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Abstract: Biodiesel is considered to be a promising alternative option to diesel fuel. The main
contribution of the current work is to improve compression ignition engine performance, fueled
by several biodiesel blends. Three metrics were used to evaluate the output performance of the
compression ignition engine, as follows: brake torque (BT), brake specific fuel consumption (BSFC),
and brake thermal efficiency (BTE), by varying two input parameters (engine speed and fuel type).
The engine speeds were in the 1200–2400 rpm range. Three biodiesel blends, containing 20 vol.% of
vegetable oil and 80 vol.% of pure diesel fuel, were prepared and tested. In all the experiments, pure
diesel fuel was employed as a reference for all biodiesel blends. The experimental results revealed
the following findings: although all types of biodiesel blends have low calorific value and slightly
high viscosity, as compared to pure diesel fuel, there was an improvement in both BT and brake
power (BP) outputs. An increase in BSFC by 7.4%, 4.9%, and 2.5% was obtained for palm, sunflower,
and corn biodiesel blends, respectively, as compared to that of pure diesel. The BTE of the palm oil
biodiesel blend was the lowest among other biodiesel blends. The suggested work strategy includes
two stages (modeling and parameter optimization). In the first stage, a robust fuzzy model is created,
depending on the experimental results, to simulate the output performance of the compression
ignition engine. The particle swarm optimization (PSO) algorithm is used in the second stage to
determine the optimal operating parameters. To confirm the distinction of the proposed strategy, the
obtained outcomes were compared to those attained by response surface methodology (RSM). The
coefficient of determination (R2) and the root-mean-square-error (RMSE) were used as comparison
metrics. The average R2 was increased by 27.7% and 29.3% for training and testing, respectively,
based on the fuzzy model. Using the proposed strategy in this work (integration between fuzzy logic
and PSO) may increase the overall performance of the compression ignition engine by 2.065% and
8.256%, as concluded from the experimental tests and RSM.

Keywords: optimization; fuzzy model; response surface methodology; diesel engine performance;
biodiesel
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1. Introduction

Recently, the energy crisis, environmental contamination, and climate change are
considered the most critical difficulties facing the country [1–6]. Therefore, the increased
awareness of potential environmental risks on human health has been focused on keeping
engine emissions under control. Diesel fuel has a crucial problem related to exhaust, vibra-
tion, and acoustic emissions [7–11]. Biodiesel is considered an eco-friendly, bio-degradable,
energy efficient, renewable, scientifically feasible, and non-toxic fuel alternative [12–14].
Besides, it is considered one of the safest fuels, because it has a high flash point amongst all
conventional fuels [15], and can operate diesel engines with little or no adjustments [16].
Biodiesel can be produced from a variety of animal fats, as well as vegetable oils, pro-
cessed with a catalyst and alcohol. For example, the utilization of palm oil as biodiesel
is recognized as palm oil methyl ester, which is growing rapidly in popularity, due to its
huge productivity and low prices. Biodiesel produced from palm oil is categorized by a
high amount of saturated fatty acids and displays tremendous combustion characteristics,
such as the calorific value and cetane number, despite its high kinematic viscosity at low
temperatures [17]. The continuous improvement of the cetane number will actually im-
pact the injection time, the coefficients of combustion variables, and heat release aspects,
according to Labeckas and Slavinskas [18]. Various mixtures and fuel attributes have a sig-
nificant impact in the ignition delay and evaporation processes, within similar experimental
settings. Generally, most of the biodiesel blends have a high cetane number, no sulfur,
no aromatics, and they contain up to 11 wt% oxygen. The National Renewable Energy
Laboratory (NREL) [19] reported that the oxygen concentration in biodiesel fuel, including
vegetable oil blends, ranges from 2.5% to 11%, for biodiesel blends of 20% and 100% by
volume. In contrast, pure diesel does not contain any oxygen molecules. The significant
oxygen concentration in the biodiesel enhances the combustion efficiency and decreases
some of the exhaust emissions. Conversely, the main crucial drawback of biodiesel, in terms
of high viscosity, leads to many difficulties in the atomization and pumping processes.
Therefore, there was a need for a transesterification process. Furthermore, biodiesel fuels
have greater surface tension and viscosity than regular diesel fuels, and these differences
become crucial in cold circumstances, because the rate of fuel injection is greatly influenced,
and the combustion mechanism might be influenced as a result. Additives have been used
in biodiesel fuels to improve the biodiesel cold filter plugging point (CFPP) property and,
consequently, improve the properties of the flow at low temperatures, to make them more
appropriate for low-temperature operations [20]. Other drawbacks are the lower calorific
value, which is about 80% of the heating value compared to that of pure diesel, low oxida-
tion stability, high pour point, and low volatility [21,22]. To address the difficulties related
to biodiesel fuel having a high viscosity, the following techniques could be adopted [23–26]:
(i) Use small blend ratios with pure diesel [23]. It is commonly recognized that up to 20% of
biodiesel blends can be used without engine modifications; (ii) Make a micro-emulsification
by the use of ethanol or methanol [24]; (iii) Use nanoparticles as fuel additives to lower
the density and viscosity of the fuel mixture [25,26]. In terms of feasibility issues, Rajak
et al. [27] examined the economics of diesel fuel compared to biodiesel fuels made from
Jatropha curcas and Moringa oleifera. According to the authors, the cost of diesel is nearly
equal to the cost of alternative biofuels. The prior viewpoint was examined in detail and
scientifically interpreted by Tasca et al. [28–30]. Yee et al. [30] introduced the concept of life
cycle assessment (LCA), to investigate and assess whether biodiesel fuel is a sustainable
fuel. The three phases of the LCA analysis were as follows: biodiesel transesterification
process, agricultural processes, and oil milling. For each process, the energy and green-
house gas balances were computed. According to the findings, the use of palm biodiesel
was found to be more ecologically friendly than regular diesel fuel, with a significant 38%
reduction in CO2 emissions per liter combusted.
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1.1. A Literature Review of Biodiesel Engine Performance

Numerous previous works have been conducted to assess the impacts of different types
of biodiesel blends on engine durability, injection manner, exhaust emission, performance,
heat losses and availability, spray formation, engine vibration analysis, catalyst synthesis
for biodiesel production, and acoustic emissions [31–36]. Nalgundwar et al. [37] stated
that a higher cetane of palm biodiesel blends is the reason for improved brake power and
results in reduced ignition delay, which makes combustion start in advance. Moreover, a
higher cetane number is required for the higher engine rotational speed. Sanjid et al. [38]
compared the performances of two types of biodiesels; namely, mustard and palm biodiesel
fuels, with volume blends of 10% and 20%. The results showed that the BSFC for mustard
biodiesel is 1% and 3.5% higher than palm biodiesel blends of 10% and 20%, respectively.
Ndayishimiye and Tazerout [39] examined the engine performance of a diesel engine fueled
with palm oil blends. The authors found a small increase in BSFC and BTE, compared to
pure diesel fuel.

