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Abstract: This paper deals with some theoretical aspects of hypergraphs related to hyperpaths and
hypertrees. In ordinary graph theory, the intersecting or adjacent edges contain exactly one vertex;
however, in the case of hypergraph theory, the adjacent or intersecting hyperedges may contain
more than one vertex. This fact leads to the intuitive notion of knots, i.e., a collection of explicit
vertices. The key idea of this manuscript lies in the introduction of the concept of the knot, which
is a subset of the intersection of some intersecting hyperedges. We define knot-hyperpaths and
equivalent knot-hyperpaths and study their relationships with the algebraic space continuity and
the pseudo-open character of maps. Moreover, we establish a sufficient condition under which a
hypergraph is a hypertree, without using the concept of the host graph.
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1. Introduction

Being a generalization of graphs and yet having its own unique complexity and utility,
hypergraph theory has emerged as a completely new dynamic research area. The funda-
mental concepts of path, tree, trail, cycle and their different well-known properties have
already found plenty of applications in real-world problems in networking systems [1,2] of
different types or in the field of bioinformatics [3–5]. The concept of the hyperpath, called
also the path (both terms being used in a synonymous way), in a hypergraph represents the
foundation of many research works. In the majority of these studies, the hypergraphs are
considered to be directed, though there are papers related to paths in the case of undirected
hypergraphs as well. Nguyen and Pallottino [6], in their work based on directed hyper-
graphs, have given some efficient algorithms in connection to some shortest path properties.
In the same direction, we recall the work of Nielsen, Andersen and Pretolani [7], where
the authors present the procedures for finding the K-shortest hyperpaths in a directed
hypergraph. It is worth underlining that the area of research related to hyperpaths, shortest
hyperpaths [6] and their links with vehicle navigation [1], network systems based on transit
schedules [2], cellular networks [3], etc., is flourishing.

In this paper, we deal with two different problems related to hypergraphs. One
concerns the behavior of hyperpaths under hyper-continuous mappings and pseudo-open
mappings, while the other one is related to hyperpaths and hypertrees. Our study was
motivated by the definition of the so-called algebraic space [8], introduced as a pair (X, SX),
where X is a non-empty arbitrary set and SX ⊆ P(X) a non-empty family of subsets
of X. An algebraic space can be seen as an extended version of a topological space but
without having any closure property with respect to union or intersection, and it recalls the
definition of the hypergraph to a great extent. As a result, the concept of pseudo-map or
pseudo-continuity could be then defined between two hypergraphs. The key element of
this parallel study is the new concept of the knot, which is a subset of hyperedge intersection
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vertices. Since, in a hypergraph, the hyperedges appear as some subsets of the vertex set,
it is trivial to note that the intersections of all possible adjacent hyperedges may contain
more than one vertex. This fact leads to the intuitive notion of the knot that is the collection
of explicit vertices. This notion further changes the dimension of perceiving the different
concepts of hypergraphs such as walk, trail, path, tree, etc., where each of the adjacent
hyperedge intersections gives rise to knots.

In graph theory, another important concept is that of the tree, which has been ex-
tensively used in networking, especially in theoretical computer science [9]. A graph G
is a tree if there exists a unique path between any two vertices. Recall that the concept
of the hypertree was introduced in hypergraph theory in terms of its host graph, as the
hypergraph that admits a host graph that is a tree [10]. We emphasize that this fundamental
characterization of trees is not generalized in hypergraph theory, in the sense that there
is no characterization of hypertrees merely in terms of hyperpaths. This motivated us to
present, in the second part of the paper, a characteristic of hypertrees in terms of hyperpaths,
without using the concept of the host graph.

The structure of this work can be summarized as follows. First, in Section 2, we
introduce the new concepts of point-hyperwalk, point-hypertrail and point-hyperpath,
showing their differences in one illustrative example. Next, the key concepts of the knot and
knot-hyperpath are defined. In Section 3, the notions of the hyper-continuous map, strictly
hyper-continuous map and pseudo-open map between two hypergraphs are introduced
and the behavior of point-hyperpaths and knot-hyperpaths under these notions is observed.
In particular, we prove that the image of a point-hyperpath under an injective pseudo-open
mapping is a point-hyperpath, while the image of a knot-hyperpath under a pseudo-
open map is again a knot-hyperpath. Regarding the inverse image, we show that the
inverse image of a knot-hyperpath under a surjective hyper-continuous map is a weak
knot-hyperpath, or a knot-hyperpath if the map is surjective and strictly hyper-continuous.
Section 4 is dedicated to the study of hypertrees. Based on the concept of equivalent entire
knot-hyperpaths, we establish a sufficient condition under which a hypergraph becomes a
hypertree. Moreover, we present an algorithm that extracts a host graph from a hypertree.
A concluding section ends our study.

