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Abstract: We consider a delayed prey–predator model incorporating a refuge with a non-monotone
functional response. It is supposed that prey can live in the predatory region and prey refuge,
respectively. Based on Mawhin’s coincidence degree and nontrivial estimation techniques for a priori
bounds of unknown solutions to the operator equation Lv = λNv, we prove the existence of multiple
periodic solutions. Finally, an example demonstrates the feasibility of our main results.
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1. Introduction

The predator–prey model [1,2] generally takes the form of

dxi(t)
dt

= xi(t)[ri(t) +
n

∑
j=1

aijxj(t)], i = 1, 2, · · · , n.

To this day, the Lotka–Volterra type system is one of the important themes in math-
ematical biology. Many scholars have made contributions to it (see, e.g., [3–21]). In the
interaction between prey and predator, there always exists a phenomenon of prey refuge.
In general, the entire prey population lives in two areas: the predatory region and the prey
refuge. From a biological view, the prey refuge can exist without predators; therefore, it can
help improve the population density of the prey. In addition, a prey refuge is an effective
strategy to reduce predation in the evolution of prey population. For this reason, it was
proposed by Gause et al. [22,23]. Moreover, Magalhães [24] considered the refuge effect on
the dynamics of thrips prey and mite predators. Ghosh et al. [25] studied the influence on a
predator–prey system of adding extra food for predators and incorporating a prey refuge.
Xie [26] investigated a prey–predator model incorporating fractional-order factors and a
prey refuge. When in a high-prey refuge ecological system, Sahoo et al. [27,28] observed
that the possibility of predator extinction could be eliminated by providing additional
food to the predator population. Motivated by these works, Jana et al. [29] considered the
following prey–predator model with prey refuge:

du
dt

= r1u(1− u
k1
)− σ1u + σ2v,

dv
dt

= r2v(1− v
k2
) + σ1u− σ2v− αvw

a+v ,
dw
dt

= −d̄w− γw2 + βv(t−τ)w(t−τ)
a+v(t−τ)

,

(1)

where u is the density of the prey in the refuge and v is the density the prey in the predatory
region; w denotes the density of the predator in the predatory region; the intrinsic growth
rate for u and v is denoted by r1 and r2, respectively; the prey migrating in the refuge to the
predatory region is given by σ1 and migrating from the predatory region to the refuge is denoted
by σ2; k1 and k2 are the environment carrying capacity for u and v, respectively; d̄ and γ are the
natural death rate and the density dependent mortality rate of predator, respectively; the rate of
the predator consuming prey is denoted by β (suppose that 0 < β ≤ α); τ is the delay; and a
and α are two parameters in Holling type II functional response.
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On the other hand, functional response is also an important factor affecting the
predator–prey model. In [30], we proved that there exists at least one positive periodic
solution for Jana’s model with a Holling type II functional response. However, there exists
a functional response unlike the Holling functional responses. Some experiments have
indicated that it may occur at the microbial level: when nutrient concentrations reach
a high level, they may inhibit specific growth rates; see [31]. Hence, the non-monotone
functional response was considered and used to model the inhibitory effect at high con-
centrations [32–34]. In addition, in real-world applications, some researchers believe that
predators living in the predatory region are classified by two fixed ages: one is mature
predators, and the other is immature predators—the immature predator have no ability to
attack prey; see [35–39].

Motivated by the works of Jana et al. [29] and Chen [34], in the present paper, we
establish the following delayed stage-structured prey–predator model with a prey refuge
and non-monotone functional response:

dx
dt

= r1(t)x(t)(1− x(t)
k1(t)

)− σ1(t)x(t) + σ2(t)y(t),
dy
dt

= r2(t)y(t)(1− y(t)
k2(t)

) + σ1(t)x(t)− σ2(t)y(t)− α(t)y(t)z2(t)
y2(t)/m+y(t)+a ,

dz1

dt
= β(t)y(t)z2(t)

y2(t)/m+y(t)+a −
β(t−τ)y(t−τ)z2(t−τ)
y2(t−τ)/m+y(t−τ)+a e−

∫ t
t−τ k(s)ds − k(t)z1(t),

dz2

dt
= β(t−τ)y(t−τ)z2(t−τ)

y2(t−τ)/m+y(t−τ)+a e−
∫ t

t−τ k(s)ds − d2(t)z2(t),

(2)

where z1(t) and z2(t) are the density of the immature predator and mature predator at
time t, respectively. r1(t), r2(t), k1(t), k2(t), σ1(t), σ2(t), α(t), β(t), k(t), and d2(t) are all
continuously positive periodic solutions with period ω. k(t) and d(t) are the death rate of
the predator. Moreover, the non-monotone functional response is αy

y2/m+y+a . The term

exp{−
∫ t

t−τ
k(s)ds} y(t− τ)z2(t− τ)

y2(t− τ)/m + y(t− τ) + a

indicates the number of immature predators that were born at time (t− τ) that still survive
at time t and then become mature predators. Moreover, the term

∫ t
t−τ k(s)ds denotes

the stage-structured degree of the immature predator; one can refer to Liu et al. (see [11]
pp. 670–671).