Patel et al. [40] suggested the employment of biodiesel fuel instead of pure diesel to
make some modifications in diesel engines, especially for the fuel filter, fuel pumps, and
injector needle, to overcome the higher viscosity of biodiesel fuel and, therefore, to improve
its performance.

1.2. Literature Review on Engine Performance Optimization Approaches

To avoid financial constraints and time-consuming experiments, scholars have em-
ployed different modeling techniques, including artificial intelligence (AI), in terms of
an artificial neural network (ANN) tool, and fuzzy modeling in modeling engine perfor-
mances and exhaust emissions [41–44]. Accordingly, the correlation coefficient between the
experimental data and ANN predictions can accurately forecast the engine efficiency and
exhaust emissions powered with biodiesel mixes [45].

The fuzzy model is a more advantageous method to estimate the parameters of
the diesel engine that maximized the engine performance, as compared to other tech-
niques, such as the computational fluid dynamics reaction kinetic model, because it ne-
cessitates less time and effort [46,47]. On the other hand, computational techniques for
studying internal combustion engines have several drawbacks. To avoid this, Salam and
Verma [48] innovated an alternate, non-traditional way to explore the challenge of empirical
redundancy in engine operation and behavioral characterization. This study provided a
unique empirical approach to assess the relative empirical importance of chosen variables
of interest, addressing the comprehensibility of engine operation. Furthermore, Salam
and Verma [49,50] employed redundancy to create a sequence of variables of interest,
depending on their importance in the ICE operation. Dey et al. [51] examined the per-
formance of a single-cylinder compression ignition (CI) engine, fueled by palm/diesel
and ethanol biofuel blends, using two models of ANN and RSM. The results revealed
that the optimized engine performance, in terms of BTE and BSFC, was obtained from
a blend of 20% palm biodiesel, mixed with 5% ethanol and 75% pure diesel at full load.
Krishnamoorthi et al. [52] maximized the diesel engine performance responses with two ap-
proaches (ANN tool and RSM). The engine was powered with diesel/vegetable oil/diethyl
ether blends at different engine loads, along with various compression ratios. The error per-
centage of the two approaches was rated less than 5%. Therefore, the authors stated that the
application of previous approaches plays a crucial role in improving engine performance.
Dey et al. [53] and Reang et al. [54] employed the fuzzy-based Taguchi technique, to boost
CI performance and reduce emission characteristics for a CI engine, with varying engine
loads and varied biodiesel blends. Shirneshan et al. [55] used response surface techniques
to investigate the effects of biodiesel–ethanol fuel mixes on the performance of a CI engine.
Parameter optimizations were also performed, using the genetic method. According to
the findings, increasing the quantity of ethanol in the gasoline combination reduced BP
and BT by around 30%. Because ethanol has a lower calorific value than biodiesel, the
BSFC of fuel blends increased by roughly 16% with a larger proportion of ethanol. To
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minimize and identify the proper number of experimental trials, the Taguchi experimental
approach could be utilized [56]. Rith et al. [57] employed RSM and the desired function
to optimize a dual gas-diesel fuel engine, with several objectives. The goal was to use the
desired function to optimize the desirability of SFC and specific exhaust emissions, at a
high engine speed of 3000 rpm. The optimal desirability of 0.829 was reached with input
parameters of 11◦ BTDC. Ghanbari et al. [58] examined how the percentage of alumina
nanoparticles in biodiesel blends affected the exhaust emissions and performance of a CI
engine. Furthermore, the authors designed empirical correlations, using RSM, to simulate
diesel engine performance and exhaust emissions powered by nano biodiesel fuel mixes.
The findings of the experiments demonstrated that alumina nanoparticles are a useful addi-
tion to diesel–biodiesel blends, to boost engine performance and reduce exhaust emissions.
Devarajan et al. [59] examined CI engine performance by adding nanoparticles of silver
oxide as additives, in various weight fractions, to a palm oil biodiesel. According to the
results, the addition of nanoparticles to biodiesel improves the igniting behavior.

1.3. Research Gap, Objectives, and Originality

Although there are many articles in the literature about engine performance using
different biodiesel fuel blends, there is still a gap in its modeling-based AI and modern
optimization of the diesel engine. The current research aims to investigate a diesel engine,
operated at full load conditions and at various engine speeds. In this work, engine per-
formance has been studied extensively for an unmodified diesel engine, fueled with corn,
sunflower, and palm biodiesel blends. Then, based on the experimental results, a robust
fuzzy model, to simulate the output performance of the compression ignition engine, was
created. Finally, a PSO algorithm was used to establish the best operating parameters. To
confirm the distinction of the proposed strategy, the obtained outcomes were compared
to those attained by RSM. Therefore, the novelty of this study relates to the integration
between fuzzy logic and particle swarm optimization, to determine the optimal engine
speed and the best fuel type that maximizes the output BT and BTE and significantly
minimizes the BSFC.

1.4. Manuscript Organization

The rest of the manuscript is structured as follows: The experimental setup is dis-
cussed, in terms of biodiesel preparation, biodiesel characteristics, experimental equipment
and procedure, engine performance measurements, proposed modeling and optimization,
including fuzzy modeling, ANOVA test, and PSO in section two. The influence of biodiesel
blends on diesel engine performance in terms of BT, BSFC, and BTE under full load and
at various engine speeds was examined in section three, using the observed experimental
results, combined with the uncertainty analysis. In addition, in section three, the outcomes
of modeling and optimization, using fuzzy-based modeling logic, PSO algorithm to deter-
mine the optimal engine speed and best fuel type that maximize output BT and BTE, while
momentarily minimizing the BSFC, RSM based on ANOVA test, and the best input pa-
rameters and related output performance from the RSM-based optimization method, were
discussed and analyzed. In section four, we compared the performance of the experimental,
RSM, and suggested strategies. Finally, the findings of the investigation were summarized
in section five, which leads to the conclusion.

2. Experimental Setup, Equipment, Procedure, Modeling, and Optimization

A set of tests were carried out using a single-cylinder, water-cooled, four-stroke, and a
direct injection PETTER PHIW Lister LV1 CI engine, with a compression ratio of 17:1, which
is primarily powered by pure diesel fuel. The details of diesel engine specifications are
demonstrated in Table 1. All tested fuels, which were pure diesel, corn biodiesel, sunflower
biodiesel, and palm biodiesel, were implemented without making any adjustments to the
diesel engine. The schematic diagram of an experimental diesel test engine is depicted in
Figure 1.
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Table 1. Technical data of PETTER PHIW diesel engine.

