

In this paper we provide a convergence analysis for the Sn iteration procedure in
connection with two Garcia-Falset mappings, properly adapted for the non-positively
curved setting, looking to obtain approximate common fixed points. We also include some
numerical simulations on the Euclidean plane, as well as on the Poincaré half-plane.

2. Preliminaries

In-depth studies of geodesic spaces in general, and CAT(0) structures in particular
have been conducted for more than 50 years. A main concern was related to their geometric
characteristics and very important aspects were revealed in this direction (please see [2,3,5].
More recently, they have been found to provide a suitable framework for fixed point
theories, as well (see [6–12,14]). This is not very surprising, since CAT(0) spaces share
often a nice resemblance with (uniformly convex) normed spaces.

A CAT(0) space is first of all a uniquely geodesic metric space (each two points are
connected by an unique geodesic segment, see [14]). The key element in defining it is the
concept of geodesic triangle (a set of three vertices and some connecting geodesic segments
as edges). The main interest is related to the appearance of these geodesic triangles when
compared with adequate euclidean triangles of the same size. If the distance between
any two points of some given geodesic triangle is at most equal to the distance of the
corresponding comparison points of the euclidean triangle, then the geodesic space is
precisely of CAT(0) type. The formal description and immediate properties coming out
from the definition are described leisurely in all the works mentioned above.

The following lemma includes some very important properties of CAT(0) spaces,
which are to be used later to prove the main results of this study.

Lemma 1. The following properties are specific to a given CAT(0) space (X, d).

(i) Let x, y ∈ X. For each t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that
d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y) (see [14]). Further on, we shall denote
this unique point by (1− t)x⊕ ty.

(ii) For x, y, z ∈ X and t ∈ [0, 1] the following convex inequality holds true (see [14]):

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).
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(iii) For x, y, z ∈ X and t ∈ [0, 1] one has (see [14])

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2.

(iv) For any bounded sequence {xn} in X, the asymptotic center A({xn}) consist of exactly one
point [13]. We recall that the asymptotic center center in this setting is defined as follows:

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})},

where r(x, {xn}) = lim sup
n→∞

d(x, xn) and r({xn}) = inf{r(x, {xn}) : x ∈ X} denotes the

so-called asymptotic radius of the sequence.
(v) If C is a closed and convex subset of X and if {xn} is a bounded sequence in C, then the

asymptotic center of {xn} is in C ([11,14]).

The result in Lemma 1 (iv) regarding the uniqueness of the asymptotic center suggested
the possibility of defining a new type of convergence, sharing some similarities with the
weak convergence on normed spaces. A sequence {xn} in X is said to be ∆-convergent to
x ∈ X and we write ∆-limxn = x ([11,12,15]) if x is the unique asymptotic center of un for
every subsequence {un} of {xn}.

Lemma 2. The following properties related to ∆-convergence on a CAT(0) space (X, d) hold true:

(i) every bounded sequence in X has a ∆-convergent subsequence.
(ii) every CAT(0) space satisfies the Opial property, that is

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y),

whenever a given sequence {xn} ⊂ X ∆-converges to x and y 6= x.

Next we will briefly present some aspects of the nonexpansivity condition provided
by Garcia-Falset et al. in [21]. They defined the so-called operators with property (E), thus
extending the class of operators with property (C) previously introduced by Suzuki in [19]
(see also [20]). Let C be a nonempty subset of a Banach space X and µ ≥ 1. Any mapping
T : C → X which satisfies the inequality

‖x− Ty‖ ≤ µ‖x− Tx‖+ ‖x− y‖,

for all x, y ∈ C, is said to be endowed with (Eµ) property. Furthermore, T satisfies condition
(E) on C if T satisfies condition (Eµ), for some µ ≥ 1.

We adapt the definition stated above for CAT(0) spaces, asserting that a mapping
T : C → X satisfies condition (Eµ) provided that

d(x, Ty) ≤ µd(x, Tx) + d(x, y),

for all x, y ∈ C.
The following result was proved in a Banach space setting, but it could be easily

extended to the curved setting as well.

Proposition 1 ([21]). Let T : C → X be a mapping which satisfies condition (E) on C. If T has
some fixed point, then T is quasinonexpansive mapping.

In 2016, Sintunavarat and Pitea [29] introduced an iterative scheme in connection with
Berinde-type operators. For an arbitrary x1 ∈ C, a sequence {xn} results as output of the
following three-step procedure:
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yn = (1− βn)xn + βnTxn
zn = (1− γn)xn + γnyn
xn+1 = (1− αn)Tzn + αnTyn,

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in (0, 1). We will further
denote this iterative process Sn.

