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Abstract: Biodiesel is considered to be a promising alternative option to diesel fuel. The main 

contribution of the current work is to improve compression ignition engine performance, fueled by 

several biodiesel blends. Three metrics were used to evaluate the output performance of the 

compression ignition engine, as follows: brake torque (BT), brake specific fuel consumption (BSFC), 

and brake thermal efficiency (BTE), by varying two input parameters (engine speed and fuel type). 

The engine speeds were in the 1200–2400 rpm range. Three biodiesel blends, containing 20 vol.% of 

vegetable oil and 80 vol.% of pure diesel fuel, were prepared and tested. In all the experiments, pure 

diesel fuel was employed as a reference for all biodiesel blends. The experimental results revealed 

the following findings: although all types of biodiesel blends have low calorific value and slightly 

high viscosity, as compared to pure diesel fuel, there was an improvement in both BT and brake 

power (BP) outputs. An increase in BSFC by 7.4%, 4.9%, and 2.5% was obtained for palm, sunflower, 

and corn biodiesel blends, respectively, as compared to that of pure diesel. The BTE of the palm oil 

biodiesel blend was the lowest among other biodiesel blends. The suggested work strategy includes 

two stages (modeling and parameter optimization). In the first stage, a robust fuzzy model is 

created, depending on the experimental results, to simulate the output performance of the 

compression ignition engine. The particle swarm optimization (PSO) algorithm is used in the 

second stage to determine the optimal operating parameters. To confirm the distinction of the 

proposed strategy, the obtained outcomes were compared to those attained by response surface 

methodology (RSM). The coefficient of determination (R2) and the root-mean-square-error (RMSE) 

were used as comparison metrics. The average R2 was increased by 27.7% and 29.3% for training 

and testing, respectively, based on the fuzzy model. Using the proposed strategy in this work 

(integration between fuzzy logic and PSO) may increase the overall performance of the compression 

ignition engine by 2.065% and 8.256%, as concluded from the experimental tests and RSM. 

Keywords: optimization; fuzzy model; response surface methodology; diesel engine performance; 

biodiesel 

 

Citation: Alahmer, A.; Rezk, H.; 

Aladayleh, W.; Mostafa, A.O.;  

Abu-Zaid, M.; Alahmer, H.; Gomaa, 

M.R.; Alhussan, A.A.; Ghoniem, 

R.M. Modeling and Optimization of 

a Compression Ignition Engine 

Fueled with Biodiesel Blends for 

Performance Improvement.  

Mathematics 2022, 10, 420. https:// 

doi.org/10.3390/math10030420 

Academic Editors: Camelia Petrescu 

and Valeriu David 

Received: 25 December 2021 

Accepted: 25 January 2022 

Published: 28 January 2022 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 

mailto:Aaalhussan@pnu.edu.sa


Mathematics 2022, 10, 420 2 of 29 
 

 

1. Introduction 

Recently, the energy crisis, environmental contamination, and climate change are 

considered the most critical difficulties facing the country [1–6]. Therefore, the increased 

awareness of potential environmental risks on human health has been focused on keeping 

engine emissions under control. Diesel fuel has a crucial problem related to exhaust, 

vibration, and acoustic emissions [7–11]. Biodiesel is considered an eco-friendly, bio-

degradable, energy efficient, renewable, scientifically feasible, and non-toxic fuel 

alternative [12–14].  Besides, it is considered one of the safest fuels, because it has a high 

flash point amongst all conventional fuels [15], and can operate diesel engines with little 

or no adjustments [16]. Biodiesel can be produced from a variety of animal fats, as well as 

vegetable oils, processed with a catalyst and alcohol. For example, the utilization of palm 

oil as biodiesel is recognized as palm oil methyl ester, which is growing rapidly in 

popularity, due to its huge productivity and low prices. Biodiesel produced from palm oil 

is categorized by a high amount of saturated fatty acids and displays tremendous 

combustion characteristics, such as the calorific value and cetane number, despite its high 

kinematic viscosity at low temperatures [17]. The continuous improvement of the cetane 

number will actually impact the injection time, the coefficients of combustion variables, 

and heat release aspects, according to Labeckas and Slavinskas [18]. Various mixtures and 

fuel attributes have a significant impact in the ignition delay and evaporation processes, 

within similar experimental settings. Generally, most of the biodiesel blends have a high 

cetane number, no sulfur, no aromatics, and they contain up to 11 wt% oxygen. The 

National Renewable Energy Laboratory (NREL) [19] reported that the oxygen 

concentration in biodiesel fuel, including vegetable oil blends, ranges from 2.5% to 11%, 

for biodiesel blends of 20% and 100% by volume. In contrast, pure diesel does not contain 

any oxygen molecules. The significant oxygen concentration in the biodiesel enhances the 

combustion efficiency and decreases some of the exhaust emissions. Conversely, the main 

crucial drawback of biodiesel, in terms of high viscosity, leads to many difficulties in the 

atomization and pumping processes. Therefore, there was a need for a transesterification 

process. Furthermore, biodiesel fuels have greater surface tension and viscosity than 

regular diesel fuels, and these differences become crucial in cold circumstances, because 

the rate of fuel injection is greatly influenced, and the combustion mechanism might be 

influenced as a result. Additives have been used in biodiesel fuels to improve the biodiesel 

cold filter plugging point (CFPP) property and, consequently, improve the properties of 

the flow at low temperatures, to make them more appropriate for low-temperature 

operations [20]. Other drawbacks are the lower calorific value, which is about 80% of the 

heating value compared to that of pure diesel, low oxidation stability, high pour point, 

and low volatility [21,22]. To address the difficulties related to biodiesel fuel having a high 

viscosity, the following techniques could be adopted [23–26]: (i) Use small blend ratios 

with pure diesel [23]. It is commonly recognized that up to 20% of biodiesel blends can be 

used without engine modifications; (ii) Make a micro-emulsification by the use of ethanol 

or methanol [24]; (iii) Use nanoparticles as fuel additives to lower the density and viscosity 

of the fuel mixture [25,26]. In terms of feasibility issues, Rajak et al. [27] examined the 

economics of diesel fuel compared to biodiesel fuels made from Jatropha curcas and 

Moringa oleifera. According to the authors, the cost of diesel is nearly equal to the cost of 

alternative biofuels. The prior viewpoint was examined in detail and scientifically 

interpreted by Tasca et al. [28–30]. Yee et al. [30] introduced the concept of life cycle 

assessment (LCA), to investigate and assess whether biodiesel fuel is a sustainable fuel. 

The three phases of the LCA analysis were as follows: biodiesel transesterification process, 

agricultural processes, and oil milling. For each process, the energy and greenhouse gas 

balances were computed. According to the findings, the use of palm biodiesel was found 

to be more ecologically friendly than regular diesel fuel, with a significant 38% reduction 

in CO2 emissions per liter combusted.  
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1.1. A Literature Review of Biodiesel Engine Performance 

Numerous previous works have been conducted to assess the impacts of different 

types of biodiesel blends on engine durability, injection manner, exhaust emission, 

performance, heat losses and availability, spray formation, engine vibration analysis, 

catalyst synthesis for biodiesel production, and acoustic emissions [31–36]. Nalgundwar 

et al. [37] stated that a higher cetane of palm biodiesel blends is the reason for improved 

brake power and results in reduced ignition delay, which makes combustion start in 

advance. Moreover, a higher cetane number is required for the higher engine rotational 

speed. Sanjid et al. [38] compared the performances of two types of biodiesels; namely, 

mustard and palm biodiesel fuels, with volume blends of 10% and 20%. The results 

showed that the BSFC for mustard biodiesel is 1% and 3.5% higher than palm biodiesel 

blends of 10% and 20%, respectively. Ndayishimiye and Tazerout [39] examined the 

engine performance of a diesel engine fueled with palm oil blends. The authors found a 

small increase in BSFC and BTE, compared to pure diesel fuel. 