2. Preliminaries

Many definitions of hypergraphs exist; here, we will adopt the original one, given by
Berge [11]. A hypergraph is a couple H = (V, E) defined by a finite set of vertices (called
also nodes) V = {v1, . . . , vn}, with n ∈ N, and the set E = {Ei}i∈N of non-empty subsets
of V, called hyperedges. Two hyperedges Ej, Ek ∈ E, with j 6= k, such that Ej = Ek are
called repeated hyperedges [12]. In this paper, all hypergraphs are considered to be with no
repeated hyperedges.

Definition 1 ([13]). Let H = (V, E) be a hypergraph. By a hyperpath between two distinct
vertices v1 and vk in V, we mean a sequence v1E1v2E2 . . . vk−1Ek−1vk of vertices and hyperedges
having the following properties:

(i) k is a positive integer;
(ii) v1, v2, . . . , vk are distinct vertices;
(iii) E1, E2, . . . , Ek−1 are hyperedges (not necessarily distinct);
(iv) vj, vj+1 ∈ Ej for j = 1, 2, . . . , k− 1.

We call this sequence a v1 − vk–hyperpath.

Definition 2 ([13]). A hypercycle in a hypergraph H = (V, E) on a vertex v1 is a sequence
v1E1v2E2 . . . vk−1Ek−1vkEkv1, having the following properties:

(i) k is a positive integer ≥ 3;
(ii) v1E1v2E2 . . . vk−1Ek−1vk is a v1 − vk–hyperpath;
(iii) at least one of the hyperedges E1, E2, . . . , Ek−1 is distinct from Ek;
(iv) vj, vj+1 ∈ Ej for j = 1, . . . , k− 1.
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It is important to note that a path in a graph does not contain repeated edges, while
this property is not retained in the definition of a hyperpath in a hypergraph as it appears
in Definition 1. Since, in some cases, it is necessary to distinguish this special case; we
define the following types of hyperpaths.

Definition 3. A point-hyperwalk in a hypergraph H = (V, E) is a hyperpath as defined in
Definition 1, where the vertices may be repeated. A point-hyperwalk where no hyperedge is repeated
(but vertices may be repeated) is called a point-hypertrail. A point-hyperpath is a point-hypertrail in
which vertices are not repeated.

In other words, a point-hyperpath is a point-hyperwalk where neither the edges nor
the vertices are repeated.

The above definitions are illustrated in the following example.

Example 1. Let H = (V, E) be a hypergraph with the vertex set V = {vi|i = 1, 2, . . . , 50} and
hyperedges E = {E1, E2, . . . , E10} such that
E1 = {v1, v2, v3, v4, v5, v47, v9, v10},
E2 = {v12, v11, v15, v9, v10, v8, v6, v16, v7},
E3 = {v11, v12, v15, v13, v46, v14, v30},
E4 = {v14, v30, v31, v34, v33},
E5 = {v14, v30, v20, v32, v22, v21},
E6 = {v21, v22, v44, v48, v49, v50, v43},
E7 = {v50, v43, v41, v42, v36, v45, v37},
E8 = {v36, v45, v37, v46, v40, v27, v29},
E9 = {v28, v23, v24, , v27, v29, v25, v26},
E10 = {v16, v7, v18, v17, v28, v23, v24}.

We represent this hypergraph in Figure 1.

Figure 1. Hypergraph explaining point-hyperwalk, point-hypertrail and point-hyperpath notions.

We notice that

• P ≡ v1E1v9E2v12E3v14E5v21E6v50E7v37E8v20E9v28E10v7E2v12 is a point-hyperwalk, but
not a point-hypertrail, because the hyperedge E2 is repeated.

• P ≡ v12E3v30E5v22E6v43E7v37E8v29E9v28E10v7E2v12 is a point-hypertrail. Here, the vertex
v12 is repeated, but there is no repetition of the hyperedges.

• P ≡ v16E10v28E9v27E8v36E7v50E6v22 is a point-hyperpath, since hyperedges and vertices are
not repeated.
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Suppose that H = (V, E) and H′ = (V′, E′) are two hypergraphs. Let f : V → V′

be a mapping and let P ≡ v1E1v2E2 . . . vk−1Ek−1vk denote an alternating sequence of
vertices and edges in the hypergraph H. Then, we denote the f -image of this sequence
as f (P) ≡ f (v1) f (E1) f (v2) f (E2) . . . f (vk−1) f (Ek−1) f (vk), where f (Ei), i = 1, 2, . . . , k is the
f -image of Ei, i = 1, 2, . . . , k, respectively.

Generalizing the notions in Definition 1, we are ready to introduce the concepts of the
knot and knot-hyperpath, where the vertices are replaced by a cluster of vertices, each of
them behaving in a significant manner.