For CAT(0) spaces, the iteration procedure Sn can be adapted as follows: for an
arbitrary x1 ∈ C, let {xn} be generated by the procedure below

yn = (1− βn)xn ⊕ βnTxn
zn = (1− γn)xn ⊕ γnyn
xn+1 = (1− αn)Tzn ⊕ αnTyn,

(1)

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in (0, 1). Furthermore, we
assume that T is a Garcia-Falset operator. Moreover, this iterative process can be presented
in connection with two Garcia-Falset operators, as follows: for an arbitrary x1 ∈ C, let {xn}
be generated by the procedure

yn = (1− βn)xn ⊕ βnSxn
zn = (1− γn)xn ⊕ γnyn
xn+1 = (1− αn)Szn ⊕ αnTyn,

(2)

for all n ≥ 1, where {αn}, {βn} and {γn} are real sequences in (0, 1). It should be noted
that by considering S = T in the iteration (2), the iterative process (1) is obtained.

3. Main Results

Further, we will study some aspects regarding the convergence of the iterative process
previously presented in CAT(0) spaces, presumably to a common fixed point for some
operators satisfying condition (E). Let S and T be such operators. We will denote by F the
set of common fixed points for the operators S and T.

Lemma 3. Let C be a nonempty convex subset of complete CAT(0) space X. Let T : C → C and
S : C → C be mappings satisfying condition (E) with F 6= ∅. Let {xn} be an iteration process
described by (2). Then, lim

n→∞
d(xn, p) exists, for all p ∈ F.

Proof. Since T and S satisfy condition (E) with F(T) 6= ∅ and F(S) 6= ∅, then T and S are
quasinonexpansive mappings by Proposition 1.

Now, using the convexity property described in Lemma 1 (ii) and the quasinonexpan-
siveness of S, we have

d(yn, p) = d((1− βn)xn ⊕ βnSxn, p)
≤ (1− βn)d(xn, p) + βnd(Sxn, p)
≤ (1− βn)d(xn, p) + βnd(xn, p)
= d(xn, p).

(3)

Given the relationship (3), it follows

d(zn, p) = d((1− γn)xn ⊕ γnyn, p)
≤ (1− γn)d(xn, p) + γnd(yn, p)
≤ (1− γn)d(xn, p) + γnd(xn, p)
= d(xn, p).

(4)

From (3) and (4) we obtain
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d(xn+1, p) = d((1− αn)Szn ⊕ αnTyn, p)
≤ (1− αn)d(Szn, p) + αnd(Tyn, p)
≤ (1− αn)d(zn, p) + αnd(yn, p)
≤ (1− αn)d(xn, p) + αnd(xn, p)
= d(xn, p).

(5)

Based on (5), we have
d(xn+1, p) ≤ d(xn, p), (6)

so {d(xn, p)} is a decreasing sequence of non-negative real numbers.
Therefore, the sequence {d(xn, p)} is bounded and decreasing, so is convergent.

Lemma 4. Let C be a nonempty convex subset of complete CAT(0) space X. Let T : C → C and
S : C → C be mappings satisfying condition (E) with F 6= ∅. Let {xn} be an iteration process
described by (2). If {αn}, {βn} and {γn} are such that 0 < a ≤ αn, βn, γn ≤ b < 1, for some
a, b ∈ (0, 1), then lim

n→∞
d(xn, Txn) = 0 and lim

n→∞
d(xn, Sxn) = 0.

Proof. In Lemma 3 we proved that lim
n→∞

d(xn, p) exists, for each common fixed point p of S
and T.

Let
lim

n→∞
d(xn, p) = c. (7)

Using (6) and (4) we find

d(xn+1, p) ≤ (1− αn)d(zn, p) + αnd(yn, p)
≤ (1− αn)d(xn, p) + αnd(yn, p).

We can now state that

αnd(xn, p) ≤ d(xn, p) + αnd(yn, p)− d(xn+1, p),

so

d(xn, p) ≤ d(yn, p) + 1
αn
(d(xn, p)− d(xn+1, p))

≤ d(yn, p) + 1
a (d(xn, p)− d(xn+1, p)).

Taking lim inf in this last inequality, we see that

c ≤ lim inf
n→∞

d(yn, p), (8)

but from (3)
lim sup

n→∞
d(yn, p) ≤ lim sup

n→∞
d(xn, p) = c. (9)

Now, from (8) and (9), we obtain

lim
n→∞

d(yn, p) = c. (10)

By Lemma 1 (iii) one has

d(yn, p)2 = d((1− βn)xn ⊕ βnSxn, p)2

≤ (1− βn)d(xn, p)2 + βnd(Sxn, p)2 − βn(1− βn)d(xn, Sxn)2

≤ d(xn, p)2 − βn(1− βn)d(xn, Sxn)2.