Patel et al. [40] suggested the employment of biodiesel fuel instead of pure diesel to 

make some modifications in diesel engines, especially for the fuel filter, fuel pumps, and 

injector needle, to overcome the higher viscosity of biodiesel fuel and, therefore, to 

improve its performance. 

1.2. Literature Review on Engine Performance Optimization Approaches 

To avoid financial constraints and time-consuming experiments, scholars have 

employed different modeling techniques, including artificial intelligence (AI), in terms of 

an artificial neural network (ANN) tool, and fuzzy modeling in modeling engine 

performances and exhaust emissions [41–44]. Accordingly, the correlation coefficient 

between the experimental data and ANN predictions can accurately forecast the engine 

efficiency and exhaust emissions powered with biodiesel mixes [45]. 

The fuzzy model is a more advantageous method to estimate the parameters of the 

diesel engine that maximized the engine performance, as compared to other techniques, 

such as the computational fluid dynamics reaction kinetic model, because it necessitates 

less time and effort [46,47]. On the other hand, computational techniques for studying 

internal combustion engines have several drawbacks. To avoid this, Salam and Verma [48] 

innovated an alternate, non-traditional way to explore the challenge of empirical 

redundancy in engine operation and behavioral characterization. This study provided a 

unique empirical approach to assess the relative empirical importance of chosen variables 

of interest, addressing the comprehensibility of engine operation. Furthermore, Salam and 

Verma [49,50] employed redundancy to create a sequence of variables of interest, 

depending on their importance in the ICE operation. Dey et al. [51] examined the 

performance of a single-cylinder compression ignition (CI) engine, fueled by palm/diesel 

and ethanol biofuel blends, using two models of ANN and RSM. The results revealed that 

the optimized engine performance, in terms of BTE and BSFC, was obtained from a blend 

of 20% palm biodiesel, mixed with 5% ethanol and 75% pure diesel at full load. 

Krishnamoorthi et al. [52] maximized the diesel engine performance responses with two 

approaches (ANN tool and RSM). The engine was powered with diesel/vegetable 

oil/diethyl ether blends at different engine loads, along with various compression ratios. 

The error percentage of the two approaches was rated less than 5%. Therefore, the authors 

stated that the application of previous approaches plays a crucial role in improving engine 

performance. Dey et al. [53] and Reang et al. [54] employed the fuzzy-based Taguchi 

technique, to boost CI performance and reduce emission characteristics for a CI engine, 

with varying engine loads and varied biodiesel blends. Shirneshan et al. [55] used 

response surface techniques to investigate the effects of biodiesel–ethanol fuel mixes on 

the performance of a CI engine. Parameter optimizations were also performed, using the 

genetic method. According to the findings, increasing the quantity of ethanol in the 

gasoline combination reduced BP and BT by around 30%. Because ethanol has a lower 

https://www.sciencedirect.com/science/article/abs/pii/S0016236120327496#!
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calorific value than biodiesel, the BSFC of fuel blends increased by roughly 16% with a 

larger proportion of ethanol. To minimize and identify the proper number of experimental 

trials, the Taguchi experimental approach could be utilized [56]. Rith et al. [57] employed 

RSM and the desired function to optimize a dual gas-diesel fuel engine, with several 

objectives. The goal was to use the desired function to optimize the desirability of SFC 

and specific exhaust emissions, at a high engine speed of 3000 rpm. The optimal 

desirability of 0.829 was reached with input parameters of 11° BTDC. Ghanbari et al. [58] 

examined how the percentage of alumina nanoparticles in biodiesel blends affected the 

exhaust emissions and performance of a CI engine. Furthermore, the authors designed 

empirical correlations, using RSM, to simulate diesel engine performance and exhaust 

emissions powered by nano biodiesel fuel mixes. The findings of the experiments 

demonstrated that alumina nanoparticles are a useful addition to diesel–biodiesel blends, 

to boost engine performance and reduce exhaust emissions. Devarajan et al. [59] examined 

CI engine performance by adding nanoparticles of silver oxide as additives, in various 

weight fractions, to a palm oil biodiesel. According to the results, the addition of 

nanoparticles to biodiesel improves the igniting behavior. 

1.3. Research Gap, Objectives, and Originality 

Although there are many articles in the literature about engine performance using 

different biodiesel fuel blends, there is still a gap in its modeling-based AI and modern 

optimization of the diesel engine. The current research aims to investigate a diesel engine, 

operated at full load conditions and at various engine speeds. In this work, engine 

performance has been studied extensively for an unmodified diesel engine, fueled with 

corn, sunflower, and palm biodiesel blends. Then, based on the experimental results, a 

robust fuzzy model, to simulate the output performance of the compression ignition 

engine, was created. Finally, a PSO algorithm was used to establish the best operating 

parameters. To confirm the distinction of the proposed strategy, the obtained outcomes 

were compared to those attained by RSM. Therefore, the novelty of this study relates to 

the integration between fuzzy logic and particle swarm optimization, to determine the 

optimal engine speed and the best fuel type that maximizes the output BT and BTE and 

significantly minimizes the BSFC. 

1.4. Manuscript Organization 

The rest of the manuscript is structured as follows: The experimental setup is 

discussed, in terms of biodiesel preparation, biodiesel characteristics, experimental 

equipment and procedure, engine performance measurements, proposed modeling and 

optimization, including fuzzy modeling, ANOVA test, and PSO in section two. The 

influence of biodiesel blends on diesel engine performance in terms of BT, BSFC, and BTE 

under full load and at various engine speeds was examined in section three, using the 

observed experimental results, combined with the uncertainty analysis. In addition, in 

section three, the outcomes of modeling and optimization, using fuzzy-based modeling 

logic, PSO algorithm to determine the optimal engine speed and best fuel type that 

maximize output BT and BTE, while momentarily minimizing the BSFC, RSM based on 

ANOVA test, and the best input parameters and related output performance from the 

RSM-based optimization method, were discussed and analyzed. In section four, we 

compared the performance of the experimental, RSM, and suggested strategies. Finally, 

the findings of the investigation were summarized in section five, which leads to the 

conclusion. 

2. Experimental Setup, Equipment, Procedure, Modeling, and Optimization 

A set of tests were carried out using a single-cylinder, water-cooled, four-stroke, and 

a direct injection PETTER PHIW Lister LV1 CI engine, with a compression ratio of 17:1, 

which is primarily powered by pure diesel fuel. The details of diesel engine specifications 
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are demonstrated in Table 1. All tested fuels, which were pure diesel, corn biodiesel, 

sunflower biodiesel, and palm biodiesel, were implemented without making any 

adjustments to the diesel engine. The schematic diagram of an experimental diesel test 

engine is depicted in Figure 1. 

Table 1. Technical data of PETTER PHIW diesel engine. 