In terms of the number of creatures, the initial conditions are associated with

(x(t), y(t), z1(t), z2(t)) ∈ C+ = C([−τ, 0],R4
+), x(0) > 0, y(0) > 0, z1(0) > 0, z2(0) > 0.

It is well known that the global existence of periodic solutions is a very basic and
important problem in the study of periodic population dynamics. Because periodic environ-
ments such as the seasonable effect are important factors, the existence of periodic solutions
plays a similar role to a global equilibrium in an autonomous model. Thus, the aim of
the present paper is to find some suitable conditions of the existence of positive periodic
solutions for system (2). Based on Mawhin’s coincidence degree theory and other nontrivial
techniques, we prove the existence of multiple positive periodic solutions for system (2)
in Section 2. In Section 3, we propose some examples to demonstrate the feasibility of our
main results.
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2. The Existence of Multiple Positive Periodic Solutions

Firstly, we separate the third equation of system (2) from the whole system and obtain
the following subsystem:

dx
dt

= r1(t)x(t)(1− x(t)
k1(t)

)− σ1(t)x(t) + σ2(t)y(t),
dy
dt

= r2(t)y(t)(1− y(t)
k2(t)

) + σ1(t)x(t)− σ2(t)y(t)−
α(t)y(t)z2(t)

y2(t)/m + y(t) + a
,

dz2

dt
= −d2(t)z2(t) +

β(t− τ)y(t− τ)z2(t− τ)

y2(t− τ)/m + y(t− τ) + a
e−
∫ t

t−τ k(s)ds.

(3)

The initial values for system (3) are

(x(t), y(t), z2(t)) ∈ C+ = C([−τ, 0],R3
+), x(0) > 0, y(0) > 0, z2(0) > 0.

To obtain the multiple positive periodic solutions of system (3), we summarize the
following lemmas.

Lemma 1. Let Ω ∈ V be an open bounded set. Assume that L is a Fredholm operator of index zero
and N is L-compact on Ω̄. Furthermore, if the following conditions are fulfilled

(a) for each fixed λ ∈ (0, 1), v ∈ ∂Ω ∩ DomL, Lv 6= λNv;
(b) for each fixed v ∈ ∂Ω ∩ ker L, QNv 6= 0 and deg[JQN, Ω ∩ ker L, 0] 6= 0;
then the operator equation Lv = Nv has at least one solution in Ω̄ ∩ DomL.

Note that operator L is said to be a Fredholm operator of index zero if dim ker L =
codim=L < ∞ and =L is closed in V. If L is a Fredholm mapping of index zero, then
there exist continuous projectors P : U → U and Q : V → V such that =P = ker L and
=L = ker Q = =(I −Q), where U, V are Banach spaces. For further symbolic meaning of
the concepts in Lemma 2.1, one can refer to [40–42] for details.

Lemma 2 ([32,41]). Assume that x(t) is an ω-periodic function that is continuously differentiable.
Then, there exists a t̂ ∈ [0, ω] such that

|x(t)| ≤ |x(t̂)|+
∫ ω

0
|ẋ(s)|ds or |x(t)| ≥ |x(t̂)| −

∫ ω

0
|ẋ(s)|ds.

For the sake of convenience, we use notations as follows.
ϑ̄ = 1

ω

∫ ω
0 ϑ(s)ds, ϑL = min

t∈[0,ω]
ϑ(t), ϑM = max

t∈[0,ω]
ϑ(t),

l± = 1
2dL

2

{
m(βMe2σ̄2ω − dL

2 )± [m2(βMe2σ̄2ω − dL
2 )

2 − 4ma(dL
2 )

2]
1
2

}
,

h± = 1
2dM

2 e2σ̄2ω

{
m(βLe−τkM − dM

2 e2σ̄2ω)± [m2(βLe−τkM − dM
2 e2σ̄2ω)2 − 4ma(dM

2 e2σ̄2ω)2]
1
2

}
,

b1 = 1
2 (

k̄1
r1
)
{
(r̄1 − σ̄1) + [(σ̄1 − r̄1)

2 + 4( r̄1
k1
)σ̄2l+e2σ̄2ω ]

1
2

}
,

b2 = ( k̄1
r1
)(r̄1 − σ̄1), b3 = a

ᾱ{(r̄2 − σ̄2)− ( r̄2
k2
)l+e2σ̄2ω},

b4 = 1
ᾱ{(r̄2 − σ̄2) + σ̄1b1e2σ̄1ω} · f (ln l+ + 2σ̄2ω),

b5 = 1
2d̄2

{
m(b̄− d̄2)− [m2(d̄2 − b̄)2 − 4mad̄2]

1
2

}
,

b6 = 1
2d̄2

{
m(b̄− d̄2) + [m2(d̄2 − b̄)2 − 4mad̄2]

1
2

}
,

b7 = 1
2 (

k̄1
r1
)
{
(r̄1 − σ̄1) + [(r̄1 − σ̄1)

2 + 4σ̄2b5(
r̄1
k1
)]

1
2

}
,

b8 = 1
2 (

k̄1
r1
)
{
(r̄1 − σ̄1) + [(r̄1 − σ̄1)

2 + 4σ̄2b6(
r̄1
k1
)]

1
2

}
,

b9 = 1
ᾱ{(r̄2 − σ̄2)− ( r̄2

k2
)b5 + σ̄1

b7
b5
} · f (ln b5),

b10 = 1
ᾱ{(r̄2 − σ̄2)− ( r̄2

k2
)b6 + σ̄1

b8
b6
} · f (ln b6).
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Furthermore, suppose that

(H1) : βM > dL
2 (1 + 2

√
a
m
)eτkL−2σ̄2ω;

(H2) : r̄2 > σ̄2 + (
r̄2

k2
)l+e2σ̄2ω.