It follows that

βn(1− βn)d(xn, Sxn)
2 ≤ d(xn, p)2 − d(yn, p)2.
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Additionally, we have

d(xn, Sxn)2 ≤ 1
βn(1−βn)

(
d(xn, p)2 − d(yn, p)2)

≤ 1
a(1−b)

(
d(xn, p)2 − d(yn, p)2).

From (7) and (10), we obtain

lim
n→∞

d(xn, Sxn) = 0.

Given that
d(yn, xn) = d((1− βn)xn ⊕ βnSxn, xn)

≤ (1− βn)d(xn, xn) + βnd(Sxn, xn)
= βnd(Sxn, xn),

we also obtain
lim

n→∞
d(xn, yn) = 0. (11)

We evaluate next

d(xn+1, p)2 = d((1− αn)Szn ⊕ αnTyn, p)2

≤ (1− αn)d(Szn, p)2 + αnd(Tyn, p)2 − αn(1− αn)d(Szn, Tyn)2.

Otherwise, based on the quasinonexpansiveness of S and T, we can say

αn(1− αn)d(Szn, Tyn)
2 ≤ (1− αn)d(zn, p)2 + αnd(yn, p)2 − d(xn+1, p)2

and, by applying again (3) and (4), we find

a(1− b)d(Szn, Tyn)2 ≤ (1− αn)d(xn, p)2 + αnd(xn, p)2 − d(xn+1, p)2

= d(xn, p)2 − d(xn+1, p)2.
(12)

Taking the limit in the inequality (12), we obtain

lim
n→∞

d(Szn, Tyn) = 0. (13)

Since S has property (E), we have

d(Szn, xn) ≤ µd(xn, Sxn) + d(xn, zn). (14)

However, using the definition of the iterative process (2), we can say that

d(zn, xn) = d((1− γn)xn ⊕ γnyn, xn)
≤ γnd(yn, xn)
≤ bd(yn, xn).

(15)

From (11), (14) and (15), we obtain

lim
n→∞

d(Szn, xn) = 0. (16)

Since
d(xn, Tyn) ≤ d(xn, Szn) + d(Szn, Tyn)

and using (13) and (16), we conclude that

lim
n→∞

d(xn, Tyn) = 0. (17)

Furthermore,
d(yn, Tyn) ≤ d(yn, xn) + d(xn, Tyn)
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and from (11) and (17), we have

lim
n→∞

d(yn, Tyn) = 0. (18)

We will now use the fact that the operator T has the property (E), so

d(yn, Txn) ≤ µd(yn, Tyn) + d(yn, xn). (19)

Therefore, from (19), (11) and (18), we can say

lim
n→∞

d(yn, Txn) = 0.

Finally, we could use inequality

d(xn, Txn) ≤ d(xn, yn) + d(ynTxn).

in order to conclude that
lim

n→∞
d(xn, Txn) = 0,

which completes the proof.

Theorem 1. Let C be a nonempty closed convex subset of a CAT(0) space X. Let T : C → C and
S : C → C be mappings satisfying condition (E) with F 6= ∅. Let {xn} be an iteration process
described by (2). If {αn}, {βn} and {γn} are such that 0 < a ≤ αn, βn, γn ≤ b < 1, for some
a, b ∈ (0, 1), then {xn} ∆ - converges to a common fixed point p of T and S.

Proof. Using Lemma 3, lim
n→∞

d(xn, p) exists, for all p ∈ F. Thus the sequence {xn} is

bounded and according Lemma 4, the following equalities hold true:

lim
n→∞

d(xn, Txn) = lim
n→∞

d(xn, Sxn) = 0.

Consider w∆({xn}) = ∪A({un}), the set containing the asymptotic centers of all
the subsequences {un} of {xn}. According to Lemma 1 (v), w∆({xn}) ⊆ C. First, we
wish to prove more, namely that w∆({xn}) ⊆ F. Let u ∈ w∆({xn}). Then, there exists a
subsequence {un} of {xn} such that A({un}) = {u}.

Since T is a mapping with condition (E), we obtain

d(un, Tu) ≤ µd(un, Tun) + d(un, u).