Technical Data Specification 

Type Lister LV1 

Maximum Power 9 HP (6.7 kW) @ 3000 rpm 

Maximum torque 25 Nm @ 2000 rpm 

Number of cylinders Single 

Engine Operation Four Stroke 

Nominal speed range 1000–3000 rpm 

Bore * Stroke 85.73 × 82.55 mm 

Compression ratio 0.70902778 

Connecting rod length 188.5 mm 

Combustion chamber Direct injection 

Piston shape Bowl-in-piston 

Orifice diameter of the nozzle 0.250 mm 

Fuel injector holes 3 

Valve number/cylinder  2 

Pressure @ injector opens 180 bars 

Intake valve opening/closing 15⁰ CA BTDC/41⁰ CA ABDC 

Exhaust valve opening/closing 41⁰ CA BBDC/15⁰ CA ATDC 

Dynamometer 
Swinging field DC machine with torque 

measurement by load 

 
Figure 1. Schematic diagram of an experimental diesel test engine. 
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2.1. Biodiesel Preparation 

As displayed in Table 2, numerous techniques have been used, including blending 

with transesterification, petrodiesel, pyrolysis, and microemulsification [60–64]. In our 

experimental test, three different biodiesel blends, consisting of 20 vol.% of vegetable oil 

and 80 vol.% of pure diesel fuel (namely, corn, sunflower, and palm biodiesels) were 

prepared according to the following procedure and depicted in Figure 2: 4 g of sodium 

hydroxide was added to 200 cm3 of methanol in an electrical blender at low speed for 

around 2 min. The reaction heats up the mixture. It was vigorously stirred until all of the 

sodium hydroxide was fully dissolved in the methanol to form sodium methoxide. 1000 

cm3 of vegetable oil was preheated to 65 °C and added gradually to the previous mixture, 

while the electrical blender continued operating for around 30 min. After blending, the 

solution was left for 4 h of reaction time to settle down. Finally, the solution is separated 

by gravity into two layers; one at the top is the biodiesel and one at the bottom is glycerin. 

Darker colored glycerin was gathered in a distinct layer at the bottom of the container, 

with an obvious line of separation from the pale liquid above, which was biodiesel. To 

eliminate all traces of glycerin and contaminants, the biodiesel product must be rinsed. 

The washing technique involves adding hot water to the biodiesel and allowing it to settle 

for 12 h in a separating funnel. The bottom layer was gradually removed until the sample 

was transparent. To eliminate the water content, the purified biodiesel was poured into a 

beaker and heated to 55 °C. Table 3 displays the percentage of fatty acids in oil materials 

used [60,64,65]. The measured fuel properties are recorded in Table 4, accompanied by 

equipment specifications. 

According to the following equation [66,67], the % error related to the experimental 

quantities was determined as depicted in Table 4. 

Error % =
Apparatus Accuracy

Minimum value of apparatus measured
× 100% (1) 

Table 2. A summary of alternative biodiesel preparation approaches [60–64]. 

Technique Preparation Process Features Drawbacks 

Transesterificatio

n 

Alcohol (methanol or ethanol) and 

catalyst were used to react the 

vegetable/animal oils. Following 

that, the combination of glycerol 

and methyl/ethyl esters (biodiesel) 

will be separated and purified 

before being used. 

Relatively low cost with a 

high conversion, moderate 

processing settings, product 

qualities comparable to 

diesel and large-scale 

manufacturing 

Low levels of water and free 

fatty acids in the raw resources 

were required, as well as lengthy 

separation and purification 

stages, the possibility of side 

reactions, and the formation of a 

substantial volume of effluent. 

Blending 

Pre-heated vegetable/animal oils 

were mixed with diesel in a 10–

40% (w/w) ratio. The diesel engine 

was then coupled with the oil-

diesel mixture. 

There is no need for a 

chemical process (it is non-

polluting), no technical 

adjustments, and it is simple 

to apply. 

Inadequate spraying behaviour, 

weak atomization, improper fuel 

combustion, and difficulties in 

fueling by conventional engines 

caused by the high viscosity, 

unreliable, low volatility, and 

rise in vegetable/animal oil 

component. 

Microemulsificati

on 

The vegetable/animal oils were 

dissolved in an alcohol-based 

solvent and a surfactant until they 

reached the desired viscosity. 

Simple method that does not 

pollute the environment. 

High viscosity, limited stability, 

and the possibility of sticking, 

incomplete combustion, and 

carbon deposition. 

Pyrolysis 

The vegetable/animal oils were 

preheated to a high temperature, 

usually exceeding 350 degrees 

Practical technique, easy (no 

washing, drying, or 

High temperatures and costly 

equipment are required, and the 
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Celsius, and then decomposed. It 

did not matter if the catalyst was 

there or not. Several products were 

examined depends on the 

individual product’s boiling 

temperature range. 

filtration is necessary), 

waste, and pollution-free. 

biodiesel produced is of low 

purity 

 

Figure 2. Production steps of vegetable oil biodiesel. 

Table 3. Percentage of fatty acids in oil materials used [60,64,65]. 

Sources 

% (wt)  

Palmitic 

(C16:0) 

% (wt)  

Stearic 

(C18:0) 

% (wt)  

Oleic 

(C18:1) 

% (wt)  

Linoleic 

(C18:2) 

% (wt)  

Linolenic 

(C18:3) 

Palm oil 45 4 39 11 -* 

Sunflower 3–10 1–10 14–35 55–75 <0.3 

Corn 8–10 1–4 30–50 3456 0.5–1.5 

* Not specified. 

Table 4. Measured fuel blend properties of all tested fuel [60,68–73]. 

Properties Diesel 
Corn 

Biodiesel 

Palm 

Biodiesel 

Sunflower 

Biodiesel 
Test method Equipment Accuracy Error 

Cetane Number 47 53 61 52 ASTM D613 - -  

Flash Point, °C 52 74.74 72 86 
ASTM 

D-93 

Point-automatic 

NPM 440 

(Norma Lab, 

France) 

- - 

Iodine Value (cg I/g 

oil) 
- 103–140 35–61 110–143 

ASTM D5554-

15 
FTIR spectroscopy - - 

Saponification 

Number 
- 202 186–209 200 

ASTM D5558-

95 
FTIR spectroscopy - - 

Pour point, °C −32 −18 −10 −5.0 ASTM D97 
Cloud And Pour 

Point Apparatus 
- - 

Cloud point, °C −18 −15 −5 4.0 ASTM D2500 
Cloud And Pour 

Point Apparatus 
- - 

Specific gravity@ 15 

°C 
0.83 0.855 0.85 0.853 IP 190/93 

Capillary stoppered 

Pycnometer 
±10−3 g/cm3 ±0.12% 

Viscosity at 40 °C 

(cSt) 
3.85 4.772 5.281 4.963 ASTM D445 

EMILA rotary 

viscometer 

apparatus 

±0.1 cP ±2.6% 

Heating Value 

(MJ/kg) 
43.5 39.5 40.1 39.8 ASTM D240 

automated 

adiabatic bomb 

calorimeter 

±0.04 MJ/kg ±0.1% 

• NaOH 
(Catalyst)

•Methanol 

Mixing at low 
speed

•Vegetable oil 

Transesterification

•Biodiesel 
Separation

Settle down

•Contaminated 
Biodiesel

•Glycerin

Separation

•Pure 
Biodiesel

Purification
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2.2. Engine Performance Measurements 

A trunnion-mounted, swinging field of a direct current (DC) electrical machine 

capable of absorbing a maximum load of 10 kW at a speed of 4000 rpm was utilized as the 

dynamometer. The rated BT was 50 Nm. Torque was measured with a precision of ±0.2–

0.3% of full scale (FS), whereas rotational speed measurement accuracy was ±1 r/min. The 

engine was driven by a speed-increasing tooth belt. A strain gauge load cell system with 

mechanical overload protection was included, as well as appropriate calibration 

equipment. For speed measurement and feedback to the control system, a toothed wheel 

and magnetic pick-up were employed. A dynamometer attached with a DC motor to 

produce a load was used to evaluate the engine brake power. A varying field current 

regulated the load and operation. Therefore, this dynamometer can work at different 

loads and speeds according to any required amount of torque. Because the test used a 

regular engine speed, the dynamometer power absorption unit absorbed the power 

generated by the engine to drive a DC motor that works as a generator to produce a load. 