Technical Data Specification

Type Lister LV1
Maximum Power 9 HP (6.7 kW) @ 3000 rpm
Maximum torque 25 Nm @ 2000 rpm

Number of cylinders Single
Engine Operation Four Stroke

Nominal speed range 1000–3000 rpm
Bore ∗ Stroke 85.73 × 82.55 mm

Compression ratio 0.70902778
Connecting rod length 188.5 mm
Combustion chamber Direct injection

Piston shape Bowl-in-piston
Orifice diameter of the nozzle 0.250 mm

Fuel injector holes 3
Valve number/cylinder 2

Pressure @ injector opens 180 bars
Intake valve opening/closing 150 CA BTDC/410 CA ABDC

Exhaust valve opening/closing 410 CA BBDC/150 CA ATDC

Dynamometer Swinging field DC machine with torque
measurement by load
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2.1. Biodiesel Preparation

As displayed in Table 2, numerous techniques have been used, including blending
with transesterification, petrodiesel, pyrolysis, and microemulsification [60–64]. In our
experimental test, three different biodiesel blends, consisting of 20 vol.% of vegetable
oil and 80 vol.% of pure diesel fuel (namely, corn, sunflower, and palm biodiesels) were
prepared according to the following procedure and depicted in Figure 2: 4 g of sodium
hydroxide was added to 200 cm3 of methanol in an electrical blender at low speed for
around 2 min. The reaction heats up the mixture. It was vigorously stirred until all of
the sodium hydroxide was fully dissolved in the methanol to form sodium methoxide.
1000 cm3 of vegetable oil was preheated to 65 ◦C and added gradually to the previous
mixture, while the electrical blender continued operating for around 30 min. After blending,
the solution was left for 4 h of reaction time to settle down. Finally, the solution is separated
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by gravity into two layers; one at the top is the biodiesel and one at the bottom is glycerin.
Darker colored glycerin was gathered in a distinct layer at the bottom of the container,
with an obvious line of separation from the pale liquid above, which was biodiesel. To
eliminate all traces of glycerin and contaminants, the biodiesel product must be rinsed.
The washing technique involves adding hot water to the biodiesel and allowing it to settle
for 12 h in a separating funnel. The bottom layer was gradually removed until the sample
was transparent. To eliminate the water content, the purified biodiesel was poured into a
beaker and heated to 55 ◦C. Table 3 displays the percentage of fatty acids in oil materials
used [60,64,65]. The measured fuel properties are recorded in Table 4, accompanied by
equipment specifications.

Table 2. A summary of alternative biodiesel preparation approaches [60–64].

Technique Preparation Process Features Drawbacks

Transesterification

Alcohol (methanol or ethanol)
and catalyst were used to
react the vegetable/animal
oils. Following that, the
combination of glycerol and
methyl/ethyl esters (biodiesel)
will be separated and purified
before being used.

Relatively low cost with a
high conversion, moderate
processing settings, product
qualities comparable to diesel
and large-scale manufacturing

Low levels of water and free
fatty acids in the raw
resources were required, as
well as lengthy separation and
purification stages, the
possibility of side reactions,
and the formation of a
substantial volume of effluent.

Blending

Pre-heated vegetable/animal
oils were mixed with diesel in
a 10–40% (w/w) ratio. The
diesel engine was then
coupled with the oil-diesel
mixture.

There is no need for a
chemical process (it is
non-polluting), no technical
adjustments, and it is simple
to apply.

Inadequate spraying
behaviour, weak atomization,
improper fuel combustion,
and difficulties in fueling by
conventional engines caused
by the high viscosity,
unreliable, low volatility, and
rise in vegetable/animal oil
component.

Microemulsification

The vegetable/animal oils
were dissolved in an
alcohol-based solvent and a
surfactant until they reached
the desired viscosity.

Simple method that does not
pollute the environment.

High viscosity, limited
stability, and the possibility of
sticking, incomplete
combustion, and carbon
deposition.

Pyrolysis

The vegetable/animal oils
were preheated to a high
temperature, usually
exceeding 350 degrees Celsius,
and then decomposed. It did
not matter if the catalyst was
there or not. Several products
were examined depends on
the individual product’s
boiling temperature range.

Practical technique, easy (no
washing, drying, or filtration
is necessary), waste, and
pollution-free.

High temperatures and costly
equipment are required, and
the biodiesel produced is of
low purity
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Table 3. Percentage of fatty acids in oil materials used [60,64,65].

Sources
% (wt)

Palmitic
(C16:0)

% (wt)
Stearic
(C18:0)

% (wt)
Oleic

(C18:1)

% (wt)
Linoleic
(C18:2)

% (wt)
Linolenic

(C18:3)

Palm oil 45 4 39 11 - *
Sunflower 3–10 1–10 14–35 55–75 <0.3

Corn 8–10 1–4 30–50 3456 0.5–1.5

* Not specified.

According to the following equation [66,67], the % error related to the experimental
quantities was determined as depicted in Table 4.

Error % =
Apparatus Accuracy

Minimum value of apparatus measured
× 100% (1)

Table 4. Measured fuel blend properties of all tested fuel [60,68–73].

Properties Diesel Corn
Biodiesel

Palm
Biodiesel

Sunflower
Biodiesel

Test
method Equipment Accuracy Error

Cetane Number 47 53 61 52 ASTM
D613 - -

Flash Point, ◦C 52 74.74 72 86 ASTM
D-93

Point-
automatic
NPM 440

(Norma Lab,
France)

- -

Iodine Value (cg
I/g oil) - 103–140 35–61 110–143 ASTM

D5554-15
FTIR

spectroscopy - -

Saponification
Number - 202 186–209 200 ASTM

D5558-95
FTIR

spectroscopy - -

Pour point, ◦C −32 −18 −10 −5.0 ASTM D97
Cloud And
Pour Point
Apparatus

- -

Cloud point, ◦C −18 −15 −5 4.0 ASTM
D2500

Cloud And
Pour Point
Apparatus

- -

Specific gravity@
15 ◦C 0.83 0.855 0.85 0.853 IP 190/93

Capillary
stoppered

Pycnometer
±10−3 g/cm3 ±0.12%
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Table 4. Cont.