Using this last inequality and the fact that lim
n→∞

d(un, Tun) = 0, taking lim sup on both

sides implies that
lim sup

n→∞
d(un, Tu) ≤ lim sup

n→∞
d(un, u).

Hence, we find
r(Tu, {un}) ≤ r(u, {un}).

However, u is the unique asymptotic center of {un}, which implies that u = Tu,
meaning u ∈ F(T). Similarly, it can now be shown that u ∈ F(S), thus u ∈ F.

We prove next that w∆({xn}) consists of exactly one common fixed point. Let
u, v ∈ w∆({xn}) and let {un} and {vn} be subsequences of {xn} such that A({un}) = {u}
and A({vn}) = {v}. We will assume that u 6= v.

According to Lemma 1 (i), {un} contains a subsequence {u′n}, which is ∆-convergent
to an element u′. Obviously, u′ ∈ w∆({xn}) ⊂ F. Then, lim

n→∞
d(xn, u) and lim

n→∞
d(xn, u′)

exist for sure and moreover, lim
n→∞

d(xn, u) = lim
n→∞

d(un, u) = lim
n→∞

d(u′n, u), and similarly

lim
n→∞

d(xn, u′) = lim
n→∞

d(un, u′) = lim
n→∞

d(u′n, u′). Assuming that u′ 6= u, the Opial property

from Lemma 2 (ii) leads to
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lim sup
n→∞

d(un, u′) = lim sup
n→∞

d(u′n, u′) < lim sup
n→∞

d(u′n, u) = lim sup
n→∞

d(un, u),

that is
r(u′, {un}) < r(u, {un}).

which is impossible. Therefore, ∆− lim
n→∞

u′n = u. Similarly, {vn} contains a subsequence

{v′n} such that ∆− lim
n→∞

v′n = v.

By using again the Opial property, we get

lim
n→∞

d(xn, v) = lim
n→∞

d(v′n, v) < lim
n→∞

d(v′n, u) = lim
n→∞

d(xn, u) = lim
n→∞

d(u′n, u)

< lim
n→∞

d(u′n, v) = lim
n→∞

d(xn, v).

This impossible inequality came out from the initial assumption u 6= v. Therefore, one
must have equality, u = v. In conclusion, w∆({xn}) is a singleton, and the unique element
is a common fixed point of T and S. This proves the ∆-convergence of {xn}.

Corollary 1. Let C be a nonempty closed convex subset of a CAT(0) space X. Let T : C → C be a
mapping satisfying condition (E) with F(T) 6= ∅. Let {xn} be an iteration process described by (1).
If {αn}, {βn} and {γn} are such that 0 < a ≤ αn, βn, γn ≤ b < 1, for some a, b ∈ (0, 1), then
{xn} ∆-converges to a fixed point of T.

Proof. The conclusion comes out immediately by taking S = T in Theorem 1.

Next we will use an additional condition to prove a strong convergence result. For this,
we first remember that Khan and Fukhar-ud-din [17,18] introduced the condition (A’) for
two mappings, extending this way a similar condition for one mapping defined previously
by Senter and Dotson [16]. In the following we recall this condition as it was presented
in [17].

Definition 1. Let C be a nonempty subset of a CAT(0) space X. Two mappings S : C → C and
T : C → C with F 6= ∅ are said to satisfy the condition (A’) if there exists a nondecreasing function
f : [0, ∞)→ [0, ∞) with f (0) = 0, f (r) > 0, for all r ∈ (0, ∞) such that either

d(x, Tx) ≥ f (d(x, F))

or
d(x, Sx) ≥ f (d(x, F)),

for all x ∈ C.

It should be noted that this definition becomes the definition of mappings with condi-
tion (A) if we consider S = T.

Theorem 2. Let C be a nonempty bounded closed convex subset of complete CAT(0) space X. Let
T : C → C and S : C → C be mappings satisfying condition (E) with F 6= ∅. Let {xn} be an
iteration process described by (2). If {αn}, {βn} and {γn} are such that 0 < a ≤ αn, βn, γn ≤
b < 1, for some a, b ∈ (0, 1) and, in addition, the two mappings satisfy the condition (A’), then
{xn} converges strongly to a common fixed point of T and S.

Proof. According to Lemma 3 we know that lim
n→∞

d(xn, x∗) exists, for all x∗ ∈ F. Let c ≥ 0

be its value. If c = 0, the conclusion is obvious. Therefore, we will further assume that
c > 0.

Since d(xn+1, x∗) ≤ d(xn, x∗), we have

inf
x∗∈F

d(xn+1, x∗) ≤ inf
x∗∈F

d(xn, x∗),
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so d(xn+1, F) ≤ d(xn, F) and we may easily conclude that lim
n→∞

d(xn, F) exists.