This absorption unit delivered a variable quantity of braking torque to operate the engine 

at the desired rotation. Moreover, the braking power absorption unit on the engine was 

executed using an electronic control unit. The dynamometer control system is a 

microprocessor-controlled, completely regenerative thyristor drive that enables the 

dynamometer to run a motor or generator at a constant speed. A strain gauge load cell 

sensor was used to assess engine load. The magnetic pick-up sensor was used to monitor 

engine speed using a dented wheel on the dynamometer shaft. The performance test 

measurements are regulated according to the following procedure: The engine warms up 

until the cooling water and lubricating oil reach the set operating temperatures. After that, 

the choke is opened gradually by turning the lever to its widest setting. The speed control 

lever is set to the low-speed position and warms it up without applying the load for a few 

minutes. The speed control lever is gradually moved towards the high-speed position and 

set to the required engine speed. The tested fuel is applied. The following parameters were 

recorded: a digital tachometer was utilized to quantify the engine speed, the 

dynamometer was employed to measure a BT, temperatures of the exhaust gases, 

lubricating oil, and cooling water were monitored with a thermocouple type K of 

resistance temperature detectors (RTD) integrated with a high-temperature surface probe 

with accuracy of ±1.6 °C. Finally, install the air velocity sensor in the air intake duct, 

ensuring that the sensor element is aligned with the airflow and in the middle of the duct 

with an accuracy of ±0.3% full-scale deflection (FSD). The twin bulb glass burette and 

timer were used to calculate the fuel consumption rate with an accuracy of (±0.05 cm3). 

The previous steps were repeated for different biodiesel fuel blends. Before 

conducting any test, the engine and dynamometer were calibrated and regulated to their 

default values. After the engine was stabilized, all of the measurement data were logged. 

For each tested fuel, the experiments were repeated three times and the average of the 

measurements was taken. 

2.3. Modeling and Optimization 

There are two stages to the suggested modeling and optimization technique. The first 

phase involves fuzzy modeling based on an experimental dataset to predict the 

compression ignition engine’s output performance. To confirm the distinction of the fuzzy 

model proposed in this work, the obtained results are compared to those attained by 

ANOVA. The second phase is determining the engine speed and the best types of fuel 

using PSO. Unlike mathematical methods, the definition of the model structure that 

makes up the system rule base is the first step in the fuzzy modeling technique. Thus, the 

relation between inputs and outputs are represented by fuzzy IF-THEN rules. In the case 

under study, the Takagi–Sugeno fuzzy was adopted to build the fuzzy rules because it 

can track the nonlinear input data. The inputs’ membership functions were selected as the 

Gaussian shape. The rules are typically established depending on dataset inputs [74]. The 
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following expressions are simply adopting the form of a fuzzy rule statement for a two-

input single-output system: 

IF x is MFx and y is MFy THEN z is MFz (2) 

where, MFx, and MFy are the fuzzy membership functions for two inputs, x and y, 

respectively; MFz is the fuzzy membership function for a single output z. 

One of the most well-known optimizers is PSO. Kennedy and Eberhart proposed the 

initial form of PSO. The main concept of PSO is derived from the natural flocking behavior 

of birds [75]. The original PSO is fairly simple and straightforward. Every particle has the 

potential to be a prospective solution. It consists of the two following vectors: velocity and 

position. The values for each of the variables in the problem are included in the location 

vector. The velocity is taken into account while changing the position of particles. For each 

dimension and particle separately, the velocity determines the magnitude and direction 

of step size. Further information on the mathematical representation and physical 

dispersion can be found in [76]. The following is a description of the updating process for 

particle velocity and location. 

1

1 1 2 2( ) ( )t t t t t t

best bestv v c r P x c r g x+ = + − + −  (3) 

1 1t t tx x v+ += +  (4) 

where, V indicates velocity, Pbest is the best solution, gbest is the best solution globally. c1 and 

c2 denote cognitive and social aspects, r1 and r2 are random values, and t represents the 

number of iterations. 

Figure 3 displays a schematic diagram of the experimental approach integrated with 

an optimization process. 

 

Figure 3. A schematic diagram of the experimental approach integrated with an optimization 

process. 
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3. Results and Discussion 

The generated experimental findings provide a thorough examination of the impact 

of biodiesel blends on diesel engine performance, under full load and at different engine 

speeds. 

3.1. Engine Performance Analysis 

The effects of biodiesel blends on the CI engine BT, BP, BSFC, and BTE, at different 

engine speeds, have been investigated and discussed in the following sections. 

3.1.1. Engine Brake Torque (BT) and Brake Power (BP) 

The variations of BT and BP output of the diesel engine, at various engine speeds, 

powered by different biodiesel blends, are displayed in Figures 4 and 5, respectively. As 

depicted in Figures 4 and 5, the BT of a diesel engine increases with the engine speed, 

peaking at 1800 rpm, and then decreasing as the engine speed increases. The decrease 

might be attributed to the higher friction loss and a lack of air consumption at high speeds 

[77,78]. Although all types of biodiesels have a lower calorific value and a slightly higher 

viscosity than pure diesel, engine BT and BP are improved. On average, palm, sunflower, 

and corn biodiesels improved brake power by 8.7%, 5.4%, and 2.5%, respectively, as 

compared to pure diesel. The higher content of oxygen in all blends of biodiesel, which 

improves the combustion behavior to become more complete [43], might be responsible 

for the increased brake power. Typically, the diesel fuel is pumped into the engine 

according to volumetric measures. The density of all forms of biodiesel mixes is greater 

than pure diesel. As a consequence, for the same fuel volume, a higher fuel flow rate must 

be injected into the engine cylinder. Because of the high viscosity of biodiesel blends, there 

was less internal leakage in the diesel fuel pump [79]. Lapuerta et al. [80] attributed the 

change in brake power not only to the change in fuel mass supplied, but also due to the 

fact that the volume pumped was greater (1.2–3.2%) when biodiesel was used, especially 

in full-load settings. Biodiesel has a greater viscosity, which lowers backflow over the 

piston clearance for the injection pump. Furthermore, as the injection temperature was 

increased, the disparity in fuel delivery reduced, indicating that the viscosity of the fuel 

had decreased. However, when the injection temperatures for diesel and biodiesel were 

altered to achieve comparable viscosities, the volume of diesel fuel injection was 

somewhat higher, due to its lower density, which boosts flow rate across orifices. The 

increased lubricity of biodiesel may contribute to reducing friction loss, resulting in more 

effective braking [16]. Mekonen and Sahoo [81] proposed a method of preheating intake 

air, to increase the braking power of palm biodiesel engines. Preheating the intake air 

decreases the ignition delay, allowing the obtainable oxygen in the combustion chamber 

to be utilized for combustion, resulting in completing combustion and improved energy 

conversion. Furthermore, preheating the intake air has a significant impact on fuel 

atomization, resulting in full combustion and, hence, increased brake power. Many 

studies [82,83] have shown that increasing the biodiesel content ratio reduces the heating 

value and increases the viscosity of biodiesel, resulting in erratic combustion, which 

reduces engine BT and BP. On the other hand, the reduced fuel leakages in the injection 

pumping system, the advanced combustion process, and better biodiesel lubricity have 

all been identified in response to the aforementioned power regeneration. 
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Figure 4. Variation of BT output vs. engine speed for different biodiesel blends. 

 

Figure 5. Variation of brake power vs. engine speed for different biodiesel blends. 