Properties Diesel Corn
Biodiesel

Palm
Biodiesel

Sunflower
Biodiesel

Test
method Equipment Accuracy Error

Viscosity at
40 ◦C (cSt) 3.85 4.772 5.281 4.963 ASTM

D445

EMILA rotary
viscometer
apparatus

±0.1 cP ±2.6%

Heating Value
(MJ/kg) 43.5 39.5 40.1 39.8 ASTM

D240

automated
adiabatic

bomb
calorimeter

±0.04 MJ/kg ±0.1%

2.2. Engine Performance Measurements

A trunnion-mounted, swinging field of a direct current (DC) electrical machine capable
of absorbing a maximum load of 10 kW at a speed of 4000 rpm was utilized as the dy-
namometer. The rated BT was 50 Nm. Torque was measured with a precision of ±0.2–0.3%
of full scale (FS), whereas rotational speed measurement accuracy was ±1 r/min. The
engine was driven by a speed-increasing tooth belt. A strain gauge load cell system with
mechanical overload protection was included, as well as appropriate calibration equip-
ment. For speed measurement and feedback to the control system, a toothed wheel and
magnetic pick-up were employed. A dynamometer attached with a DC motor to produce
a load was used to evaluate the engine brake power. A varying field current regulated
the load and operation. Therefore, this dynamometer can work at different loads and
speeds according to any required amount of torque. Because the test used a regular engine
speed, the dynamometer power absorption unit absorbed the power generated by the
engine to drive a DC motor that works as a generator to produce a load. This absorption
unit delivered a variable quantity of braking torque to operate the engine at the desired
rotation. Moreover, the braking power absorption unit on the engine was executed using
an electronic control unit. The dynamometer control system is a microprocessor-controlled,
completely regenerative thyristor drive that enables the dynamometer to run a motor or
generator at a constant speed. A strain gauge load cell sensor was used to assess engine
load. The magnetic pick-up sensor was used to monitor engine speed using a dented wheel
on the dynamometer shaft. The performance test measurements are regulated according to
the following procedure: The engine warms up until the cooling water and lubricating oil
reach the set operating temperatures. After that, the choke is opened gradually by turning
the lever to its widest setting. The speed control lever is set to the low-speed position
and warms it up without applying the load for a few minutes. The speed control lever is
gradually moved towards the high-speed position and set to the required engine speed.
The tested fuel is applied. The following parameters were recorded: a digital tachometer
was utilized to quantify the engine speed, the dynamometer was employed to measure a
BT, temperatures of the exhaust gases, lubricating oil, and cooling water were monitored
with a thermocouple type K of resistance temperature detectors (RTD) integrated with a
high-temperature surface probe with accuracy of ±1.6 ◦C. Finally, install the air velocity
sensor in the air intake duct, ensuring that the sensor element is aligned with the airflow
and in the middle of the duct with an accuracy of ±0.3% full-scale deflection (FSD). The
twin bulb glass burette and timer were used to calculate the fuel consumption rate with an
accuracy of (±0.05 cm3).

The previous steps were repeated for different biodiesel fuel blends. Before con-
ducting any test, the engine and dynamometer were calibrated and regulated to their
default values. After the engine was stabilized, all of the measurement data were logged.
For each tested fuel, the experiments were repeated three times and the average of the
measurements was taken.
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2.3. Modeling and Optimization

There are two stages to the suggested modeling and optimization technique. The
first phase involves fuzzy modeling based on an experimental dataset to predict the
compression ignition engine’s output performance. To confirm the distinction of the
fuzzy model proposed in this work, the obtained results are compared to those attained
by ANOVA. The second phase is determining the engine speed and the best types of
fuel using PSO. Unlike mathematical methods, the definition of the model structure that
makes up the system rule base is the first step in the fuzzy modeling technique. Thus, the
relation between inputs and outputs are represented by fuzzy IF-THEN rules. In the case
under study, the Takagi–Sugeno fuzzy was adopted to build the fuzzy rules because it
can track the nonlinear input data. The inputs’ membership functions were selected as
the Gaussian shape. The rules are typically established depending on dataset inputs [74].
The following expressions are simply adopting the form of a fuzzy rule statement for a
two-input single-output system:

IF x is MFx and y is MFy THEN z is MFz (2)

where, MFx, and MFy are the fuzzy membership functions for two inputs, x and y, respec-
tively; MFz is the fuzzy membership function for a single output z.

One of the most well-known optimizers is PSO. Kennedy and Eberhart proposed the
initial form of PSO. The main concept of PSO is derived from the natural flocking behavior
of birds [75]. The original PSO is fairly simple and straightforward. Every particle has the
potential to be a prospective solution. It consists of the two following vectors: velocity and
position. The values for each of the variables in the problem are included in the location
vector. The velocity is taken into account while changing the position of particles. For each
dimension and particle separately, the velocity determines the magnitude and direction of
step size. Further information on the mathematical representation and physical dispersion
can be found in [76]. The following is a description of the updating process for particle
velocity and location.

vt+1 = vt + c1r1(Pt
best − xt) + c2r2(gt

best − xt) (3)

xt+1 = xt + vt+1 (4)

where, V indicates velocity, Pbest is the best solution, gbest is the best solution globally. c1
and c2 denote cognitive and social aspects, r1 and r2 are random values, and t represents
the number of iterations.

Figure 3 displays a schematic diagram of the experimental approach integrated with
an optimization process.



Mathematics 2022, 10, 420 10 of 29Mathematics 2022, 10, x FOR PEER REVIEW 10 of 30 
 

 

 
Figure 3. A schematic diagram of the experimental approach integrated with an optimization pro-
cess. 

3. Results and Discussion 
The generated experimental findings provide a thorough examination of the impact 

of biodiesel blends on diesel engine performance, under full load and at different engine 
speeds. 

3.1. Engine Performance Analysis 
The effects of biodiesel blends on the CI engine BT, BP, BSFC, and BTE, at different 

engine speeds, have been investigated and discussed in the following sections. 

3.1.1. Engine Brake Torque (BT) and Brake Power (BP) 
The variations of BT and BP output of the diesel engine, at various engine speeds, 

powered by different biodiesel blends, are displayed in Figures 4 and 5, respectively. As 
depicted in Figures 4 and 5, the BT of a diesel engine increases with the engine speed, 
peaking at 1800 rpm, and then decreasing as the engine speed increases. The decrease 
might be attributed to the higher friction loss and a lack of air consumption at high speeds 
[77,78]. Although all types of biodiesels have a lower calorific value and a slightly higher 
viscosity than pure diesel, engine BT and BP are improved. On average, palm, sunflower, 
and corn biodiesels improved brake power by 8.7%, 5.4%, and 2.5%, respectively, as com-
pared to pure diesel. The higher content of oxygen in all blends of biodiesel, which im-
proves the combustion behavior to become more complete [43], might be responsible for 
the increased brake power. Typically, the diesel fuel is pumped into the engine according 
to volumetric measures. The density of all forms of biodiesel mixes is greater than pure 
diesel. As a consequence, for the same fuel volume, a higher fuel flow rate must be injected 
into the engine cylinder. Because of the high viscosity of biodiesel blends, there was less 
internal leakage in the diesel fuel pump [79]. Lapuerta et al. [80] attributed the change in 

Figure 3. A schematic diagram of the experimental approach integrated with an optimization process.