Definition 4. A knot K in a hypergraph H = (V, E) is a non-empty subset of the intersections
of some intersecting hyperedges. In other words, if H = (V, E) is a hypergraph and K is a knot,
then K( 6= ∅) ⊆ ∩Ei for some intersecting hyperedges Ei, i = 1, 2, . . . , k and k ≥ 2. In particular,
if K = ∩Ei, then K is called an entire knot.

Definition 5. A knot-hyperpath in a hypergraph H = (V, E) between two vertices v1 and vn is
an alternating sequence of knots and hyperedges of the following type:

{v1}E1K1E2K2E3 . . . En−1Kn−1En{vn}, (1)

where Ki ⊆ (Ei ∩ Ei+1)\(∪i−1
t=1Kt), with i = 1, . . . , n− 1, v1 ∈ E1, vn ∈ En and Eis are distinct

hyperedges.
If Ki = Ei ∩ Ei+1 for all i = 1, 2, . . . , n − 1, then the knot-hyperpath is called the entire

knot-hyperpath.

Although the entire knot-hyperpath is a particular case of the knot-hyperpath, its
significance can be seen in Section 4.

From the constructions of knots, it is clear that knots are mutually disjointed. Here, n
is called the length of the knot-hyperpath.

Example 2. By taking the hypergraph defined in Example 1, we can observe that

{v4}E1{v9, v10}E2{v11, v12, v15}E3{v14, v30}E5{v22}E6{v50}

is a knot-hyperpath of length 5.

Definition 6. Two knot-hyperpaths

P1 ≡ {v1}E1K1E2K2E3 . . . En−1Kn−1En{vn}

and
P2 ≡ {v1}E

′
1K
′
1E
′
2K
′
2E
′
3 . . . E

′
n−1K

′
n−1E

′
n{vn}

of the same length of a hypergraph H = (V, E) are called equivalent or isomorphic if

(i) Ei ∩ E
′
i 6= ∅,

(ii) Ki ∩ K
′
i 6= ∅ for all i = 1, 2, . . . , n− 1.

The above definition further can be generalized to a finite number of knot-hyperpaths
(entire knot-hyperpaths) P1, P2, . . . , Pk, where k ≥ 2 and the intersections in items (i) and
(ii) are taken as follows:

(i)
⋂k

j=1 Ej
i 6= ∅

(ii)
⋂k

j=1 K j
i 6= ∅ for all i = 1, 2, . . . , n− 1.

Example 3. Consider the hypergraph H, with the vertex set

V = {v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13}
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and the hyperedges E1 = {v1, v2, v3, v4}, E2 = {v3, v4, v5, v7, v9}, E3 = {v2, v3, v4, v7, v8, v9},
E4 = {v8, v9, v10, v11, v12}, E5 = {v11, v12, v13}.
It can be easily verified that the following two knot-hyperpaths

P1 ≡ {v1}E1{v2, v3, v4}E3{v8, v9}E4{v11, v12}E5{v13}

and
P2 ≡ {v1}E1{v3, v4}E2{v9}E4{v11, v12}E5{v13}

are equivalent. We notice also that P1 and P2 are entire knot-hyperpaths, while

P
′
1 ≡ {v1}E1{v2, v3, v4}E3{v8, v9}E4{v11}E5{v13}

and
P
′
2 ≡ {v1}E1{v3, v4}E2{v9}E4{v12}E5{v13}

are not equivalent because the last two knots of the knot-hyperpaths P
′
1 and P

′
2 have empty intersec-

tions.

Definition 7 ([8]). A mapping f : V → V
′

from the vertex set of a hypergraph H = (V, E) to the
vertex set of another hypergraph K = (V

′
, E
′
) is said to be pseudo-open (in short, ps-open) if, for

each hyperedge Ei in E, the corresponding image f (Ei) is a hyperedge in E
′
.

Example 4. Let H = (V, E) and K = (V
′
, E
′
) be two hypergraphs with the vertex sets V =

{v1, v2, v3, v4, v5, v6} and V
′
= {v′1, v

′
2, v

′
3, v

′
4, v

′
5} and the hyperedge sets E = {{v1, v2},

{v2, v3, v4}, {v3, v4, v5}}, E
′
= {{v′1}, {v

′
2, v

′
5}, {v

′
1, v

′
2, v

′
5}}, respectively. Define the map

f : V → V
′

such that f (v1) = v
′
1 = f (v2), f (v3) = v

′
2 = f (v5), f (v4) = v

′
5, f (v6) = v

′
3.

Then, f ({v1, v2}) = {v
′
1}, f ({v2, v3, v4}) = {v

′
1, v

′
2, v

′
5}, f ({v3, v4, v5}) = {v

′
2, v

′
5}. Thus, for

each Ei ∈ E, we have f (Ei) ∈ E
′
. Hence, f is a ps-open mapping.