Now, using the condition (A’), either

lim
n→∞

f (d(xn, F)) ≤ lim
n→∞

d(xn, Txn) = 0

or
lim

n→∞
f (d(xn, F)) ≤ lim

n→∞
d(xn, Sxn) = 0.

In both cases, we get lim
n→∞

f (d(xn, F)) = 0. Moreover, because f is a nondecreasing

function with f (0) = 0 it follows that lim
n→∞

d(xn, F) = 0. Based on this, we can say that for

each ε > 0, there exists a positive integer k such that

d(xn, F) <
ε

4
, ∀n ≥ k.

From this, inf{d(xk, p) : p ∈ F} < ε

4
, so there will be p∗ ∈ F such that d(xk, p∗) <

ε

2
.

Moreover, for all m, n ≥ k, we have

d(xm, xn) < d(xm, p∗) + d(p∗, xn)
≤ 2d(xk, p∗)
< 2 · ε

2
= ε.

This proves that {xn} is a Cauchy sequence in a closed subset C of a complete CAT(0)
space, so it must converge to a point x ∈ C. We obtain d(x, F) = 0 because lim

n→∞
d(xn, F) = 0.

Using the fact that F is closed, it follows that x ∈ F, which concludes the proof.

Corollary 2. Let C be a nonempty bounded closed convex subset of complete CAT(0) space X.
Let T : C → C be a mapping satisfying condition (E) with F(T) 6= ∅. Let {xn} be an iteration
process described by (1). If {αn}, {βn} and {γn} are such that 0 < a ≤ αn, βn, γn ≤ b < 1, for
some a, b ∈ (0, 1) and, in addition, the mapping T satisfies the condition (A), then {xn} converges
strongly to a fixed point of T.

Proof. This is an immediate consequence of Theorem 2, by taking S = T.

4. Examples and Numerical Simulations

To emphasize the practical value of the formal analysis revealed above, we provide
some examples of mappings satisfying generalized nonexpansivity conditions in non-
positively curved spaces.

Example 1. It is well known that pre-Hilbertian structures (in particular the real axis R, or the
real two-dimensional plane R2) are also CAT(0) spaces. For start, let us consider on R2 the closed
and bounded domain [0, 1]2, where we define two self-mappings as follows:

T, S : [0, 1]2 → [0, 1]2, Tx = (T1(x1), T2(x2)) and Sx = (S1(x1), S2(x2)),

where

T1x =


1

x2 + 4
, x 6= 1;

3
5

, x = 1;

, S1x =


1− x3

4
, x 6= 1;

4
7

, x = 1.

, T2x =


ln(1 + x)

2
, x 6= 1;

3
5

, x = 1;
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S2x =


sin x

2
, x 6= 1;

4
7

, x = 1.

We prove next that T1 and T2 satisfy condition
(

E 5
2

)
, while S1 and S2 satisfy condition

(
E 7

3

)
.

Consequently, the operators T and S will satisfy conditions
(

E 5
2

)
and

(
E 7

3

)
, respectively, relative

to the Euclidean norm on R2.
For T1 satisfying condition

(
E 5

2

)
explicitly means to check if the following inequality holds

true:
|x− T1y| ≤ 5

2
· |x− T1x|+ |x− y|, ∀x, y ∈ [0, 1]. (20)

Case I: Let x = 1 and y ∈ [0, 1). The inequality (20) written for this particular case is∣∣∣∣1− 1
y2 + 4

∣∣∣∣ ≤ 5
2
·
∣∣∣∣1− 3

5

∣∣∣∣+ |1− y|,

that is 1− 1
y2 + 4

≤ 1 + 1− y, which is ultimately equivalent to condition y− 1
y2 + 4

≤ 1. This

inequality is clearly satisfied when y < 1.
Case II: Let x ∈ [0, 1) and y = 1. The inequality (20) for these particular assignments is

written ∣∣∣∣x− 3
5

∣∣∣∣ ≤ 5
2
·
∣∣∣∣x− 1

x2 + 4

∣∣∣∣+ |x− 1|.

Let us assume first that x ≥ 3
5

. Since the function f (x) = x− 1
x2 + 4

is nondecreasing, one

has f (x) ≥ f
(

3
5

)
=

202
545

> 0 and the inequality which needs to be satisfied is

x− 3
5
≤ 5

2
x− 5

2
· 1

x2 + 4
+ 1− x,

that is 0 ≤ x
2
− 5

2
· 1

x2 + 4
+

8
5

. Once more, the function g(x) =
x
2
− 5

2
· 1

x2 + 4
+

8
5

in the right

side is nondecreasing and attains its minimal value g
(

3
5

)
=

723
545

, which is clearly positive.