3. Results and Discussion

The generated experimental findings provide a thorough examination of the impact
of biodiesel blends on diesel engine performance, under full load and at different
engine speeds.

3.1. Engine Performance Analysis

The effects of biodiesel blends on the CI engine BT, BP, BSFC, and BTE, at different
engine speeds, have been investigated and discussed in the following sections.

3.1.1. Engine Brake Torque (BT) and Brake Power (BP)

The variations of BT and BP output of the diesel engine, at various engine speeds,
powered by different biodiesel blends, are displayed in Figures 4 and 5, respectively. As
depicted in Figures 4 and 5, the BT of a diesel engine increases with the engine speed,
peaking at 1800 rpm, and then decreasing as the engine speed increases. The decrease might
be attributed to the higher friction loss and a lack of air consumption at high speeds [77,78].
Although all types of biodiesels have a lower calorific value and a slightly higher viscosity
than pure diesel, engine BT and BP are improved. On average, palm, sunflower, and corn
biodiesels improved brake power by 8.7%, 5.4%, and 2.5%, respectively, as compared to
pure diesel. The higher content of oxygen in all blends of biodiesel, which improves the
combustion behavior to become more complete [43], might be responsible for the increased
brake power. Typically, the diesel fuel is pumped into the engine according to volumetric
measures. The density of all forms of biodiesel mixes is greater than pure diesel. As a
consequence, for the same fuel volume, a higher fuel flow rate must be injected into the
engine cylinder. Because of the high viscosity of biodiesel blends, there was less internal
leakage in the diesel fuel pump [79]. Lapuerta et al. [80] attributed the change in brake
power not only to the change in fuel mass supplied, but also due to the fact that the
volume pumped was greater (1.2–3.2%) when biodiesel was used, especially in full-load
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settings. Biodiesel has a greater viscosity, which lowers backflow over the piston clearance
for the injection pump. Furthermore, as the injection temperature was increased, the
disparity in fuel delivery reduced, indicating that the viscosity of the fuel had decreased.
However, when the injection temperatures for diesel and biodiesel were altered to achieve
comparable viscosities, the volume of diesel fuel injection was somewhat higher, due to its
lower density, which boosts flow rate across orifices. The increased lubricity of biodiesel
may contribute to reducing friction loss, resulting in more effective braking [16]. Mekonen
and Sahoo [81] proposed a method of preheating intake air, to increase the braking power
of palm biodiesel engines. Preheating the intake air decreases the ignition delay, allowing
the obtainable oxygen in the combustion chamber to be utilized for combustion, resulting
in completing combustion and improved energy conversion. Furthermore, preheating
the intake air has a significant impact on fuel atomization, resulting in full combustion
and, hence, increased brake power. Many studies [82,83] have shown that increasing the
biodiesel content ratio reduces the heating value and increases the viscosity of biodiesel,
resulting in erratic combustion, which reduces engine BT and BP. On the other hand, the
reduced fuel leakages in the injection pumping system, the advanced combustion process,
and better biodiesel lubricity have all been identified in response to the aforementioned
power regeneration.
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Figure 4. Variation of BT output vs. engine speed for different biodiesel blends.

3.1.2. Brake Specific Fuel Consumption (BSFC)

Figure 6 depicts the nature of BSFC against engine speed, for pure diesel and various
kinds of biodiesel fuel. The BSFC gradually declines with engine speed, until it hits a
minimum, then increases with engine speed. This was the case for all of the tested fuels.
Greater heat loss towards the combustion chamber walls, which decreases combustion
efficiency and increases fuel consumption, is a major cause of this reduction. The rise
in BSFC is due to an increase in engine friction at high engine speeds. Another finding
was that all biodiesel mixes had greater BSFC than pure diesel, especially at low engine
speeds. The indirect reasons for the increased specific fuel consumption are as follows:
(i) lesser formation of a finer dispersion, due to relatively low biodiesel vaporization (micro-
explosion), (ii) less air entrained in the spray due to decreased momentum and penetrating
force, and (iii) decrease in the local excess air ratio due to the biodiesel being replaced. In
comparison to pure diesel, palm, sunflower, and corn biodiesels showed, on average, an
increase in BSFC of 7.4%, 4.9%, and 2.5%, respectively. Because all biodiesel mixes have a
lower calorific value than pure diesel, they require greater fuel consumption to generate
the same braking power output. Since palm biodiesel has the highest kinematic viscosity,
which leads to poor fuel atomization and mixture formation, it has a higher rise in BSFC
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than the other tested fuels [84]. Another observation was that at high engine speeds, above
2000 rpm, there was a small difference in BSFC for all biodiesel mixes, compared to pure
diesel. It indicates that all biodiesel fuels tested may get an increase in combustion efficiency.
This enhancement is attributed to increased diffusion rates for biodiesel fuel vapor inside
the combustion chamber, which stimulates the formation of an air–fuel mixture prior to
beginning the ignition, in the form of fine spray, related to fast evaporation. Due to an
increase in the cetane number, the studied biodiesel fuel blends featured a shorter ignition
delay, resulting in more power combustion efficiency and less fuel burning in pre-mixed
combustion [85]. According to Fayad et al. [86], increasing the proportion of biodiesel in
fuel mixes increases the BSFC, for various engine loads and speeds. Further investigations
have shown similar outcomes [83,87,88].
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Figure 5. Variation of brake power vs. engine speed for different biodiesel blends.
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3.1.3. Brake Thermal Efficiency (BTE)