As mentioned in the last paragraph of the introduction, periodic solutions are of great
importance. It is reasonable to seek conditions (that is, (H1), (H2)) under which the result-
ing periodic system would have positive periodic solutions. From a biological viewpoint,
the assumption (H1) implies that the rate of predator feeding on prey is affected by the
death rate of predators, the time delay, and the migration of prey, while the assumption
(H2) implies that the intrinsic growth rate of prey in a predator region is influenced by prey
migration, environmental carrying capacity, and predator predation.

Now, we are in a position to state our main theorem.

Theorem 1. If (H1) and (H2) hold, then system (2) has at least two positive periodic solutions.

Proof. We prove this theorem into two steps.

Step 1

We claim that there are at least two periodic solutions of subsystem (3). In fact, by the
variables transformation

v1(t) = ln x(t), v2(t) = ln y(t), v3(t) = ln z2(t),

then subsystem (3) reads
v̇1(t) = r1(t)(1− ev1(t)

k1(t)
) + σ2(t)ev2(t)−v1(t) − σ1(t),

v̇2(t) = r2(t)(1− ev2(t)

k2(t)
) + σ1(t)ev1(t)−v2(t) − σ2(t)− α(t)ev3(t)

f (v2(t))
,

v̇3(t) =
β(t−τ)ev2(t−τ)+v3(t−τ)−v3(t)

f (v2(t−τ))
· e−

∫ t
t−τ k(s)ds − d2(t),

where f (v2(t)) =
(ev2(t))2

m + ev2(t) + a.
Define

V = U = {v = (v1, v2, v3) ∈ C(R,R3)|v(t + ω) = v(t)},

then V, U are both Banach Spaces with the norm || · || as follows:

||v|| = max
t∈[0,ω]

|v1|+ max
t∈[0,ω]

|v2|+ max
t∈[0,ω]

|v3|, v = (v1, v2, v3) ∈ V or U.

For any v = (v1, v2, v3) ∈ V, it is easy to see that

r1(t)(1−
ev1(t)

k1(t)
) + σ2(t)ev2(t)−v1(t) − σ1(t) := Θ1(v, t),

r2(t)(1−
ev2(t)

k2(t)
) + σ1(t)ev1(t)−v2(t) − α(t)ev3(t)

f (v2(t))
− σ2(t) := Θ2(v, t)

and
β(t− τ)ev2(t−τ)+v3(t−τ)−v3(t)

f (v2(t))
e−
∫ t

t−τ k(s)ds − d2(t) := Θ3(v, t)

are all ω-periodic functions. Indeed,
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Θ1(v(t + ω), t + ω) = r1(t + ω)(1− ev1(t+ω)

k1(t + ω)
) + σ2(t + ω)ev2(t+ω)−v1(t+ω) − σ1(t + ω)

= r1(t)(1−
ev1(t)

k1(t)
) + σ2(t)ev2(t)−v1(t) − σ1(t)

= Θ1(v, t).

Clearly, Θ2(v, t), Θ3(v, t) are also periodic functions in a similar way. Set

L : DomL
⋂

V, L(v1(t), v2(t), v3(t)) = (
dv1(t)

dt
,

dv2(t)
dt

,
dv3(t)

dt
),

where DomL = {(v1, v2, v3) ∈ C(R,R3)} and N : V → V is given by

N

 v1
v2
v3

 =

 Θ1(v, t)
Θ2(v, t)
Θ3(v, t)

.

Define

P

 v1
v2
v3

 = Q

 v1
v2
v3

 =

 1
ω

∫ ω
0 v1(t)dt

1
ω

∫ ω
0 v2(t)dt

1
ω

∫ ω
0 v3(t)dt

,

 v1
v2
v3

 ∈ V = U.

It follows form the above definitions that ker L = {v ∈ V|v = C0, C0 ∈ R3} and
ImL = {u ∈ U|

∫ ω
0 u(t)dt = 0}. dim ker L = codim ImL = 3 < ∞, ImP = ker L, ker Q =

ImL = Im(I −Q). It is easy to see that the inverse Kp(u) =
∫ t

0 u(s)ds− 1
ω

∫ ω
0

∫ t
0 u(s)dsdt.

Therefore,

QNv =

 1
ω

∫ ω
0 Θ1(v, t)dt

1
ω

∫ ω
0 Θ2(v, t)dt

1
ω

∫ ω
0 Θ3(v, t)dt


and

Kp(I −Q)Nv =
∫ t

0
Nv(s)ds− 1

ω

∫ ω

0

∫ t

0
Nv(s)dsdt− (

t
ω
− 1

2
)
∫ ω

0
Nv(s)ds.

Obviously, QN and Kp(I − Q)N are continuous. It follows from the Arzela–Ascoli
theorem [34,40] that N is L-compact on Ω̄ with any open-bounded set Ω ⊂ V.