3.1.2. Brake Specific Fuel Consumption (BSFC) 

Figure 6 depicts the nature of BSFC against engine speed, for pure diesel and various 

kinds of biodiesel fuel. The BSFC gradually declines with engine speed, until it hits a 

minimum, then increases with engine speed. This was the case for all of the tested fuels. 

Greater heat loss towards the combustion chamber walls, which decreases combustion 

efficiency and increases fuel consumption, is a major cause of this reduction. The rise in 

BSFC is due to an increase in engine friction at high engine speeds. Another finding was 

that all biodiesel mixes had greater BSFC than pure diesel, especially at low engine speeds. 

The indirect reasons for the increased specific fuel consumption are as follows: (i) lesser 

formation of a finer dispersion, due to relatively low biodiesel vaporization (micro-

explosion), (ii) less air entrained in the spray due to decreased momentum and 

17.2

18.2

19.2

20.2

21.2

22.2

23.2

1200 1400 1600 1800 2000 2200 2400

B
ra

k
e 

T
o

rq
u
e 

(N
.m

)

Engine Speed (rpm)

Diesel Palm Sunflower Corn

2.20

2.70

3.20

3.70

4.20

4.70

5.20

1200 1400 1600 1800 2000 2200 2400

B
ra

k
e 

P
o

w
er

 (
k
W

)

Engine Speed (rpm)

Diesel Palm Sunflower Corn



Mathematics 2022, 10, 420 12 of 29 
 

 

penetrating force, and (iii) decrease in the local excess air ratio due to the biodiesel being 

replaced. In comparison to pure diesel, palm, sunflower, and corn biodiesels showed, on 

average, an increase in BSFC of 7.4%, 4.9%, and 2.5%, respectively. Because all biodiesel 

mixes have a lower calorific value than pure diesel, they require greater fuel consumption 

to generate the same braking power output. Since palm biodiesel has the highest 

kinematic viscosity, which leads to poor fuel atomization and mixture formation, it has a 

higher rise in BSFC than the other tested fuels [84]. Another observation was that at high 

engine speeds, above 2000 rpm, there was a small difference in BSFC for all biodiesel 

mixes, compared to pure diesel. It indicates that all biodiesel fuels tested may get an 

increase in combustion efficiency. This enhancement is attributed to increased diffusion 

rates for biodiesel fuel vapor inside the combustion chamber, which stimulates the 

formation of an air–fuel mixture prior to beginning the ignition, in the form of fine spray, 

related to fast evaporation. Due to an increase in the cetane number, the studied biodiesel 

fuel blends featured a shorter ignition delay, resulting in more power combustion 

efficiency and less fuel burning in pre-mixed combustion [85]. According to Fayad et al. 

[86], increasing the proportion of biodiesel in fuel mixes increases the BSFC, for various 

engine loads and speeds. Further investigations have shown similar outcomes [83,87,88]. 

 

Figure 6. Variation of BSFC vs. engine speed for different biodiesel blends. 

3.1.3. Brake Thermal Efficiency (BTE) 

The fluctuation of BTE for pure diesel and various biodiesel blends, over a range of 

engine speeds, is displayed in Figure 7. The BTE steadily improves with engine speed, 

until it reaches a maximum value, as depicted in this figure. This then lowers, as the 

engine speed rises. This trend might be explained by the fact that cylinder walls take a 

long time to transmit heat, especially at low speeds, resulting in a considerable amount of 

fuel being required to compensate for the increased heat loss. The braking power increases 

as the engine speed rises, resulting in better BTE. Due to the high inertia of the moving 

parts, friction power increases fast at higher speeds, which might be a result of the 

decrease in BTE. Another observation is that, as compared to pure diesel, all biodiesel 

blends have a poorer BTE. In comparison to pure diesel, palm, sunflower, and corn 

biodiesel had, on average, BTE drops of 6.7%, 4.4%, and 2.4%, respectively. The use of 

biodiesel fuel causes higher thermal friction losses, which transfer to the cylinder walls 

and engine coolant. The brake BTE is known to be inversely related to the BSFC and 

heating value [89]. For all biodiesel blends, for example, BSFC increased, while the heating 

value dropped. In this scenario, however, the brake-specific fuel consumption increase is 

more prominent. This explains why, despite their low heating value, biodiesel blends 
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have a lower BTE. Furthermore, as compared to pure diesel, biodiesel blends have a 

shorter ignition delay, which implies that combustion begins sooner. As a result of the 

shorter ignition delay, more heat is lost to the environment, requiring more power for the 

piston to complete the compression stroke. According to Khiraiya et al. [90], the kinematic 

viscosity of palm biodiesel is 150% that of pure diesel fuel. Palm biodiesel requires a 

greater injection pressure than diesel, due to its higher kinematic viscosity, resulting in 

smaller diameter droplets and poorer BTE. In terms of fuel injection system design, sound 

speed and bulk modulus data are critical. In the fuel injection system, the speed of sound 

and the bulk modulus of the fuel have a significant impact on the fuel injection time. The 

propagation of pressure waves, from the fuel injection pump to the injectors, requires a 

few degrees of crank angle, especially in pump-line-nozzle injection systems [91]. 

According to Szybist et al. [92], biodiesel has a higher bulk modulus and sound velocity, 

as well as its higher viscosity, resulting in earlier injection starts. This, combined with any 

increment in the cetane number, has the potential to dramatically speed up and advance 

the combustion process. Traditional diesel engines require delayed combustion to reduce 

pressure and temperature peaks in the combustion chamber. A delay will result in a 

reduction in BTE and braking power. When the injection starts, and therefore the 

combustion process is advanced, the combustion process is re-centered, and the BP 

improves [93]. Many researchers reached the same conclusions [37,87,90,94–96]. However, 

a few scholars [21,23,97] observed the opposite pattern. They attributed the enhanced BTE 

to the oxygenated biodiesel fuel’s better combustion characteristics, or to the lower friction 

loss as a result of increased lubricity. Because of the tight tolerances in the injectors and 

injection system, high lubricity is essential for diesel fuels. More friction and wear between 

moving elements inside the injection system may occur if a diesel fuel with low lubricity 

is utilized. 

 

Figure 7. Variation of thermal efficiency vs. engine speed for different biodiesel blends. 
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studies published in the literature. 
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Fayad et al. [86] Four cylinders Sunflower 
Variable speed @ Full 

load 
- 

Increased 

23–35.7 

Reduced 

27%–30.4% 

Lin et al. [100] Single cylinder 

Corn oil methyl 

ester Variable speed and 

variable load 

Increased 0.4% 
Increased 

10% 
- 

Palm oil methyl 

ester 
Increased 1.5 

Increased 

14.4% 
- 

Ndayishimiye and 

Tazerout [39] 
Single cylinder Palm 

Constant speed @ 1500 

rpm, variable load 
- 10% Increased 

Reduced 

1–2% 

Canakci et al. [101] Four cylinder Palm 
Variable speed @Full 

load 
Reduced 0–7% 11% Increased Reduced 8% 

Suryanarayanan et al. 