The fluctuation of BTE for pure diesel and various biodiesel blends, over a range of
engine speeds, is displayed in Figure 7. The BTE steadily improves with engine speed,
until it reaches a maximum value, as depicted in this figure. This then lowers, as the engine
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speed rises. This trend might be explained by the fact that cylinder walls take a long time
to transmit heat, especially at low speeds, resulting in a considerable amount of fuel being
required to compensate for the increased heat loss. The braking power increases as the
engine speed rises, resulting in better BTE. Due to the high inertia of the moving parts,
friction power increases fast at higher speeds, which might be a result of the decrease in BTE.
Another observation is that, as compared to pure diesel, all biodiesel blends have a poorer
BTE. In comparison to pure diesel, palm, sunflower, and corn biodiesel had, on average,
BTE drops of 6.7%, 4.4%, and 2.4%, respectively. The use of biodiesel fuel causes higher
thermal friction losses, which transfer to the cylinder walls and engine coolant. The brake
BTE is known to be inversely related to the BSFC and heating value [89]. For all biodiesel
blends, for example, BSFC increased, while the heating value dropped. In this scenario,
however, the brake-specific fuel consumption increase is more prominent. This explains
why, despite their low heating value, biodiesel blends have a lower BTE. Furthermore, as
compared to pure diesel, biodiesel blends have a shorter ignition delay, which implies that
combustion begins sooner. As a result of the shorter ignition delay, more heat is lost to
the environment, requiring more power for the piston to complete the compression stroke.
According to Khiraiya et al. [90], the kinematic viscosity of palm biodiesel is 150% that of
pure diesel fuel. Palm biodiesel requires a greater injection pressure than diesel, due to its
higher kinematic viscosity, resulting in smaller diameter droplets and poorer BTE. In terms
of fuel injection system design, sound speed and bulk modulus data are critical. In the fuel
injection system, the speed of sound and the bulk modulus of the fuel have a significant
impact on the fuel injection time. The propagation of pressure waves, from the fuel injection
pump to the injectors, requires a few degrees of crank angle, especially in pump-line-nozzle
injection systems [91]. According to Szybist et al. [92], biodiesel has a higher bulk modulus
and sound velocity, as well as its higher viscosity, resulting in earlier injection starts. This,
combined with any increment in the cetane number, has the potential to dramatically
speed up and advance the combustion process. Traditional diesel engines require delayed
combustion to reduce pressure and temperature peaks in the combustion chamber. A delay
will result in a reduction in BTE and braking power. When the injection starts, and therefore
the combustion process is advanced, the combustion process is re-centered, and the BP
improves [93]. Many researchers reached the same conclusions [37,87,90,94–96]. However,
a few scholars [21,23,97] observed the opposite pattern. They attributed the enhanced BTE
to the oxygenated biodiesel fuel’s better combustion characteristics, or to the lower friction
loss as a result of increased lubricity. Because of the tight tolerances in the injectors and
injection system, high lubricity is essential for diesel fuels. More friction and wear between
moving elements inside the injection system may occur if a diesel fuel with low lubricity
is utilized.
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Table 5 presents a brief quantitative comparison of the current work to previous studies
published in the literature.

Table 5. Comparison of the current work to previous studies published in the literature [39,86,98–103].

Reference Engine Type Fuel Test
Conditions BP BSFC BTE

Ozsezen et al.
[98] Six cylinders Palm

Constant speed
@ 1500 rpm,

variable load
Reduced 2.5% Increased 7.5% Reduced

0.48%

Dulger and
Kaplan [99] Four cylinders Sunflower Variable speed

@ Full load Reduced 10% Increased 2–5% -

Fayad et al. [86] Four cylinders Sunflower Variable speed
@ Full load - Increased

23–35.7
Reduced

27%–30.4%

Lin et al. [100] Single cylinder

Corn oil methyl
ester Variable speed

and variable
load

Increased 0.4% Increased
10% -

Palm oil methyl
ester Increased 1.5 Increased 14.4% -

Ndayishimiye
and Tazerout

[39]
Single cylinder Palm

Constant speed
@ 1500 rpm,

variable load
- 10% Increased Reduced

1–2%

Canakci et al.
[101] Four cylinder Palm Variable speed

@Full load Reduced 0–7% 11% Increased Reduced 8%

Suryanarayanan
et al. [102] Single cylinder Sunflower

Constant speed
@ 1500 rpm,

variable load
- Increased

6–12% Increased 2–5%

Reddy et al.
[103] Single cylinder Corn seed

Constant speed
@ 1500 rpm,

variable load
- 8% Increased Reduced 3.2%

Current Study Single cylinder

Palm

Variable speed
@Full load

Increased
8.7%

Increased
7.4%

Reduced
6.7%

Sunflower Increased
5.4%

Increased
4.9%

Reduced
4.4%

Corn Increased
2.5%

Increased
2.5%

Reduced
2.4%

3.2. Uncertainty Analysis

The outcomes evaluated from the experimental tests were commonly estimated from
measured physical parameters. These values have some errors, due to their uncertainty
measurements. Therefore, to compute the difference between the experimentally measured
value and the typical true value of a quantity, an uncertainty analysis was used to certify the
reliability of the calculated physical quantities. The technique, suggested by Holman [104],
was anticipated to measure the experimental uncertainties. According to this technique, if
the outcome, R, is a set function of the variables x1, x2, x3 . . . xn, and ω1, ω2, ω3 . . . ωn are
the uncertainties in the independent variables. Therefore, uncertainty in the results ωR is
evaluated by Equation (5) [105], as follows:

ωR = ±

√
(

∂R
∂X1

ωX1)
2
+ (

∂R
∂X2

ωX2)
2
+ (

∂R
∂X3

ωX3)
2
+ . . . + (

∂R
∂Xn

ωXn)
2

(5)

The quantity of uncertainty percentage is calculated by Equation (6), as follows:

Percentage Analysis =
ωR

|R| × 100%. (6)
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For instance, the uncertainty error in braking power (BP) is evaluated as a function of
rotating engine speed (N) and torque (T).

BP = f (N, T)∆BP =

√(
∂BP
∂N

∆N
)2

+

(
∂BP
∂T

∆T
)2

(7)

In regard to Equation (5), the uncertainties for measured physical quantities, such as
BT, BP, BSFC, and BTE were evaluated as±1.82%,±1.68,±1.94%, and± 2.02% respectively,
which indicates the evaluated results are reliable.

3.3. Modeling and Optimization
3.3.1. Fuzzy-Based Modeling Logic

The following three outputs were utilized to replicate the CI engine’s output perfor-
mance: BT, BTE, and BSFC. The output performance of the CI engine was investigated by
varying the following two input parameters: engine speed and fuel type. The tests were
conducted at various engine speeds, ranging from 1200 to 2400 rpm. Pure diesel, palm oil,
sunflower oil, and corn oil were the four types of fuel examined. The experimental dataset
was split into two parts, with a ratio of 70:30 training:testing stages. The fuzzy model
structure is a Sugeno-type, adaptive network-based fuzzy inference system (ANFIS). In
addition, the fuzzy rules were developed using the subtractive clustering approach, which
yielded 10 fuzzy rules. For the fuzzification procedure, the MFs inputs were chosen as the
Gaussian shape, and just 10 epochs were determined to be adequate for training. During
training and testing, the following three metrics were used to assess the accuracy of a fuzzy
model: mean square error (MSE), root-mean-square error (RMSE), and R2. The values of
the statistical metrics of the fuzzy model response are shown in Table 6.

Table 6. Statistical evaluation for the fuzzy-based models.