Definition 8. A hypergraph H = (V, E) is called connected if, for any two distinct vertices v1
and v2, there exists a hyperpath joining v1 and v2.

Definition 9. In a hypergraph H = (V, E), a sequence

{v1}G1K1G2K2G3 . . . Gn−1Kn−1Gn{vn}

is called a weak knot-hypergraph if each Gi ⊃ Ei, (Ei ∈ E) with Ki ⊆ (Gi−1 ∩ Gi)\(∪i−1
t=1Kt) for

all i = 1, 2, . . . , n− 2.

3. Hyperpaths and Hypercontinuity

In this section, we check whether the pseudo-open maps preserve the notion of
the point-hyperpath and knot-hyperpath between two hypergraphs and under which
conditions. Then, the notions of the hyper-continuous map and strictly hyper-continuous
map between two hypergraphs are stated and various possible relationships between any
two knot-hyperpaths under these notions are investigated.

Definition 10. A mapping f : V → V
′

between the vertex sets of two hypergraphs H = (V, E)
and K = (V

′
, E
′
) is called hyper-continuous if, for any E

′
i ∈ E

′
, there is some Ej ∈ E such that the

corresponding inverse image satisfies f−1(E
′
i) ⊇ Ej.

Example 5. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs, where

V = {v1, v2, v3, v4, v5, v6} and V
′
= {v′1, v

′
2, v

′
3, v

′
4, v

′
5} and E = {{v1, v2}, {v3}, {v3, v4,

v5}}, E
′
= {{v′1}, {v

′
2, v

′
3, v

′
4}, {v

′
1, v

′
2, v

′
3}}. A map f : V → V

′
is defined such that f (v1) =

v
′
1 = f (v2), f (v3) = v

′
2 = f (v5), f (v4) = v

′
5, f (v6) = v

′
3. Now, we have {v′1} ∈ E

′
and
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f−1({v′1}) = {v1, v2} ⊇ {v1, v2}(∈ E). Again, {v′2, v
′
3, v

′
4} ∈ E

′
and f−1({v′2, v

′
3, v

′
4}) =

{v3, v5, v6} ⊇ {v3}(∈ E). Moreover, {v′1, v
′
2, v

′
3}∈E

′
and f−1({v′1, v

′
2, v

′
3})={v1, v2, v3, v5} ⊇

{v1, v2}, {v3}(∈ E).
Thus, for each E

′
i ∈ E

′
, i = 1, 2, 3, there is one Ej ∈ E, j = 1, 2, 3, such that f−1(E

′
i) ⊇ Ej(∈

E). Thus, f is a hyper-continuous map from V to V
′
.

Definition 11. A mapping f : V → V
′

between the vertex sets of two hypergraphs H = (V, E)
and K = (V

′
, E
′
) is called strictly hyper-continuous if, for each E

′
i ∈ E

′
, there is an Ej ∈ E, such

that f−1(E
′
i) = Ej.

Example 6. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs, where V =

{v1, v2, v3, v4, v5, v6} and V
′
= {v′1, v

′
2, v

′
3, v

′
4, v

′
5} and E = {{v1, v2},

{v2, v3, v4}, {v3, v4, v5}}, E
′
= {{v′1}, {v

′
2, v

′
5}, {v

′
1, v

′
4}}. A map f : V → V

′
is defined such

that f (v1) = v
′
1 = f (v2), f (v3) = v

′
2 = f (v5), f (v4) = v

′
5, f (v6) = v

′
3. Now, we have {v′1} ∈

E
′

and f−1({v′1}) = {v1, v2} ∈ E. Again, {v′2, v
′
5} ∈ E

′
and f−1({v′2, v

′
5}) = {v3, v4, v5} ∈ E.

Moreover, we have {v′1, v
′
4} ∈ E

′
and f−1({v′1, v

′
4}) = {v1, v2} ∈ E.

Thus, for each E
′
i ∈ E

′
, i = 1, 2, 3, there exists an Ej ∈ E such that f−1(E

′
i) = Ej. Thus, f is

strictly hyper-continuous.

Theorem 1. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs and f is a mapping

from V into V
′
. If f is a ps-open mapping, then the f -image of a point-hyperwalk in H is a

point-hyperwalk in K.

Proof. Let
P ≡ v1E1v2E2v3E3 . . . vn−1Envn

be a point-hyperwalk in H. Then, we obtain its f -image

f (P) ≡ f (v1) f (E1) f (v2) f (E2) f (v3) f (E)3 . . . f (vn−1) f (En) f (vn).