[102] 
Single cylinder Sunflower 

Constant speed @ 1500 

rpm, variable load 
- 

Increased 6–

12% 
Increased 2–5% 

Reddy et al. [103] Single cylinder Corn seed 
Constant speed @ 1500 

rpm, variable load 
- 8% Increased Reduced 3.2% 

Current Study Single cylinder 

Palm 

Variable speed @Full 

load 

Increased 

8.7% 

Increased 

7.4% 

Reduced 

6.7% 

Sunflower 
Increased 

5.4% 

Increased 

4.9% 

Reduced 

4.4% 

Corn 
Increased 

2.5% 

Increased 

2.5% 

Reduced 

2.4% 

3.2. Uncertainty Analysis 

The outcomes evaluated from the experimental tests were commonly estimated from 

measured physical parameters. These values have some errors, due to their uncertainty 

measurements. Therefore, to compute the difference between the experimentally 

measured value and the typical true value of a quantity, an uncertainty analysis was used 

to certify the reliability of the calculated physical quantities. The technique, suggested by 

Holman [104], was anticipated to measure the experimental uncertainties. According to 

this technique, if the outcome, R, is a set function of the variables x1, x2, x3… xn, and ω1, ω2, 

ω3… ωn are the uncertainties in the independent variables. Therefore, uncertainty in the 

results ωR is evaluated by Equation (5) [105], as follows: 

𝜔𝑅 = ±√(
𝜕𝑅

𝜕𝑋1

𝜔𝑋1
)2 + (

𝜕𝑅

𝜕𝑋2

𝜔𝑋2
)2 + (

𝜕𝑅

𝜕𝑋3

𝜔𝑋3
)2+. . . +(

𝜕𝑅

𝜕𝑋𝑛

𝜔𝑋𝑛
)2 (5) 

The quantity of uncertainty percentage is calculated by Equation (6), as follows: 

Percentage Analysis =
𝜔𝑅

|𝑅|
× 100% (6) 

For instance, the uncertainty error in braking power (BP) is evaluated as a function 

of rotating engine speed (N) and torque (T). 

𝐵𝑃 = 𝑓(𝑁, 𝑇) 

Δ𝐵𝑃 = √(
𝜕𝐵𝑃

𝜕𝑁
Δ𝑁)

2

+ (
𝜕𝐵𝑃

𝜕𝑇
Δ𝑇)

2

 
(7) 

In regard to Equation (5), the uncertainties for measured physical quantities, such as 

BT, BP, BSFC, and BTE were evaluated as ±1.82%, ±1.68, ±1.94%, and ± 2.02% respectively, 

which indicates the evaluated results are reliable. 

3.3. Modeling and Optimization 

3.3.1. Fuzzy-Based Modeling Logic 

The following three outputs were utilized to replicate the CI engine’s output 

performance: BT, BTE, and BSFC. The output performance of the CI engine was 
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investigated by varying the following two input parameters: engine speed and fuel type. 

The tests were conducted at various engine speeds, ranging from 1200 to 2400 rpm. Pure 

diesel, palm oil, sunflower oil, and corn oil were the four types of fuel examined. The 

experimental dataset was split into two parts, with a ratio of 70:30 training:testing stages. 

The fuzzy model structure is a Sugeno-type, adaptive network-based fuzzy inference 

system (ANFIS). In addition, the fuzzy rules were developed using the subtractive 

clustering approach, which yielded 10 fuzzy rules. For the fuzzification procedure, the 

MFs inputs were chosen as the Gaussian shape, and just 10 epochs were determined to be 

adequate for training. During training and testing, the following three metrics were used 

to assess the accuracy of a fuzzy model: mean square error (MSE), root-mean-square error 

(RMSE), and R2. The values of the statistical metrics of the fuzzy model response are 

shown in Table 6. 

Table 6. Statistical evaluation for the fuzzy-based models. 

MSE Coefficient of Determination (R2) 

Train Test All Train Test All 

First fuzzy model of brake Torque 

6.71 × 10−6 0.0805 0.0259 1 0.9145 0.9713 

Second fuzzy model of thermal efficiency 

5.99 × 10−8 0.1736 0.0558 1 0.845 0.9626 

Third fuzzy model of BSFC 

1.53 × 10−7 0.0002 0.0001 0.9998 0.7845 0.9408 

Average 

2.31 × 10−6 8.48 × 10−2 2.73 × 10−2 1 0.84801 0.9581 

Considering Table 6 for the modeling of the BT, the MSE values are 6.71 × 10−6 and 

0.0805, and the coefficients of determination values represent 1.00 and 0.9145, for the 

training and testing, respectively. This indicates the advantageous nature of fuzzy 

modeling. For modeling the BTE, the MSE values are 5.99 × 10−8 and 0.1736, and the R2 

values are 1.00 and 0.845, for training and testing, respectively. For modeling the BSFC, 

the MSE values are 1.53 × 10−7 and 0.0002, and the R2 values are 0.9998 and 0.7845, for 

training and testing, respectively. 

The graphical description is essential to evaluate the fuzzy-based model. As a result, 

the training and testing phase prediction accuracies were emphasized by graphing the 

model’s predictions against their associated targets, as shown in Figure 8. The forecasts 

are clearly distributed tightly over the % line, indicating that the model’s performance 

accuracy is confirmed. 

The whole values of the output with the input space may be shown once the fuzzy 

model has been established. Figure 9 illustrates the 3D surfaces created, using fuzzy-based 

modeling, to simulate the CI engine’s performance. The colored contours enable us to 

recognize the input–output function’s nature and to characterize the minimum and 

maximum regions. 
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Figure 8. Fuzzy models’ prediction precision. 
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Figure 9. The 3D Surfaces of the fuzzy-based models, (a) brake torque, (b) brake thermal efficiency, 

and (c) BSFC. Note: Fuel (1 for diesel, 2 for palm oil, 3 for sunflower oil and 4 for corn oil). 

The membership functions of the fuzzy model for the CI engine are displayed in 

Figure 10. The two inputs’ membership functions (MFs) were determined to be Gaussian-

shape, which is better for providing a smooth prediction surface. A Gaussian MF is 

defined by two parameters {m, σ}; m indicates the Gaussian curve’s mean, and σ 

represents the curve’s spread. This is a more natural method to show the distribution of 

data. The subtractive clustering technique, depending on the number of formed clusters, 

determines the number of MFs for each input. 

 

Figure 10. The membership functions of fuzzy models; (a) BT, (b) BTE, and (c) BSFC. (Each color 

represents fuzzy membership function). 
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3.3.2. Parameter Optimization 

The PSO algorithm is used to calculate the optimal engine speed and best fuel type, 

based on the fuzzy-based model of the CI engine, which maximizes the output BT and 

BTE, while momentarily minimizing the BSFC. The number of searching agents is 20 and 

the number of iterations is 100. The cost objective function is demonstrated in Equation 

(8), and the optimization statement is as follows: identify the ideal values of the controlling 

variables (S and F) that optimize CI engine performance within their established 

constraints. 

Cost function = −BT (S, F) – BTE (S, F) + BSFC (S, F) (8) 

where, BT (S, F), BTE (S, F), and BSFC (S, F) are the three outputs of the fuzzy models, 

respectively, for BT, BTE, and BSFC. S and F are the inputs (speed and fuel type). The 

negative sign in Equation (8) indicates that the optimization process is being treated as a 

maximization problem, rather than a minimization. Numerically merging the outputs in 

the cost function has the physical meaning of optimizing all of them simultaneously. The 

cost function terms have been converted to a dimensionless quantity that has been divided 

by the maximum value. 

Based on the optimization process, the optimal engine speed is 1648 rpm, and the 

best fuel is sunflower oil. Under this condition, the BT, BTE, and BSFC values are 21.482, 

19.71, and 0.41, respectively. The graph of the iterative values of engine speed, as in Figure 

11, demonstrated that the 100 iterations are sufficient to reach the optimal point before the 

end of the optimization procedure. 

 

Figure 11. The convergence curve of the engine speed during the optimization process. (There are 

five different particles. Each color corresponds to one particle.) 