The next work is to find an appropriate open-bounded subset Ω for the application of
the continuation theorem. Corresponding to Lv = λNv for some λ ∈ (0, 1), we obtain

v̇1(t) = λ[r1(t)(1− ev1(t)

k1(t)
) + σ2(t)ev2(t)−v1(t) − σ1(t)],

v̇2(t) = λ[r2(t)(1− ev2(t)

k2(t)
) + σ1(t)ev1(t)−v2(t) − σ2(t)− α(t)ev3(t)

f (v2(t))
],

v̇3(t) = λ[ β(t−τ)ev2(t−τ)+v3(t−τ)−v3(t)

f (v2(t−τ))
· e−

∫ t
t−τ k(s)ds − d2(t)].

(4)

Suppose that v = (v1(t), v2(t), v3(t))T ∈ V is a solution of Equation (4). Integrating
Equation (4) over the interval [0, ω] leads to

σ̄1ω =
∫ ω

0 [r1(t) + σ2(t)ev2(t)−v1(t) − r1(t)
k1(t)

ev1(t)]dt,

σ̄2ω =
∫ ω

0 [r2(t) + σ1(t)ev1(t)−v2(t) − r2(t)
k2(t)

ev2(t) − α(t)ev3(t)

f (v2(t))
]dt,

d̄2ω =
∫ ω

0 [ β(t−τ)ev2(t−τ)+v3(t−τ)−v3(t)

f (v2(t−τ))
· e−

∫ t
t−τ k(s)ds]dt.

(5)
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From the first equation of (4) and (5), we have

∫ ω

0
|v̇1(t)|dt = λ

∫ ω

0

∣∣∣∣∣r1(t)(1−
ev1(t)

k1(t)
) + σ2(t)ev2(t)−v1(t) − σ1(t)

∣∣∣∣∣dt

<
∫ ω

0

∣∣∣∣r1(t)−
r1(t)
k1(t)

ev1(t) + σ2(t)ev2(t)−v1(t)
∣∣∣∣dt +

∫ ω

0
|σ1(t)|dt

< σ̄1ω + σ̄1ω

= 2σ̄1ω,

that is, ∫ ω

0
|v̇1(t)|dt < 2σ̄1ω. (6)

Similarly, from the second equation of (4), (5) and from the third equation of (4), (5),
the following inequalities hold: ∫ ω

0
|v̇2(t)|dt < 2σ̄2ω, (7)

∫ ω

0
|v̇3(t)|dt < 2d̄2ω. (8)

Combining Lemma 2 with these inequalities, we next construct the upper and lower
bounds of subsystem (3). Since (v1(t), v2(t), v3(t)) ∈ V, there exist ηi, ξi ∈ [0, ω] such that

vi(ηi) = max
t∈[0,ω]

vi(t), vi(ξi) = min
t∈[0,ω]

vi(t), i = 1, 2, 3.

Multiplying the third equation of (4) by ev3(t) and integrating over [0, ω], we obtain

∫ ω

0

[
β(t− τ)ev2(t−τ)+v3(t−τ)

f (v2(t− τ))
· e−

∫ t
t−τ k(s)ds − d2(t)ev3(t)

]
dt = 0,

that is, ∫ ω

0
d2(t)ev3(t)dt =

∫ ω

0
β(t)

ev2(t)ev3(t)

f (v2(t))
· e−

∫ t+τ
t k(s)dsdt. (9)

This implies that

dL
2

∫ ω

0
ev3(t)dt ≤

∫ ω

0
d2(t)ev3(t)dt =

∫ ω

0
β(t)

ev2(t)ev3(t)

f (v2(t))
· e−

∫ t+τ
t k(s)dsdt

≤ βMe−τkL · ev2(η2)

f (v2(ξ2))

∫ ω

0
ev3(t)dt;

therefore, we have

dL
2 ≤ βMe−τkL ev2(η2)

f (v2(ξ2))
,

or

v2(η2) ≥ ln
dL

2 eτkL

βM f (v2(ξ2)). (10)

It follows from (7), (10) and Lemma 2.2 that

v2(t) ≥ v2(η2)−
∫ ω

0
|v̇2(t)|dt > ln

dL
2 eτkL

βM f (v2(ξ2))− 2σ̄2ω.
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In particular,

v2(ξ2) > ln
dL

2 eτkL

βM f (v2(ξ2))− 2σ̄2ω,

or
dL

2 (e
v2(ξ2))2 −m(βMe2σ̄2ω−τkL − dL

2 )e
v2(ξ2) + madL

2 < 0. (11)

Therefore, in view of (H1), we obtain ∆ = m2(βMe2σ̄2ω−τkL − dL
2 )

2 − 4ma(dL
2 )

2 > 0.
Now, let Equation (11) equal 0; we see that

l± =
1

2dL
2

{
m(βMe2σ̄2ω − dL

2 )± [m2(βMe2σ̄2ω − dL
2 )

2 − 4ma(dL
2 )

2]
1
2

}
.