Since P is a point-hyperwalk, it follows that v1 ∈ E1, v2 ∈ E1 ∩ E2, . . . , vn−1 ∈ En−1 ∩ En
and vn ∈ En. Thus, f (v1) ∈ f (E1), f (v2) ∈ f (E1 ∩ E2), . . . , f (vn−1) ∈ f (En−1 ∩ En),
f (vn) ∈ En. Now, E1 ∩ E2 ⊆ E1, E2 implies that f (E1 ∩ E2) ⊆ f (E1), f (E2), whence
f (E1 ∩ E2) ⊆ f (E1) ∩ f (E2). Therefore, f (v2) ∈ f (E1 ∩ E2) ⊆ f (E1) ∩ f (E2). Similarly,
f (v3) ∈ f (E2) ∩ f (E3), . . . , f (vn) ∈ f (En). Hence, f (P) is a point-hyperwalk in K.

Corollary 1. In Theorem 1, if f is an injective mapping, then the f -image of a point-hyperpath in
H is a point-hyperpath in K, too.

Theorem 2. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs and f is a ps-open

mapping from V to V
′
. Then, the f -image of a knot-hyperpath in H is a knot-hyperpath in K, too.

Proof. Let P ≡ {v1}E1K1E2K2E3K3 . . . Kn−1En{vn} be a knot-hyperpath in H with K0 =
{v1} ⊆ E1, Kn = {vn} ⊆ En and Ki ⊆ (Ei+1 ∩ Ei)\(∪i−1

t=1Kt), i = 1, 2, . . . , n− 1. Then, we
have the f -image

f (P) ≡ f (K0) f (E1) f (K1) f (E2) f (K2) f (E3) f (K3) . . . f (Kn−1) f (En) f (Kn).

In order to prove that f (P) is a knot-hyperpath, we first show that f (K0) ⊆ f (E1) and
f (Kn) ⊆ f (En). Since K0 ⊆ E1 and Kn ⊆ En, we have f (K0) ⊆ f (E1) and f (Kn) ⊆ f (En).

Since K2 ⊆ (E2 ∩ E3)\E1, we have K2 ⊆ (E2 ∩ E3) ∩ Kc
1. It follows that f (K2) ⊆

f ((E2 ∩ E3) ∩ Kc
1) ⊆ f (E2 ∩ E3) ∩ f (Kc

1) ⊆ f (E3 ∩ E2) ∩ ( f (K1))
c ⊆ f (E3 ∩ E2)\ f (K1).

Hence, f (K2) ⊆ f (E3 ∩ E2)\ f (K1).
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Similarly, K3 ⊆ (E4 ∩ E3)\(K1 ∪ K2) implies that f (K3) ⊆ f (E4 ∩ E3)\ f (K1) ∪ f (K2)
and so on. Thus, Ki ⊆ (Ei ∩ Ei+1)\(∪i−1

t=1Kt) implies that

f (Ki) ⊆ f (Ei ∩ Ei+1)\ ∪i−1
t=1 f (Kt) (2)

for any i = 1, 2, . . . , n− 1. Hence, we conclude that f (P) is a knot-hyperpath in K.

Theorem 3. Suppose that H = (V, E) and K = (V
′
, E
′
) are two hypergraphs. If f is a hyper-

continuous map from V onto V
′
, then the inverse image of a knot-hyperpath in K under f is a weak

knot-hyperpath in H.

Proof. Let P
′ ≡ K

′
0E
′
1K
′
1E
′
2K
′
2 . . . K

′
n−1E

′
nK
′
n be a knot-hyperpath in K. As f is hyper-

continuous, we have f−1(E
′
1) ⊇ E1, f−1(E

′
2) ⊇ E2, . . . , f−1(E

′
n) ⊇ En, for some hyperedges

E1, E2, . . . , En ∈ E. Moreover, the sets f−1(Ki), i = 0, 1, 2, . . . , n are nonempty because f is
an onto mapping. Now, the inverse image of the knot-hyperpath can be written as

f−1(K
′
0) f−1(E

′
1) f−1(K

′
1) f−1(E

′
2) . . . f−1(K

′
n−1) f−1(E

′
n) f−1(K

′
n),

where f−1(E
′
i) ⊇ Ei, for i = 1, 2, 3, . . . , n. Since the inverse set function behaves well for

union, intersection and complement, it follows that the conditions of a knot-hyperpath are
easily satisfied. Hence, f−1(P

′
) is a weak knot-hyperpath.

Corollary 2. The inverse image of an onto strictly hyper-continuous map of a knot-hyperpath is
again a knot-hyperpath.

Proof. Consider the knot-hyperpath

P
′ ≡ K

′
0E
′
1K
′
1E
′
2K
′
2 . . . K

′
n−1E

′
nK
′
n

as in the proof of Theorem 3. As f is strictly hyper-continuous, each f−1(Ei) belongs to E
and, by using similar arguments, we can conclude that

f−1(P
′
) ≡ f−1(K

′
0) f−1(E

′
1) f−1(K

′
1) . . . f−1(K

′
n−1) f−1(E

′
n) f−1(K

′
n)

is a knot-hyperpath.