3.3.3. Response Surface Methodology (RSM) 

In the context of complicated interactions, RSM may be used to assess the relative 

importance of various elements. It is an effective method for evaluating many process 

variables [106]. RSM developed a polynomial model to describe and predict the data. It 

guarantees perfect interactions between the independent variables and no lack of fit 

related to surface curvature [107]. The second-order quadratic polynomial model may be 

defined using the following relation: 
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= = 

= + + +    (9) 

where, Y denotes the predicted output response; B0, Bi, Bii, and Bij denote the regression 

coefficients; k is the number of factors; xi denotes the factors. 

Based on ANOVA, and considering the design matrix presented in Table 7, the first 

output response, BT, is modeled and displayed in Table 8. The model F-value of 20.93 in 

this table indicates that the model is significant. Due to noise, there is only a 0.01% chance 

that an F-value will display such a large amount. The model terms are significant if the p-

values are less than 0.05. In this scenario F, S2, F2, and F3 are significant model variables. 

The model terms are not significant if the value is higher than 0.1. In terms of actual 

factors, the following relationship may be utilized to generate BT predictions: 

BT = 10.0285 - 0.002455S + 11.06832F - 0.0003SF + 5.32552 ×  10−6𝑆2 
−4.09844𝐹2 − 2.83482 ×  10-7𝑆2𝐹 + 0.000296𝑆𝐹2 − 1.62760 ×  10-9𝑆3 + 0.401190F3 

(10) 

Table 7. ANOVA design matrix. 

Study Type Response Surface Subtype Randomized 

Design Type Central Composite Runs 28.00 

Design Model Quadratic Blocks No Blocks 

Table 8. ANOVA table for first output response (BT). 

Source Sum of Squares df Mean Square F-Value p-Value  

Model 22.88 9 2.54 20.93 <0.0001 significant 

S (speed) 0.1552 1 0.1552 1.28 0.2731  

F (fuel) 1.22 1 1.22 10.02 0.0054  

SF 0.1407 1 0.1407 1.16 0.2961  

S² 9.36 1 9.36 77.06 <0.0001  

F² 8.69 1 8.69 71.57 <0.0001  

S²F 0.0540 1 0.0540 0.4447 0.5133  

SF² 0.3919 1 0.3919 3.23 0.0892  

S³ 0.1465 1 0.1465 1.21 0.2866  

F³ 2.03 1 2.03 16.70 0.0007  

Residual 2.19 18 0.1214    

Cor Total 25.06 27     

Table 9 shows the ANOVA statistics for the second output response. The model F-

value of 15.77 indicates that the model is statistically significant. Due to noise, there is only 

a 0.01% chance that an F-value will be this large. The model terms are significant if their 

p-values are less than 0.05. In this situation S, S2, and F2 are crucial model variables. The 

model terms are not significant if their values are higher than 0.1000. The following 

relationship can be utilized to construct BTE predictions, in terms of actual variables: 

BTE = -1.21079 + 0.024263S - 2.14003F - 0.000028SF - 6.43799 ×  10-6S2 + 0.418537F2 (11) 
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Table 9. ANOVA table for second output response (BTE). 

Source Sum of Squares df Mean Square F-Value p-Value  

Model 32.15 5 6.43 15.77 <0.0001 significant 

S 4.62 1 4.62 11.33 0.0028  

F 0.3366 1 0.3366 0.8254 0.3735  

SF 0.0044 1 0.0044 0.0109 0.9178  

S2 22.28 1 22.28 54.64 <0.0001  

F2 4.90 1 4.90 12.03 0.0022  

Residual 8.97 22 0.4078    

Cor Total 41.12 27     

Table 10 displays the ANOVA statistics for the third output response. The F-value of 

17.07 for the model indicates that it is significant. Due to noise, there is only a 0.01% chance 

that an F-value will appear this large. The model terms are significant if the p-values are 

less than 0.05. In this case S, S2, and F2 are important significant model variables. The 

model terms are not significant if the value is higher than 0.1000. The following 

relationship can be utilized to construct BSFC predictions in terms of actual variables: 

BSFC = 0.959687 − 0.000626S + 0.054752F + 1.48809 ×  10−7SF + 1.65947 ×  10−7S2 − 0.010605F2 (12) 

Table 10. ANOVA table for third output response (BSFC). 

Source Sum of Squares df Mean Square F-Value p-Value  

Model 0.0216 5 0.0043 17.07 <0.0001 significant 

S 0.0035 1 0.0035 13.70 0.0012  

F 0.0001 1 0.0001 0.5526 0.4651  

SF 1.240 × 10−7 1 1.240 × 10−7 0.0005 0.9825  

S2 0.0148 1 0.0148 58.62 <0.0001  

F2 0.0031 1 0.0031 12.47 0.0019  

Residual 0.0056 22     

Cor Total 0.0271 27     

Table 11 shows the statistical analysis of the ANOVA models. The anticipated R2 

value of 0.7278 for the BT model is rather close to the adjusted R2 value of 0.8692; that is, 

the difference is less than 0.2. The signal-to-noise ratio is measured with sufficient 

precision. It is preferable to have a ratio of more than four. The signal-to-noise ratio of 

16.795 suggests a good signal. The design space may be navigated using this concept. The 

anticipated R2 value of 0.6130 for the second model, the BTE, is in reasonable agreement 

with the corrected R2 value of 0.7322; that is, the difference is less than 0.2. The appropriate 

precision ratio is 13.368 and shows that the signal is sufficient. The design space may be 

navigated using this concept. The projected R2 value of 0.6274 for the third model, BSFC, 

is in reasonable agreement with the adjusted R2 value of 0.7485; that is, the difference is 

less than 0.2. The appropriate precision ratio is 13.807, indicating that the signal is 

sufficient. The design space may be navigated using this concept. The 3D response surface 

plots for three output responses, using RSM, are shown in Figure 12. In detail, Figure 11 

shows the map variation between the engine speed and different types of fuels on the y-

axis, where values of 1, 2, 3, and 4, represent pure diesel, palm, sunflower, and corn 

biodiesel fuel, respectively. The outputs are BT, BTE, and BSFC, displayed in Figure 12a–

c, respectively. The physical meanings of Figure 12 were analyzed in Section 3.1, whereas 

comparison of the predicted and actual values of output responses is presented in Figure 

13. In general, the average R2 value for both training and testing is 0.783 and 0.656, 

respectively. 
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Table 11. Statistical analysis of the ANOVA model. 

First ANOVA Model of Brake Torque 

Std. Dev. 0.3485 R2 0.9128 

Mean 20.01 Adjusted R2 0.8692 

C.V.% 1.74 Predicted R2 0.7278 

  Adeq Precision 16.7946 

Second ANOVA model of Rz 

Std. Dev. 0.6386 R2 0.7818 

Mean 18.24 Adjusted R2 0.7322 

C.V.% 3.50 Predicted R2 0.6130 

  Adeq Precision 13.368 

Third ANOVA model of BSFC 

Std. Dev. 0.0159 R2 0.7951 

Mean 0.4559 Adjusted R2 0.7485 

C.V.% 3.49 Predicted R2 0.6274 

  Adeq Precision 13.8074 

 

Figure 12. 3D response surface plots for three output responses. 
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Figure 13. Comparison of the predicted and actual values of output responses. 

3.3.4. Optimization-Based Response Surface Methodology (RSM) 

The best input parameters and related output performance from the RSM-based 

optimization method are presented in Table 12. The best performance is achieved using 

corn oil, with an engine speed of 1862.7 rpm. Under this condition, the overall 

performance is increased by 0.268%, 1.9%, and 5.9%, as compared to pure diesel, palm oil, 

and sunflower oil, respectively. 

Table 12. Optimization-based RSM. 