MSE Coefficient of Determination (R2)

Train Test All Train Test All

First fuzzy model of brake Torque
6.71 × 10−6 0.0805 0.0259 1 0.9145 0.9713

Second fuzzy model of thermal efficiency
5.99 × 10−8 0.1736 0.0558 1 0.845 0.9626

Third fuzzy model of BSFC
1.53 × 10−7 0.0002 0.0001 0.9998 0.7845 0.9408

Average
2.31 × 10−6 8.48 × 10−2 2.73 × 10−2 1 0.84801 0.9581

Considering Table 6 for the modeling of the BT, the MSE values are 6.71 × 10−6

and 0.0805, and the coefficients of determination values represent 1.00 and 0.9145, for
the training and testing, respectively. This indicates the advantageous nature of fuzzy
modeling. For modeling the BTE, the MSE values are 5.99 × 10−8 and 0.1736, and the R2

values are 1.00 and 0.845, for training and testing, respectively. For modeling the BSFC,
the MSE values are 1.53 × 10−7 and 0.0002, and the R2 values are 0.9998 and 0.7845, for
training and testing, respectively.

The graphical description is essential to evaluate the fuzzy-based model. As a result,
the training and testing phase prediction accuracies were emphasized by graphing the
model’s predictions against their associated targets, as shown in Figure 8. The forecasts
are clearly distributed tightly over the % line, indicating that the model’s performance
accuracy is confirmed.
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The whole values of the output with the input space may be shown once the fuzzy
model has been established. Figure 9 illustrates the 3D surfaces created, using fuzzy-
based modeling, to simulate the CI engine’s performance. The colored contours enable
us to recognize the input–output function’s nature and to characterize the minimum and
maximum regions.
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shape, which is better for providing a smooth prediction surface. A Gaussian MF is de-
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The membership functions of the fuzzy model for the CI engine are displayed in
Figure 10. The two inputs’ membership functions (MFs) were determined to be Gaussian-
shape, which is better for providing a smooth prediction surface. A Gaussian MF is defined
by two parameters {m, σ}; m indicates the Gaussian curve’s mean, and σ represents the
curve’s spread. This is a more natural method to show the distribution of data. The
subtractive clustering technique, depending on the number of formed clusters, determines
the number of MFs for each input.
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3.3.2. Parameter Optimization

The PSO algorithm is used to calculate the optimal engine speed and best fuel type,
based on the fuzzy-based model of the CI engine, which maximizes the output BT and BTE,
while momentarily minimizing the BSFC. The number of searching agents is 20 and the
number of iterations is 100. The cost objective function is demonstrated in Equation (8),
and the optimization statement is as follows: identify the ideal values of the controlling
variables (S and F) that optimize CI engine performance within their established constraints.

Cost function = −BT (S, F) - BTE (S, F) + BSFC (S, F) (8)

where, BT (S, F), BTE (S, F), and BSFC (S, F) are the three outputs of the fuzzy models,
respectively, for BT, BTE, and BSFC. S and F are the inputs (speed and fuel type). The
negative sign in Equation (8) indicates that the optimization process is being treated as a
maximization problem, rather than a minimization. Numerically merging the outputs in
the cost function has the physical meaning of optimizing all of them simultaneously. The
cost function terms have been converted to a dimensionless quantity that has been divided
by the maximum value.

Based on the optimization process, the optimal engine speed is 1648 rpm, and the best
fuel is sunflower oil. Under this condition, the BT, BTE, and BSFC values are 21.482, 19.71,
and 0.41, respectively. The graph of the iterative values of engine speed, as in Figure 11,
demonstrated that the 100 iterations are sufficient to reach the optimal point before the end
of the optimization procedure.
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3.3.3. Response Surface Methodology (RSM)

In the context of complicated interactions, RSM may be used to assess the relative
importance of various elements. It is an effective method for evaluating many process
variables [106]. RSM developed a polynomial model to describe and predict the data. It
guarantees perfect interactions between the independent variables and no lack of fit related
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to surface curvature [107]. The second-order quadratic polynomial model may be defined
using the following relation:

Y = B0 +
k

∑
i=1

Bixi +
k

∑
i=1

Biix2
i + ∑ ∑

i<j
Bijxixj (9)

where, Y denotes the predicted output response; B0, Bi, Bii, and Bij denote the regression
coefficients; k is the number of factors; xi denotes the factors.

Based on ANOVA, and considering the design matrix presented in Table 7, the first
output response, BT, is modeled and displayed in Table 8. The model F-value of 20.93 in
this table indicates that the model is significant. Due to noise, there is only a 0.01% chance
that an F-value will display such a large amount. The model terms are significant if the
p-values are less than 0.05. In this scenario F, S2, F2, and F3 are significant model variables.
The model terms are not significant if the value is higher than 0.1. In terms of actual factors,
the following relationship may be utilized to generate BT predictions:

BT = 10.0285 − 0.002455S + 11.06832F − 0.0003SF + 5.32552× 10−6S2

−4.09844F2 − 2.83482× 10−7S2F + 0.000296SF2 − 1.62760× 10−9S3 + 0.401190F3 (10)

Table 7. ANOVA design matrix.

Study Type Response Surface Subtype Randomized

Design Type Central Composite Runs 28.00
Design Model Quadratic Blocks No Blocks

Table 8. ANOVA table for first output response (BT).

Source Sum of Squares df Mean Square F-Value p-Value

Model 22.88 9 2.54 20.93 <0.0001 significant
S (speed) 0.1552 1 0.1552 1.28 0.2731
F (fuel) 1.22 1 1.22 10.02 0.0054

SF 0.1407 1 0.1407 1.16 0.2961
S2 9.36 1 9.36 77.06 <0.0001
F2 8.69 1 8.69 71.57 <0.0001

S2F 0.0540 1 0.0540 0.4447 0.5133
SF2 0.3919 1 0.3919 3.23 0.0892
S3 0.1465 1 0.1465 1.21 0.2866
F3 2.03 1 2.03 16.70 0.0007

Residual 2.19 18 0.1214
Cor Total 25.06 27

Table 9 shows the ANOVA statistics for the second output response. The model F-
value of 15.77 indicates that the model is statistically significant. Due to noise, there is
only a 0.01% chance that an F-value will be this large. The model terms are significant if
their p-values are less than 0.05. In this situation S, S2, and F2 are crucial model variables.
The model terms are not significant if their values are higher than 0.1000. The following
relationship can be utilized to construct BTE predictions, in terms of actual variables:

BTE = −1.21079+0.024263S − 2.14003F − 0.000028SF − 6.43799× 10−6S2 + 0.418537F2 (11)

Table 9. ANOVA table for second output response (BTE).

Source Sum of Squares df Mean Square F-Value p-Value

Model 32.15 5 6.43 15.77 <0.0001 significant
S 4.62 1 4.62 11.33 0.0028
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Table 9. Cont.