Hence, ln l− < v2(ξ2) < ln l+.
Similarly, from Equation (9), we have

βLe−τkM ev2(ξ2)

f (v2(η2))
≤ dM

2 ,

that is,

v2(ξ2) ≤ ln
dM

2 eτkM

βL f (v2(η2)). (12)

It follows from (7), (12) and Lemma 2.2 that

v2(t) ≤ v2(ξ2) +
∫ ω

0
|v̇2(t)|dt < ln

dM
2 eτkM

βL f (v2(η2)) + 2σ̄2ω,

which implies that

v2(η2) ≤ ln
dM

2 eτkM

βL f (v2(η2)) + 2σ̄2ω.

This can be rewritten as

dM
2 e2σ̄2ω(ev2(η2))2 −m(βLe−τkM − dM

2 e2σ̄2ω)ev2(η2) + madM
2 e2σ̄2ω ≥ 0. (13)

In view of (H1), we obtain

∆ = m2(βLe−τkM − dM
2 e2σ̄2ω)2 − 4ma(dM

2 e2σ̄2ω)2 > 0.

Let Equation (13) equal 0; we see that

h± =
1

2dM
2 e2σ̄2ω

{
m(βLe−τkM − dM

2 e2σ̄2ω)± [m2(βLe−τkM − dM
2 e2σ̄2ω)2 − 4ma(dM

2 e2σ̄2ω)2]
1
2

}
.

Therefore, ln h− > v2(ξ2), v2(η2) > ln h+.
Clearly,

v2(t) ≤ v2(ξ2) +
∫ ω

0
|v̇2(t)|dt < ln l+ + 2σ̄2ω := B21,

v2(t) ≥ v2(η2)−
∫ ω

0
|v̇2(t)|dt > ln h+ − 2σ̄2ω := B22.

Hence, we take
max

t∈[0,ω]
|v2(t)| < max{B21, B22} := B2.

From the first equation of (5), we write

σ̄1ω ≤ r̄1ω +
σ̄2ωev2(η2)

ev1(ξ1)
− ¯
(

r1

k1
)ωev1(ξ1),
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that is,
¯

(
r1

k1
)(ev1(ξ1))2 + (σ̄1 − r̄1)ev1(ξ1) − σ̄2l+e2σ̄2ω ≤ 0,

then, ∆ = (σ̄1 − r̄1)
2 + 4 ¯( r1

k1
)σ̄2l+e2σ̄2ω > 0.

Therefore, we know that

v1(ξ1) ≤ ln
{

1
2
(

k̄1

r1
){(r̄1 − σ̄1) + [(σ̄1 − r̄1)

2 + 4(
r̄1

k1
)σ̄2l+e2σ̄2ω ]

1
2 }
}

= ln b1. (14)

It follows from (6), (14), and Lemma 2.2 that

v1(t) ≤ v1(ξ1) +
∫ ω

0
|v̇1(t)|dt < ln b1 + 2σ̄1ω := B11.

In a similar way, we obtain the following inequality from the first equation of (5),

σ̄1ω ≥ r̄1ω− ¯
(

r1

k1
)ωev1(η1),

which is

v1(η1) ≥ ln{( k̄1

r1
)(r̄1 − σ̄1)} = ln b2. (15)

From (6), (15) and Lemma 2.2, we have

v1(t) ≥ v1(η1)−
∫ ω

0
|v̇1(t)|dt > ln b2 − 2σ̄1ω := B12.

Therefore, we take

max
t∈[0,ω]

|v1(t)| < max{B11, B12} := B1.

From the second equation of (5), we obtain

σ̄2ω ≥ r̄2ω + σ̄1ω
ev1(ξ1)

ev2(η2)
− ᾱωev3(η3)

f (v2(ξ2))
− ¯
(

r2

k2
)ωev2(η2),

which implies that

σ̄2 ≥ r̄2 −
ᾱev3(η3)

a
− ¯
(

r2

k2
)l+e2σ̄2ω.

In view of (H2), we see that

v3(η3) ≥ ln
{

a
ᾱ
{(r̄2 − σ̄2)− (

r̄2

k2
)l+e2σ̄2ω}

}
= ln b3. (16)

It follows from (8), (16) and Lemma 2.2 that

v3(t) ≥ v3(η3)−
∫ ω

0
|v̇3(t)|dt > ln b3 − 2d̄2ω := B31.

In a similar way, from the second equation of (5), we have

v3(ξ3) ≤ ln
{

1
ᾱ
{(r̄2 − σ̄2) + σ̄1b1e2σ̄1ω} · f (ln l+ + 2σ̄2ω)

}
= ln b4. (17)

It follows from (8), (17) and Lemma 2.2 that

v3(t) ≤ v3(ξ3) +
∫ ω

0
|v̇3(t)|dt < ln b4 + 2d̄2ω := B32.
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Then we take
max

t∈[0,ω]
|v3(t)| < max{B31, B32} := B3.