Assuming now that x ∈
[

0,
3
5

]
, the inequality which needs to be satisfied is

3
5
− x ≤ 5

2
·
∣∣∣∣x− 1

x2 + 4

∣∣∣∣+ 1− x,

that is

0 ≤ 2
5
+

5
2
·
∣∣∣∣x− 1

x2 + 4

∣∣∣∣,
which is undoubtedly true.

Case III: Let x, y ∈ [0, 1). The inequality (20) is this time∣∣∣∣x− 1
y2 + 4

∣∣∣∣ ≤ 5
2
·
∣∣∣∣x− 1

x2 + 4

∣∣∣∣+ |x− y|.

Yet it is not at all difficult to see that
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∣∣∣∣x− 1
y2 + 4

∣∣∣∣ ≤ ∣∣∣∣x− 1
x2 + 4

∣∣∣∣+ ∣∣∣∣ 1
x2 + 4

− 1
y2 + 4

∣∣∣∣
≤

∣∣∣∣x− 1
x2 + 4

∣∣∣∣+ |x− y|

≤ 5
2
·
∣∣∣∣x− 1

x2 + 4

∣∣∣∣+ |x− y|,

which is precisely the intended conclusion.
Case IV: Let x = 1 and y = 1. The inequality (20) which concerns us gets written this time∣∣∣∣1− 3

5

∣∣∣∣ ≤ 5
2
·
∣∣∣∣1− 3

5

∣∣∣∣+ |1− 1|

and it is obviously satisfied.
In view of the demonstrations made in cases I, II, III and IV we could now state that T1 satisfies

the property
(

E 5
2

)
.

We prove next that T2 satisfies condition
(

E 5
2

)
, hence we check the inequality

|x− T2y| ≤ 5
2
· |x− T2x|+ |x− y|, ∀x, y ∈ [0, 1]. (21)

Case I: Let x = 1 and y ∈ [0, 1). The inequality (21) written for this particular case is∣∣∣∣1− ln(1 + y)
2

∣∣∣∣ ≤ 5
2
·
∣∣∣∣1− 3

5

∣∣∣∣+ |1− y|,

that is

1− ln(1 + y)
2

≤ 1 + 1− y,

which is ultimately equivalent to condition f (y) = y− ln(1 + y)
2

≤ 1. Since f is nondecreasing

in the interval [0, 1), one has Im f = [ f (0), f (1)) = [0, 1− ln
√

2), so this inequality is satisfied.
Case II: Let x ∈ [0, 1) and y = 1. The inequality (21) for these particular assignments is

written ∣∣∣∣x− 3
5

∣∣∣∣ ≤ 5
2
·
∣∣∣∣x− ln(1 + x)

2

∣∣∣∣+ |x− 1|,

that is ∣∣∣∣x− 3
5

∣∣∣∣ ≤ 5
2

x− 5
4

ln(1 + x) + 1− x,

or even more precisely ∣∣∣∣x− 3
5

∣∣∣∣ ≤ 3
2

x− 5
4

ln(1 + x) + 1.

Taking this time the function g(x) =
3
2

x − 5
4

ln(1 + x) + 1, we notice that it is also

nondecreasing over the interval [0, 1), hence Im g = [g(0), g(1)) =

[
1,

5
2
− ln (2 4

√
2)
)

, so

g(x) > 1 >

∣∣∣∣x− 3
5

∣∣∣∣, ∀x ∈ [0, 1).

Case III: Let x, y ∈ [0, 1). One has
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∣∣∣∣x− ln(1 + y)
2

∣∣∣∣ ≤ ∣∣∣∣x− ln(1 + x)
2

∣∣∣∣+ 1
2
· |ln(1 + x)− ln(1 + y)|

≤
∣∣∣∣x− ln(1 + x)

2

∣∣∣∣+ 1
2
· |x− y|

≤ 5
2
·
∣∣∣∣x− ln(1 + x)

2

∣∣∣∣+ |x− y|,

which is precisely the inequality (21) for x, y ∈ [0, 1).
Case IV: Let x = 1 and y = 1. The inequality (21) which needs to be fulfilled is∣∣∣∣1− 3

5

∣∣∣∣ ≤ 5
2
·
∣∣∣∣1− 3

5

∣∣∣∣+ |1− 1|

and it is obviously satisfied. The four cases listed above prove that T2 satisfies the property
(

E 5
4

)
.