Theorem 4. Let f : V → V
′

be a ps-open mapping from a hypergraph H = (V, E) onto a
hypergraph K = (V

′
, E
′
). If H is connected, then K is connected, too.

Proof. Let v
′
1 and v

′
2 be two any vertices in K. Since f is onto, there exists v1, v2 ∈ V such

that f (v1) = v
′
1 and f (v2) = v

′
2 ∈ V. Moreover, since H is connected and v1, v2 ∈ V, there

exists a knot-hyperpath P from v1 to v2. Because the image of a knot-hyperpath under a
ps-open mapping is again a knot-hyperpath in K, starting at f (v1) = v1

′
and ending at

f (v2) = v2
′
, we immediately conclude that K is connected.

4. Hyperpaths and Hypertrees

In this section, we will present a sufficient condition, only involving hyperpaths, under
which a hypergraph is a hypertree. Till now, the definition of a hypertree has been based
on the concept of the host graph.

Definition 12 ([14]). Suppose that H = (V, E) is a hypergraph and G = (V, F) is a graph over
the same vertex set V. We say that G is a host graph of H if each hyperedge Ei ∈ E induces a
connected subgraph in G.
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Lemma 1. There exists at least one host graph G of the hypergraph H in which the induced
subgraph obtained from any two equivalent knot-hyperpaths never forms a cycle.

Proof. Let P1 and P2 be any two equivalent knot-hyperpaths of the hypergraph H, which
may be denoted as follows:

P1 ≡ K0 = {v1}E1K1E2K2E3K3 . . . Kn−1EnKn = {vn}

and
P2 ≡ K0

′
= {v1}E1

′
K1
′
E2
′
K2
′
E3
′
K3
′
. . . Kn−1

′
En
′
Kn
′
= {vn}

and graphically represented in Figure 2.
Since they are equivalent knot-hyperpaths, it follows that Ki ∩ Ki

′ 6= ∅, Ei ∩ Ei
′ 6= ∅,

Ki ∩ Ki+1 = ∅, and Ki
′ ∩ Ki+1

′
= ∅.

Figure 2. A schematic diagram of two equivalent knot-hyperpaths P1 and P2.

We note that E1 ∪ E
′
1 can be expressed as the disjoint union of E1\E1

′
, E1

′\E1 and
E1 ∩ E1

′
. As we know that, in any host graph of a hypergraph, all the vertices in a hyperedge

are connected, and since E1 ∩ E1
′

is contained in E1 and E1
′
, it follows that all the vertices

in E1 ∩ E1
′

can be connected to form a graph without cycles. Moreover, since E1 ∩ E1
′

and
E1\E1

′
are contained in E1, a graph can be drawn by connecting all the vertices in E1\E1

′

without forming a cycle, which can be further connected with the cycle-free graph drawn in
E1 ∩ E1

′
in the previous step. By connecting vertices in such a manner, the resultant graph

will never form a cycle. Similarly, a graph can be drawn by connecting the cycle-free graph
drawn in E1 ∩ E1

′
with a cycle-free graph in E1

′\E1. All these constructions are depicted in
Figure 3.
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Figure 3. Model of cycle-free connected induced subgraph of a host graph of the hypergraph H.

The model is constructed in such a way that the vertex v1 is connected to K1 ∩ K1
′

and K1 ∩ K1
′

is connected to both E1\E1
′

and E1
′\E1 through K1 ∪ K1

′
without forming a

cycle. Furthermore, it is to be noted that because K1 ∩ K1
′

is connected to E1\E1
′
, in the

next step, K2 ∩ K2
′

will connect to those vertices of E2\E2
′

that are not in E1, in order to
not create a cycle. Similarly, K2 ∩ K2

′
will connect to those vertices of E1

′\E1 that are not
in E1

′
. This further continues till the last vertex vn, where vn is connected to Kn−1 ∩ K

′
n−1

and Kn−1 ∩ K
′
n−1 is connected to En\En

′
and En

′\En through K1 ∪ K1
′
, without forming

a cycle. In this manner, a host graph can be drawn from the hypergraph H, where the
induced subgraph obtained from the vertices in the edges of the two paths is cycle-free. We
conclude that there exists at least one host graph G of H in which the induced subgraph
obtained from the two equivalent knot-hyperpaths will never form a cycle.

Remark 1. If the induced subgraph obtained from the vertex set of two knot-hyperpaths joining the
same vertices of any host graph of a hypergraph always produces a cycle, then the knot-hyperpaths
are not equivalent.

Theorem 5. Suppose that H is a connected hypergraph, which is a hypertree. Then, any entire
knot-hyperpaths having the same length and connecting any two vertices are equivalent.