Now, we consider QNv with v = (v1, v2, v3) ∈ R3. Note that

QN(v1, v2, v3) =[(r̄1 − σ̄1)−
¯

(
r1

k1
)ev1(t) + σ̄2

ev2(t)

ev1(t)
,

(r̄2 − σ̄2)−
¯

(
r2

k2
)ev2(t) + σ̄1

ev1(t)

ev2(t)
− ᾱev3(t)

f (v2(t))
,−d̄2 +

b̄ev2(t)

f (v2(t))
],

where b̄ = 1
ω

∫ ω
0 α(t)e−

∫ t+τ
t β(s)dsdt.

From (H1) and (H2), we know that the equation QN(v1, v2, v3) = 0 has two different
solutions: ṽ, v̂. Thus, we have the following formula:

(1) Since d̄2 +
b̄ev2(t)

f (v2(t))
= 0, we have

v21 = ln
{

1
2d̄2
{m(b̄− d̄2)− [m2(d̄2 − b̄)2 − 4mad̄2]

1
2 }
}

= ln b5,

v22 = ln
{

1
2d̄2
{m(b̄− d̄2) + [m2(d̄2 − b̄)2 − 4mad̄2]

1
2 }
}

= ln b6;

(2) Since (r̄1 − σ̄1)− ¯( r1
k1
)ev1(t) + σ̄2

ev2(t)

ev1(t)
= 0, we have

v11 = ln
{

1
2
(

k̄1

r1
){(r̄1 − σ̄1) + [(r̄1 − σ̄1)

2 + 4σ̄2b5(
r̄1

k1
)]

1
2 }
}

= ln b7,

v12 = ln
{

1
2
(

k̄1

r1
){(r̄1 − σ̄1) + [(r̄1 − σ̄1)

2 + 4σ̄2b6(
r̄1

k1
)]

1
2 }
}

= ln b8;

(3) Since (r̄2 − σ̄2)− ¯( r2
k2
)ev2(t) + σ̄1

ev1(t)

ev2(t)
− ᾱev3(t)

f (v2(t))
= 0, we have

v31 = ln
{

1
ᾱ
{(r̄2 − σ̄2)− (

r̄2

k2
)b5 + σ̄1

b7

b5
} · f (ln b5)

}
= ln b9,

v32 = ln
{

1
ᾱ
{(r̄2 − σ̄2)− (

r̄2

k2
)b6 + σ̄1

b8

b6
} · f (ln b6)

}
= ln b10.

Define
ṽ = (ln b7, ln b5, ln b9), v̂ = (ln b8, ln b6, ln b10).

We choose C1, C3 > 0, such that

C1 > max
t∈[0,ω]

{| ln b7|, | ln b8|}, C3 > max
t∈[0,ω]

{| ln b9|, | ln b10|}.

Let

Ω1 =

v = (v1, v2, v3) ∈ V

∣∣∣∣∣∣
max |v1(t)| < B1 + C1
v2(t) ∈ (ln l−, ln h−)

max |v3(t)| < B3 + C3

,

Ω2 =

v = (v1, v2, v3) ∈ V

∣∣∣∣∣∣
max |v1(t)| < B1 + C1

v2(t) ∈ (B22, B21)
max |v3(t)| < B3 + C3

.
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Then, both Ω1 and Ω2 are bounded open subsets of V, and ṽ ∈ Ω1, v̂ ∈ Ω2. It is easily
noticed that Ω1

⋂
Ω2 = ∅ and Ωi satisfies the requirement (a) in Lemma 1 for i = 1, 2. In

addition, QNv 6= 0 for v ∈ ∂Ω
⋂

ker L = ∂Ω
⋂
R3. A direct computation gives

deg{JQN, Ωi
⋂

ker L, 0} = (−1)i+1 6= 0.

Therefore, system (3) has at least two ω-periodic solutions v∗, v+. Let x∗(t) = ev∗1(t),
y∗(t) = ev∗2(t), z∗2(t) = ev∗3(t) and x+(t) = ev+1 (t), y+(t) = ev+2 (t), z+2 (t) = ev+3 (t). Then,
by Equation (4), (x∗(t), y∗(t), z∗2(t)) and (x+(t), y+(t), z+2 (t)) are two different positive
ω-periodic solutions of (3).

Step 2

We now claim that the third equation of (2) has two ω-periodic solutions associated
with the obtained solutions. Let

h(t) = −k(t),

g(t) =
β(t)y(t)z2(t)

y2(t)/m + y(t) + a
− β(t− τ)y(t− τ)z2(t− τ)

y2(t− τ)/m + y(t− τ) + a
· e−

∫ t
t−τ k(s)ds.

Then, the third equation of (2) is given by

dz1

dt
= h(t)z1(t) + g(t). (18)

In fact, we see that

h∗(t + ω) = h∗(t),

g∗(t + ω) =
β(t + ω)y∗(t + ω)z∗2(t + ω)

y∗2(t + ω)/m + y∗(t + ω) + a

− β(t + ω− τ)y∗(t + ω− τ)z∗2(t + ω− τ)

y∗2(t + ω− τ)/m + y∗(t + ω− τ) + a
e−
∫ t+ω

t+ω−τ k(s)ds

=
β(t)y∗(t)z∗2(t)

y∗2(t)/m + y∗(t) + a
− β(t− τ)y∗(t− τ)z∗2(t− τ)

y∗2(t− τ)/m + y∗(t− τ) + a
e−
∫ t

t−τ k(s)ds

=g∗(t).