Moreover, in an absolutely similar way, we can prove that S1 and S2 satisfy condition
(

E 7
3

)
.

Finally, the statement regarding the two-dimensional operators T and S satisfying specific (E)-type
conditions is an immediate consequence of applying Minkowski’s inequality.

NUMERICAL SIMULATION. For the two mappings included in this example, we shall apply
next the iteration procedure (2) to obtain approximate value for the common fixed point. We
consider the initial estimation x0 = (1, 1) and we generate the corresponding approximation
sequence {xn}. The stopping criterion is set to be |xn+1 − xn| < ε, for an admissible error

ε = 10−3. Moreover, the iteration step coefficients are settled to be αn =
n

2n + 1
, βn =

1
2

and

γn =
2n

3n + 1
. By running the algorithm for this particular setting, we obtain the approximate

solution x∗ = (0.24627, 0.00060693) corresponding to the 8th execution of the iterative procedure.
A more precise image of the approximation sequence is included in Figure 1.

Figure 1. The approximation sequence for the initial estimation x0 = (1, 1).

Example 2. For a given real number p, consider the set C = {(p, x) : x > 0} ⊂ H, the Poincaré
half-plane. We define the mapping

T : C → C, T(p, x) =
(

p,
1
x

)
.

Then, T is nonexpansive on C with respect to the Poincaré metric d.
Indeed, for two points x, y ∈ H having the same projection p on the horizontal axis, that is

x1 = y1 = p, one finds

d((p, x2), (p, y2)) =

∣∣∣∣ln( x2

y2

)∣∣∣∣.
Therefore, if (p, x), (p, y) ∈ C, then

d(T(p, x), T(p, y)) = d
((

p,
1
x

)
,
(

p,
1
y

))
=
∣∣∣ln( y

x

)∣∣∣ = ∣∣∣∣ln( x
y

)∣∣∣∣ = d((p, x), (p, y)),
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so T is nonexpansive with respect to the hyperbolic distance.
We notice that C could also be embedded in R2. However, T fails to be nonexpansive with

respect to the Euclidean metric on R2. Indeed, by considering the points u =

(
p,

1
2

)
and v = (p, 1)

one has
dR2(Tu, Tv) = dR2((p, 2), (p, 1)) = 1,

while

dR2(u, v) = dR2

((
p,

1
2

)
, (p, 1)

)
=

1
2

.

Example 3. Consider the Poincaré half-plane H = {x = (x1, x2) : x1, x2 ∈ R, x2 > 0},
with the Poincaré metric

d(x, y) = 2 ln

(√
(y1 − x1)2 + (y2 − x2)2 +

√
(y1 − x1)2 + (y2 + x2)2

2
√

x2y2

)
.

We define the mapping

T : H→ H, T(x1, x2) = (−x1, x2).

Then, T is nonexpansive in connection with the hyperbolic distance d.
NUMERICAL SIMULATION. The aim this time is to apply the iterative procedure (1), for a

selected initial estimation x0 ∈ H in order to obtain the corresponding fixed point of T. This requires
first to have a precise image about how z = (1− t)x⊕ ty could be computed exactly. Given two
points x = (x1, x2), y = (y1, y2) ∈ H and the scalar t ∈ [0, 1], we want to find the expression for
z = (1− t)x⊕ ty (see Lemma 1 (i)), that is the unique point on the geodesic segment between x
and y such that

d(x, z) = td(x, y). (22)

Obviously, one also has d(z, y) = (1− t)d(x, y).
It is well known that the geodesic segments of the Poincaré half-plane are either

• Type a): segments of Euclidean straight lines that are perpendicular to the horizontal axis; or
• Type b): arcs of Euclidean semicircles that are centered on the horizontal axis.

We analyze next two distinct cases:
CASE 1. Assume that x and y have the same projection on the horizontal axis, that is

x1 = y1 = p, p ∈ R. In this case, the geodesic segment [x, y] is of Type a), therefore z1 = p.
Moreover, assume also that x2 < y2. Then x2 ≤ z2 ≤ y2. Using the Poincaré metric, condition (22)
becomes

ln
(

z2

x2

)
= tln

(
y2

x2

)
⇒ z2 = x1−t

2 yt
2.