Oil Type 
Speed 

(rpm) 

Torque 

(N.m) 

Change 

(%) 

Efficiency 

(%) 

Change 

(%) 

BSFC 

(kgf/kWh) 

Change 

(%) 
Overall (%) 

Diesel 1841.06 19.8057 0.0 19.8637 0.0 0.415 0.0 0.0 

Palm Oil 1845.55 21.5087 +8.599 18.9295 −4.703 0.438 −5.542 −1.647 

Sunflower 1844.47 20.9137 +5.594 18.8297 −5.205 0.44 −6.024 −5.635 

Corn 1862.71 20.4353 +3.179 19.5726 −1.465 0.421 −1.446 0.268 

3.4. Comparison Study 

In summary, the average R2 values for training and testing, using fuzzy logic, are 1 

and 0.84801, respectively, whereas the average R2 values for both training and testing are 

0.783 and 0.656, respectively. Therefore, in comparison with the ANOVA, the average R2 

value, using fuzzy-based modeling, has been increased by 27.7% and 29.3%, for training 

and testing, respectively. 
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Twenty-eight experiments, using four different types of fuel (pure diesel, corn 

biodiesel, palm biodiesel, and sunflower biodiesel) were carried out. As a result, each fuel 

was tested seven times, relating to seven different speeds (1200 to 2400, step 200 rpm). The 

first experiment was used as a baseline to compare the three determinants, in terms of BT, 

BTE, and BSFC, to find the best improvement. The optimum improvement was selected 

according to the following equations: 

The optimum% of improvement = % of improvement of torque + % of 

improvement of thermal efficiency + % of improvement of BSFC 
(13) 

% of improvement @  specified speed

=
(Torque @  specified speed −  Torque @ reference)

Torque @   reference

+
(Thermal efficiency @  specified speed −  Thermal efficiency @ reference))

Thermal efficiency @   reference

+
(BSFC  @   reference) −  Thermal efficiency @  specified speed)

Thermal efficiency @  reference
 

(14) 

Based on the particle swarm optimization process, the optimal engine speed is 1648 

rpm, and the best fuel is sunflower oil. Under this condition, the overall performance has 

been increased by 2.065% and 8.256%, as compared to the experimental results and RSM. 

The performance comparison of experimental, RSM, and proposed strategy is presented 

in Table 13. 

Table 13. Performance comparison of experimental, RSM and proposed strategy. 

Method Fuel Type 
Speed 

(rpm) 

Torque 

(N.m) 

Change 

(%) 

Efficiency 

(%) 

Change 

(%) 

BSFC 

(kgf/kWh) 

Change 

(%) 

Overall 

(%) 

Experimental Sunflower Oil 1600 21.25 0.0 19.848 0.0 0.4169 0.0 0.00 

RSM Corn Oil 1862.71 20.4353 −3.834 19.5726 −1.388 0.421 −0.969 −6.191 

Proposed Sunflower Oil 1648 21.482 1.092 19.71 −0.696 0.41 1.669 2.065 

4. Conclusions 

The impact of utilizing various biodiesel blends, such as corn, sunflower, and palm 

biodiesels on the performance of a CI engine were examined experimentally in this 

research paper. According to the experimental observations and main findings, the most 

important outcomes can be concluded as follows: 

• When compared to pure diesel, all biodiesel blends boost brake power. Because of its 

slightly higher calorific value and higher oxygen content, palm biodiesel offers the 

highest brake power increase of 8.7%, compared to other biodiesel blends. 

• On average, there is a reduction in BTE of 6.7%, 4.4%, and 2.4% for palm, sunflower, 

and corn biodiesels, respectively, as compared to pure diesel. For all the biodiesel 

blends, BSFC increases, while heating value decreases. However, in this case, the 

increase in brake-specific fuel consumption is more significant. This explains why 

biodiesel blends have a poorer BTE, despite their low heating value. Furthermore, 

biodiesel mixes have a shorter ignition delay than pure diesel, implying that 

combustion starts sooner. More heat is lost to the atmosphere, as a result of the 

shorter ignition delay, necessitating more power for the piston to perform the 

compression stroke. 

• Palm, sunflower, and corn biodiesels had an average increase in BSFC of 7.4%, 4.9%, 

and 2.5%, respectively, compared to pure diesel. Because biodiesel blends have a 

lower calorific value than pure diesel, they consume more fuel to provide the same 

braking power output. 

• Palm biodiesel has the highest kinematic viscosity, resulting in poor fuel atomization 

and mixture formation, as well as a larger BSFC rise than the other test fuels. 
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• The physical and chemical characteristics of biodiesel blends, such as oxygen content, 

cetane number, calorific value, kinematic viscosity, and latent heat of vaporization 

have a direct impact on combustion efficiency. 

• The average R2 value, utilizing a fuzzy-based model, has been increased by 27.7% 

and 29.3%, for training and testing, respectively, as compared to ANOVA. 

• Based on the optimization process using PSO, the optimal engine speed is 1648 rpm, 

and the best fuel is sunflower oil. 

• Using the proposed strategy (integration between fuzzy logic and PSO), the overall 

performance has been increased by 2.065% and 8.256%, as compared to the 

experimental results and RSM. 

Author Contributions: Conceptualization, A.A., H.R. and M.A.-Z.; methodology, A.A., H.R., H.A. 

and W.A.; software, H.R., A.A.A., H.A. and M.R.G., validation, A.A., H.A. and R.M. G.; formal 

analysis, A.A., M.A.-Z. and H.R.; investigation, A.A., H.R. and A.O.M.; resources, H.R.; data 

curation, A.A., H.R., M.A.-Z. and W.A.; writing—original draft preparation, A.A., H.R., H.A. and 

A.O.M.; writing—review and editing, A.A., H.R. and A.O.M.; visualization, A.A., H.R., H.A. and 

R.M.G.; supervision, A.A. and H.R.; project administration, A.A., A.A.A. and H.R.; funding 

acquisition, H.R., A.A.A. and R.M.G. All authors have read and agreed to the published version of 

the manuscript.  

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Funding: Princess Nourah bint Abdulrahman University Researchers Supporting Project number 

(PNURSP2022R138), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. 

Acknowledgments: We would like to thank Princess Nourah bint Abdulrahman University 

Researchers Supporting Project number (PNURSP2022R138), Princess Nourah bint Abdulrahman 

University, Riyadh, Saudi Arabia. 

Conflicts of Interest: The authors declare no conflict of interest. 

Nomenclatures 

AI artificial intelligence 

ANFIS adaptive network-based fuzzy inference system 

ANN artificial neural network 

ANOVA analysis of variance 

ASTM American Society for Testing and Materials 

B0, Bi, Bii, and Bij regression coefficients 

BP brake power 

BSFC brake specific fuel consumption 

BT brake torque 

BTDC before top dead center 

BTE brake thermal efficiency 

c1, c2 a cognitive and social factor 

CFPP cold filter plugging point 

CN cetane number 

CO carbon monoxide 

DC direct current 

F fuel type 

FS full scale 

FSD  full scale deflection 

FTIR Fourier-transform infrared spectroscopy 

gbest the global best 

K number of factors 

M mean of the gaussian curve 

MF fuzzy membership function of the input 

MSE mean square error 
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N rotation engine speed 

NOx nitrogen oxides 

NREL national renewable energy laboratory 

Pbest best solution 

PSO particle swarm optimization 

R outcome function 

r random value 

RMS root mean square 

RMSE root mean square error 

rpm revolution per minute 

RSM response surface methodology 

RTD resistance temperature detectors 

R2 coefficient of determination 

S speed 

SFC specific fuel consumption 

TBHQ tert-butylhydroquinone 

V velocity 

vol. volume 

WR uncertainty error 

Wt. weight 

x Variable, factors 

Y predicted output response 

ω realistic error 

σ spread of the curve 
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