Similarly,
h+(t + ω) = h+(t), g+(t + ω) = g+(t).

Since h(t) is negative and h̄ < 0, the linear system dz1
dt = h(t)z1(t) admits exponential

dichotomy. Hence,

z∗1(t) =
∫ t

−∞
e
∫ t

s α(σ)dσg∗(s)ds, z+1 (t) =
∫ t

−∞
e
∫ t

s α(σ)dσg+(s)ds.

Consequently, (x+(t), y+(t), z+1 (t), z+2 (t)) and (x∗(t), y∗(t), z∗1(t), z∗2(t)) are two differ-
ent ω periodic solutions of system(2).

3. Example

Corresponding to system (2), we give an example as follows:

dx
dt = (8 + sin t)x(t)(1− x(t)

11+sin t )− (0.2 + sin t)x(t) + (0.15 + sin t)y(t),
dy
dt = (12 + sin t)y(t)(1− y(t)

15+sin t ) + (0.2 + sin t)x(t)− (0.15 + sin t)y(t)− (6+sin t)y(t)z2(t)
3y2(t)+y(t)+1/4 ,

dz1
dt = (3+sin t)y(t)z2(t)

3y2(t)+y(t)+1/4 −
(3+sin(t−0.08))y(t−0.08)z2(t−0.08)

3y2(t−0.08)+y(t−0.08)+1/4 e
∫ t

t−0.08(0.3+sin s)ds − (0.3 + sin t)z1(t),
dz2
dt = (3+sin(t−0.08))y(t−0.08)z2(t−0.08)

3y2(t−0.08)+y(t−0.08)+1/4 e
∫ t

t−0.08(0.3+sin s)ds − (0.0635 + sin t)z2(t),

(19)
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where r1(t) = 8 + sin t and r2(t) = 12 + sin t, k1(t) = 11 + sin t and k2(t) = 15 + sin t,
σ1(t) = 0.2 + sin t, σ2(t) = 0.15 + sin t, α(t) = 6 + sin t and β(t) = 3 + sin t. y(t)

3y2(t)+y(t)+1/4
here is the non-monotone functional response, which reflects the capture ability of the
mature predator at time t. The term

exp{
∫ t

t−τ
k(s)ds} y(t− τ)z2(t− τ)

y2(t−τ)
m + y(t− τ) + a

= exp{
∫ t

t−0.08
(1 + sin s)ds} y(t− 0.08)z2(t− 0.08)

y2(t−0.08)
1/3 + y(t− 0.08) + 1/4

stands for the number of immature predators born at time (t− 0.08) that still survive at
time t and become mature predators.

Taking the initial values x(0) = 0.5, y(0) = 0.5, z1(0) = 8, and z2(0) = 5, the periodic
solution is shown in Figure 1.

Figure 1. The periodic solution.

4. Conclusions

In this paper, a delayed prey–predator model incorporating a refuge with a non-
monotone functional response is considered. It is assumed that prey can live in the preda-
tory region and the prey refuge, respectively. From the biological point, a prey refuge can
help to improve the population density of the prey, and it is an effective strategy to reduce
predation in the evolution of prey population. Based on the method of Mawhin’s coinci-
dence degree theory and non-trivial estimation techniques for a priori bounds of unknown
solutions to the operator equation Lv = λNv, we obtain some interesting and novel suffi-
cient conditions for the existence of multiple periodic solutions of the prey–predator model.
However, the limitation of this method is that we cannot determine the specific number
of periodic solutions. However, predictably, for different biological models, we can give
a lower bound on the number of periodic solutions. In addition, we believe that, in this
paper, the occurrence of two periodic solutions is influenced by non-monotonic functional
response. These two periodic solutions are generated by the system for parameters in
different parameter ranges, but the periods are the same. Namely, in the bounded open
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subset Ω1, system (2) presentws a positive periodic solution; in another bounded open
subset Ω2, system (2) also has a positive periodic solution with the same period.

Author Contributions: Methodology, W.L. and Y.X.; software and figure, W.L.; validation, W.L. and
Y.X.; formal analysis, W.L. and Y.X.; investigation, W.L. and Y.X.; resources, W.L. and Y.X.; writing—
original draft preparation, W.L. and Y.X.; writing—review and editing, W.L. and Y.X.; supervision,
Y.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China under
Grant (No. 11931016).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication
of this article.

References
1. Lotka, A. Elements of Physical Biology; Williams Wilkins Co.: Balitmore, MD, USA, 1925.
2. Volterra, V. Variazioni e fluttuazioni del numero dindividui in specie animali conviventi. Mem. Acad Lincei Roma 1926, 2, 31–113.
3. Chen, X.; Du, Z. Existence of positive periodic solutions for a neutral delay predator-prey model with Hassell-Varley type

functional response and impulse. Qual. Theory Dyn. Syst. 2018, 17, 67–80. [CrossRef]
4. Lv, Y.; Du, Z. Existence and global attractivity of a positive periodic solution to a Lotka–Volterra model with mutual interference

and Holling III type functional response. Nonlinear Anal. RWA 2011, 12, 3654–3664. [CrossRef]
5. Wang, D. Positive periodic solutions for a nonautonomous neutral delay prey-predator model with impulse and Hassell-Varley