Exactly the same result is to be found when x2 > y2.
CASE 2. Assume next that x1 6= y1. The geodesic segment [x, y] is of Type b). Let C(a, 0) and

R > 0 be the center and the radius, respectively, of the semicircle passing through x and y. Then,

a =
(y2

1 + y2
2)− (x2

1 + x2
2)

2(y1 − x1)
; R =

√
(y1 − x1)2 + (y2 − x2)2 ·

√
(y1 − x1)2 + (y2 + x2)2

2|x1 − y1|
. (23)

The Cartesian coordinates of x, y and z can now be related to the polar coordinates. Thus, we
have

x1 = a + R cos α, x2 = R sin α;
y1 = a + R cos β, y2 = R sin β;
z1 = a + R cos γ, z2 = R sin γ, α, β, γ ∈ (0, π).

By evaluating the hyperbolic length of the geodesic segments [x, y] and [x, z] we find the
expression in polar coordinates:
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d(x, y) =
∣∣∣∣ln(µ(α)

µ(β)

)∣∣∣∣, d(x, z) =
∣∣∣∣ln( µ(α)

µ(γ)

)∣∣∣∣,
where

µ : (0, π)→ (0, ∞), µ(α) = cscα− cotα =
1− cos α

sin α
.

Let us assume first that x2 < y2, that is α > β. Then, β ≤ γ ≤ α and, since µ is a
nondecreasing function, the condition (22) could be written as

ln
(

µ(α)

µ(γ)

)
= tln

(
µ(α)

µ(β)

)
⇒ µ(γ) = µ(α)1−tµ(β)t.

Exactly the same result is obtained when x2 > y2. By denoting λ(x, y, t) = µ(α)1−tµ(β)t

and going back to Cartesian coordinates we find

λ(x, y, t) =
(

R + a− x1

x2

)1−t(R + a− y1

y2

)t
. (24)

Moreover,

µ(γ) =
1− cos γ

sin γ
= λ(x, y, t)⇒ cos γ =

1− λ2(x, y, t)
1 + λ2(x, y, t)

, sin γ =
2λ(x, y, t)

1 + λ2(x, y, t)
,

therefore,

z =

(
a + R

1− λ2(x, y, t)
1 + λ2(x, y, t)

, R
2λ(x, y, t)

1 + λ2(x, y, t)

)
In conclusion, for two given points x, y ∈ H and t ∈ (0, 1), one has

(1− t)x⊕ ty =


(p, x1−t

2 yt
2), if x1 = y1 = p;(

a + R
1− λ2(x, y, t)
1 + λ2(x, y, t)

, R
2λ(x, y, t)

1 + λ2(x, y, t)

)
, if x1 6= y1,

where a, R and λ(x, y, t) are defined by the relations (23) and (24).
Next, we include the formula we have just found into the procedure (1) to reckon the fixed

point of the hyperbolic nonexpansive operator T. For this, let us consider the initial estimation
x0 = (1, 1) and the admissible error ε = 10−3. The existing criterion for the algorithm is set to be
d(xn+1, xn) < ε, where d is the Poincaré metric. Running the algorithm we find the approximate
solution x∗ = (0.00059421, 1.4142) and the number of iterations to be performed n = 17. The image
included in Figure 2 pictures the approximate sequence xn between the initial estimation and the
resulted solution. It is nice to notice that {xn} is entirely displayed on the geodesic connecting x0

and x∗ (the green semicircle).



Mathematics 2022, 10, 433 15 of 16

Figure 2. The approximation sequence for the initial estimation x0 = (1, 1).

5. Conclusions

Property (E) is one of the most general nonexpansivity conditions to be included
in the fixed point theory. Even more interesting becomes the study of two operators
with this property in order to identify their common fixed points. This paper properly
answers this issue and relies on the numerical approach on a Sn iteration procedures
adapted for two operators and a curved metric setting of CAT(0) type. The resulting
iterative sequence is proven to act as a ∆-convergent one under standard setting related
assumptions. Moreover, additional hypotheses regarding the operators, such as condition
(A’), change the convergence behavior into a strong one.

To emphasize the practical value of this formal analysis, several examples of nonex-
pansive or Garcia-Falset operators are provided. The settings chosen for the numerical
simulations are standard models of CAT(0) structures, such as the real axis R or the Poincaré
half-plane. As expected, fixed points or common fixed points are approximated within an
acceptable error through algorithms including the analyzed iteration procedure.

The results obtained in this paper inspire us to experiment in the future a study of
Suzuki-type operators on CAT(0)-spaces. They also provide an extremely wide class of gen-
eralized nonexpansive operators, which does not establish an inclusion relationship with
the class of operators with property (E). We are also interested in iteration procedures based
on metric projections on Hadamard spaces, possibly for problems of optimal proximity.
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