Proof. Let P1 and P2 be any two entire knot-hyperpaths of the hypergraph H, which may
be denoted as follows:

P1 ≡ K0 = {v1}E1K1E2K2E3K3 . . . Kn−1EnKn = {vn}

and
P2 ≡ K

′
0 = {v1}E

′
1K
′
1E
′
2K
′
2E
′
3K
′
3 . . . K

′
n−1E

′
nK
′
n = {vn}.

If P1 and P2 are equivalent knot-hyperpaths, then the result is proven.
On the contrary, if P1 and P2 are not equivalent, then there exists a pair of edges

(Ei0 , E
′
i0
), where Ei0 is from P1 and E

′
i0

is from P2, such that Ei0 ∩ E
′
i0
= ∅. Since Ki0−1, Ki0 ⊆

Ei0 and K
′
i0−1, K

′
i0
⊆ E

′
i0

, we have Ki0−1 ∩ K
′
i0−1 = ∅ = Ki0 ∩ K

′
i0

. Moreover, let Ej0 , E
′
j0

be

the edges such that Ej0 ∩ E
′
j0
6= ∅, while Ek ∩ E

′
k = ∅, for any k ∈ {i0, i0 + 1, . . . , j0 − 1}.

Then, the edges Ei0−1 to Ej0 and E
′
i0−1 to E

′
j0

will always form a cycle (see Figure 4) in any
host graph of H, which is a contradiction. Therefore, P1 and P2 are equivalent. Thus, we can
conclude that if H is a hypertree, then, between any two vertices, the entire knot-hyperpaths
having the same length are unique up to isomorphism.
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Figure 4. The cycle formed in a host graph of a hypergraph.

It is to be noted that two knot-hyperpaths joining two vertices in a hypertree may not
always be equivalent. This can be observed in Example 7 by introducing an extra edge
{v6, v7, v10} to the hypergraph, which subsequently produces two knot-hyperpaths joining
v0 and v1, but with different lengths.

Theorem 6. Suppose that H is a hypergraph such that, between any two vertices, there exists a
unique entire knot-hyperpath up to isomorphism. Then, H is a hypertree.

Proof. By hypothesis, between any two vertices v1 and v2 of H, there exists an entire knot-
hyperpath, which is unique up to isomorphism. It follows that H is connected. To show
that H is a hypertree, it is enough to show that H admits a host graph that is a tree. Let

P ≡ K0 = {v1}E1K1E2K2E3K3 . . . Kn−1EnKn = {v2}

be an entire knot-hyperpath joining the vertices v1 and v2. Then, the vertices contained in
the edges of this knot-hyperpath can be joined without forming a cycle, in such a way that
the constructed graph G1 is an induced subgraph with vertex set V1 = ∪Ei of some host
graph G of the given hypergraph H. Now, if ∪Ei = V, then we can take G = G1, which is a
tree. Hence, in this case, H is a hypertree and the theorem is proven.

If ∪Ei 6= V, then let v3 ∈ V be such that v3 /∈ ∪Ei. Let

P
′ ≡ {v1}E

′
1K
′
1E
′
2 . . . K

′
k−1E

′
k{v3}

be an entire knot-hyperpath joining the vertices v1 and v3. We note that there may exist
some hyperedges in P

′
that coincide with the hyperedges of P. Now, excluding these

common hyperedges, the rest of the hyperedges of P
′

can be joined without forming a cycle.
In this way, an induced subgraph G2 can be formed with vertex set ∪E

′
j and the edges set as

the union of those edges common with G1 and the edges newly formed from hyperedges
of P

′
, which are not in P. It is clear from the construction that both subgraphs G1 and G2

are not cyclic and the union G1 ∪ G2 is connected; otherwise, H would have two entire
knot-hyperpaths joining the same vertices, but not equivalent (see proof of Theorem 5).
Now, if (∪Ei)∪ (∪E

′
j) = V, then G = G1 ∪G2 is the host graph of H that is a tree and hence

H is again a hypertree.
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If (∪Ei) ∪ (∪E
′
j) 6= V, then there exists a vertex v4 ∈ V that is not in (∪Ei) ∪ (∪E

′
j).

Then, we will have an entire knot-hyperpath P
′′

joining v1 and v4 as follows:

P
′′ ≡ {v1}E

′′
1 K
′′
1 E
′′
2 . . . K

′′
l−1E

′′
l {v4}.

Now, excluding those hyperedges of P
′′

that are common with P and P
′
, the rest

of the hyperedges of P
′′

can be joined without forming a cycle. In this way, an induced
subgraph G3 can be formed with vertex set ∪E

′′
l and the edges set as the union of those

edges common with G1 ∪ G2 and the edges newly formed from hyperedges of P
′′

that are
not in P and P

′
. It is clear from the construction that all the subgraphs G1, G2 and G3 are

not cyclic and the union G1 ∪ G2 ∪ G3 is connected. Now, if (∪Ei) ∪ (∪E
′
j) ∪ (∪E

′′
l ) = V,

then G = G1 ∪ G2 ∪ G3 is the host graph of H that is a tree and hence H is a hypertree.
As the vertex set of the hypergraph is finite, the process has a finite number of steps.