type functional response. Proc. Am. Math. Soc. 2014, 142, 623–638. [CrossRef]
6. Wang, D. Four positive periodic solutions of a delayed plankton allelopathy system on time scales with multiple exploited (or

harvesting) terms. IMA J. Appl. Math. 2013, 78, 449–473. [CrossRef]
7. Yu, S.; Liu, J.; Lin, X. Multiple positive periodic solutions of a Gause-type predator-prey model with Allee effect and functional

responses. AIMS Math. 2020, 5, 6135–6148. [CrossRef]
8. Liu, Y.; Zhang, X.; Zhou, T. Multiple periodic solutions of a delayed predator-prey model with non-monotonic functional response

and stage structure. J. Biol. Dynam. 2014, 1, 145–160. [CrossRef]
9. Zhang, Z.; Luo, Z. Multiple periodic solutions of a delayed predator–prey system with stage structure for the predator. Nonlinear

Anal. RWA 2010, 1, 4109–4120. [CrossRef]
10. Kant, S.; Kumar, V. Stability analysis of predator-prey system with migrating prey and disease infection in both species. Appl.

Math. Model. 2017, 42, 509–539. [CrossRef]
11. Liu, S.; Chen, L.; Liu, Z. Extinction and permanence in nonautonomous competitive system with stage structure. J. Math. Anal.

Appl. 2002, 274, 667–684. [CrossRef]
12. Zhang, T.; Li, H.; Xi, N.; Fu, W.; Wang, K.; Ding, X. Mathematical analysis and simulation of a Hepatitis B model with time delay:

A case study for Xinjiang, China. Math. Biosci. Eng. 2020, 17, 1757–1775. [CrossRef] [PubMed]
13. Lu, S. On the existence of positive periodic solutions to a Lotka-Volterra cooperative population model with multiple delays.

Nonlinear Anal. 2008, 68, 1746–1753. [CrossRef]
14. Song, Y.; Tang, X. Stability, steady-state bifurcations and turing patterns in a predator-prey model with herd behavior and

prey-taxis. Stud. Appl. Math. 2017, 139, 371–404. [CrossRef]
15. Lv, Y.; Chen, L.; Chen, F.; Li, Z. Stability and bifurcation in an SI epidemic model with additive Allee effect and time delay. Int. J.

Bifurcat. Chaos 2021, 31, 2150060. [CrossRef]
16. Chen, L.; Liu, T.; Chen, F. Stability and bifurcation in a two-patch model with additive Allee effect. AIMS Math. 2022, 7, 536–551.

[CrossRef]
17. Wei, Z.; Xia, Y.; Zhang, T. Stability and bifurcation analysis of a amensalism model with weak Allee effect. Qual. Theor. Dyn. Syst.

2020, 19, 23. [CrossRef]
18. Wei, Z.; Xia, Y.; Zhang, T. Stability and bifurcation analysis of a commensal model with additive Allee effect and nonlinear growth

rate. Int. J. Bifurcat. Chaos 2021, 31, 2150204. [CrossRef]
19. Xu, R.; Ma, Z. Stability and Hopf bifurcation in a ratio-dependent predator prey system with stage structure. Chaos Solitons

Fractals 2008, 38, 669–684. [CrossRef]
20. Xu, J.; Zhang, T.; Song, K. A stochastic model of bacterial infection associated with neutrophils. Appl. Math. Comput. 2020,

373, 125025. [CrossRef]

http://doi.org/10.1007/s12346-017-0223-6
http://dx.doi.org/10.1016/j.nonrwa.2011.06.022
http://dx.doi.org/10.1090/S0002-9939-2013-11793-4
http://dx.doi.org/10.1093/imamat/hxr061
http://dx.doi.org/10.3934/math.2020394
http://dx.doi.org/10.1080/17513758.2014.920530
http://dx.doi.org/10.1016/j.nonrwa.2010.03.015
http://dx.doi.org/10.1016/j.apm.2016.10.003
http://dx.doi.org/10.1016/S0022-247X(02)00329-3
http://dx.doi.org/10.3934/mbe.2020092
http://www.ncbi.nlm.nih.gov/pubmed/32233606
http://dx.doi.org/10.1016/j.na.2007.01.003
http://dx.doi.org/10.1111/sapm.12165
http://dx.doi.org/10.1142/S0218127421500607
http://dx.doi.org/10.3934/math.2022034
http://dx.doi.org/10.1007/s12346-020-00341-0
http://dx.doi.org/10.1142/S0218127421502047
http://dx.doi.org/10.1016/j.chaos.2007.01.019
http://dx.doi.org/10.1016/j.amc.2019.125025


Mathematics 2022, 10, 421 13 of 13

21. Chen, L.; Chen, F. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant
prey refuge. Nonlinear Anal. 2010, 11, 246–252. [CrossRef]

22. Gause, G.; Smaragdova, N.; Witt, A. Further studies of interaction between predators and prey. J. Anim. Ecol. 1936, 5, 1–18.
[CrossRef]

23. Gause, G. The Struggle for Existence; Williams Wilkins Co.: Balitmore, MD, USA, 1934.
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