Thus, we can conclude that if H is a hypergraph such that, between any two vertices, there
exists an entire knot-hyperpath unique up to isomorphism, then H is a hypertree.

Remark 2. We can notice that the hypergraph considered in Example 3 is a hypertree, but the two
knot-hyperpaths P

′
1 and P

′
2 joining the vertices v1 and v13 are not equivalent, even though they have

the same length, while all the entire knot-hyperpaths (for example, P1 and P2) are equivalent. Hence,
the property of knots of being entire, in the above two theorems, is an important hypothesis to be
considered.

To illustrate the algorithm stated in the proof of Theorem 6, we present the following
example, where the considered hypergraph is a hypertree and a host graph is drawn using
the technique used in the proof of Theorem 6. This hypertree is represented in Figure 5.

Example 7. Consider the hypergraph H = (V, E), where V = {v0, v1, v2, . . . , v16} and E =
{E1 = {v0, v7, v6}, E2 = {v6, v10, v11}, E3 = {v11, v14, v15, v5, v16}, E4 = {v3, v1, v13}, E5 =
{v6, v2}, E6 = {v5, v16}, E7 = {v4, v9, v12}, E8 = {v5, v8, v13, v9}}. One can easily verify that
H is a hypertree and, between any two vertices, there exists an entire knot-hyperpath, unique up to
isomorphism. Now, we will use the technique used in the proof of Theorem 6, in order to obtain a
host graph that is a tree.

Figure 5. A hypergraph that is a hypertree.

Let us consider the vertices v0 and v1 and the knot-hyperpath

P ≡ {v0}E1{v6}E2{v11}E3{v5}E4{v13}E8{v1}
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joining v0 and v1. Now, the vertices in all hyperedges are connected and form a graph G1 in such a
way that it is not cyclic and it is an induced subgraph with vertex set V1 = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E8
of some host graph G of H.

Clearly, V 6= V1, and so we consider the vertex v2 ∈ V, which is not in V1. Now, a hyperpath
P
′

from v0 to v2 is constructed as follows:

P
′ ≡ {v0}E1{v6}E2{v11}E3{v5}E6{v2}.

Clearly, except E6, all other hyperedges of this knot-hyperpath appear in the previous knot-
hyperpath, and so vertices of E6 are joined in an acyclic way and represent a graph G2 with vertex
set V2 = E1 ∪ E2 ∪ E3 ∪ E6.

Here, we note that the union of the two graphs G1 and G2 is acyclic and connected. Moreover,
V1 ∪V2 6= V. Therefore, we consider an arbitrary vertex from v4, v12, v16 that is not in V1 ∪V2.
Let us consider the vertex v4 and the knot-hyperpath P

′′
constructed as follows:

P
′′ ≡ {v0}E1{v6}E2{v11}E3{v5}E4{v9}E7{v4}.

Clearly, except E7, all other hyperedges of this knot-hyperpath appear in the previous knot-
hyperpaths, and so vertices of E7 are joined in an acyclic way that represents a graph G3 with
vertex set V3 = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E7. Thus, G1 ∪ G2 ∪ G3 is connected and acyclic. Since
V1 ∪ V2 ∪ V3 6= V, we consider the vertex v16, the only one that is not in this union and the
knot-hyperpath

P
′′′ ≡ {v0}E1{v6}E5{v16}.

Clearly, except E5, all other hyperedges of this knot-hyperpath appear in the previous knot-
hyperpaths, and so vertices of E5 are joined in an acyclic way that represents a graph G4 with vertex
set V4 = E1 ∪ E5. Now, G1 ∪ G2 ∪ G3 ∪ G4 is connected and acyclic, and V1 ∪V2 ∪V3 ∪V4 = V.
Therefore, G = G1 ∪ G2 ∪ G3 ∪ G4 is the required host graph, which is a tree.

5. Conclusions

Based on the definition of a knot in a hypergraph H, which is a subset of the in-
tersections of some intersecting hyperedges of H, we have introduced the notion of the
knot-hyperpath, in order to better characterize the hyper-continuity and pseudo-continuity
of functions between two hypergraphs. Moreover, in the second part of the paper, we
have characterized the hypertrees without using the concept of a host graph. A sufficient
condition is established to check whether or not a hypergraph is a hypertree. Furthermore,
an algorithm is designed in order to extract from a hypertree a host graph that is a tree.
This algorithm has the potential to determine whether a hypergraph is a hypertree or not.
As we know, hypergraphs and hypertrees are extensively used in different branches of
applied sciences, including networking and theoretical computer science, and therefore
this investigation will give more future ideas towards the applicability of hypergraphs and
hypertrees in these fields.
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