Source Sum of Squares df Mean Square F-Value p-Value

F 0.3366 1 0.3366 0.8254 0.3735
SF 0.0044 1 0.0044 0.0109 0.9178
S2 22.28 1 22.28 54.64 <0.0001
F2 4.90 1 4.90 12.03 0.0022

Residual 8.97 22 0.4078
Cor Total 41.12 27

Table 10 displays the ANOVA statistics for the third output response. The F-value of
17.07 for the model indicates that it is significant. Due to noise, there is only a 0.01% chance
that an F-value will appear this large. The model terms are significant if the p-values are
less than 0.05. In this case S, S2, and F2 are important significant model variables. The
model terms are not significant if the value is higher than 0.1000. The following relationship
can be utilized to construct BSFC predictions in terms of actual variables:

BSFC = 0.959687− 0.000626S + 0.054752F + 1.48809× 10−7SF + 1.65947× 10−7S2 − 0.010605F2 (12)

Table 10. ANOVA table for third output response (BSFC).

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.0216 5 0.0043 17.07 <0.0001 significant
S 0.0035 1 0.0035 13.70 0.0012
F 0.0001 1 0.0001 0.5526 0.4651

SF 1.240 × 10−7 1 1.240 × 10−7 0.0005 0.9825
S2 0.0148 1 0.0148 58.62 <0.0001
F2 0.0031 1 0.0031 12.47 0.0019

Residual 0.0056 22
Cor Total 0.0271 27

Table 11 shows the statistical analysis of the ANOVA models. The anticipated R2 value
of 0.7278 for the BT model is rather close to the adjusted R2 value of 0.8692; that is, the
difference is less than 0.2. The signal-to-noise ratio is measured with sufficient precision. It
is preferable to have a ratio of more than four. The signal-to-noise ratio of 16.795 suggests a
good signal. The design space may be navigated using this concept. The anticipated R2

value of 0.6130 for the second model, the BTE, is in reasonable agreement with the corrected
R2 value of 0.7322; that is, the difference is less than 0.2. The appropriate precision ratio is
13.368 and shows that the signal is sufficient. The design space may be navigated using
this concept. The projected R2 value of 0.6274 for the third model, BSFC, is in reasonable
agreement with the adjusted R2 value of 0.7485; that is, the difference is less than 0.2. The
appropriate precision ratio is 13.807, indicating that the signal is sufficient. The design
space may be navigated using this concept. The 3D response surface plots for three output
responses, using RSM, are shown in Figure 12. In detail, Figure 11 shows the map variation
between the engine speed and different types of fuels on the y-axis, where values of 1,
2, 3, and 4, represent pure diesel, palm, sunflower, and corn biodiesel fuel, respectively.
The outputs are BT, BTE, and BSFC, displayed in Figure 12a–c, respectively. The physical
meanings of Figure 12 were analyzed in Section 3.1, whereas comparison of the predicted
and actual values of output responses is presented in Figure 13. In general, the average R2

value for both training and testing is 0.783 and 0.656, respectively.
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Table 11. Statistical analysis of the ANOVA model.

First ANOVA Model of Brake Torque

Std. Dev. 0.3485 R2 0.9128
Mean 20.01 Adjusted R2 0.8692
C.V.% 1.74 Predicted R2 0.7278

Adeq Precision 16.7946

Second ANOVA Model of Rz

Std. Dev. 0.6386 R2 0.7818
Mean 18.24 Adjusted R2 0.7322
C.V.% 3.50 Predicted R2 0.6130

Adeq Precision 13.368

Third ANOVA Model of BSFC

Std. Dev. 0.0159 R2 0.7951
Mean 0.4559 Adjusted R2 0.7485
C.V.% 3.49 Predicted R2 0.6274

Adeq Precision 13.8074
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3.3.4. Optimization-Based Response Surface Methodology (RSM)

The best input parameters and related output performance from the RSM-based
optimization method are presented in Table 12. The best performance is achieved using
corn oil, with an engine speed of 1862.7 rpm. Under this condition, the overall performance
is increased by 0.268%, 1.9%, and 5.9%, as compared to pure diesel, palm oil, and sunflower
oil, respectively.

Table 12. Optimization-based RSM.

Oil Type Speed
(rpm)

Torque
(N.m)

Change
(%)

Efficiency
(%)

Change
(%)

BSFC
(kgf/kWh)

Change
(%)

Overall
(%)

Diesel 1841.06 19.8057 0.0 19.8637 0.0 0.415 0.0 0.0
Palm Oil 1845.55 21.5087 +8.599 18.9295 −4.703 0.438 −5.542 −1.647

Sunflower 1844.47 20.9137 +5.594 18.8297 −5.205 0.44 −6.024 −5.635
Corn 1862.71 20.4353 +3.179 19.5726 −1.465 0.421 −1.446 0.268

3.4. Comparison Study

In summary, the average R2 values for training and testing, using fuzzy logic, are 1
and 0.84801, respectively, whereas the average R2 values for both training and testing are
0.783 and 0.656, respectively. Therefore, in comparison with the ANOVA, the average R2

value, using fuzzy-based modeling, has been increased by 27.7% and 29.3%, for training
and testing, respectively.
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Twenty-eight experiments, using four different types of fuel (pure diesel, corn biodiesel,
palm biodiesel, and sunflower biodiesel) were carried out. As a result, each fuel was tested
seven times, relating to seven different speeds (1200 to 2400, step 200 rpm). The first experi-
ment was used as a baseline to compare the three determinants, in terms of BT, BTE, and
BSFC, to find the best improvement. The optimum improvement was selected according to
the following equations:

The optimum% of improvement = % of improvement of torque + % of
improvement of thermal efficiency + % of improvement of BSFC

(13)

% of improvement @ specified speed
= (Torque @ specified speed − Torque @ reference)

Torque @ reference

+ (Thermal efficiency @ specified speed − Thermal efficiency @ reference)
Thermal efficiency @ reference

+ (BSFC @ reference − Thermal efficiency @ specified speed)
Thermal efficiency @ reference

(14)

Based on the particle swarm optimization process, the optimal engine speed is
1648 rpm, and the best fuel is sunflower oil. Under this condition, the overall perfor-
mance has been increased by 2.065% and 8.256%, as compared to the experimental results
and RSM. The performance comparison of experimental, RSM, and proposed strategy is
presented in Table 13.

Table 13. Performance comparison of experimental, RSM and proposed strategy.

Method Fuel Type Speed
(rpm)

Torque
(N.m)

Change
(%)

Efficiency
(%)

Change
(%)

BSFC
(kgf/kWh)

Change
(%)

Overall
(%)

Experimental Sunflower
Oil 1600 21.25 0.0 19.848 0.0 0.4169 0.0 0.00

RSM Corn Oil 1862.71 20.4353 −3.834 19.5726 −1.388 0.421 −0.969 −6.191

Proposed Sunflower
Oil 1648 21.482 1.092 19.71 −0.696 0.41 1.669 2.065

4. Conclusions

The impact of utilizing various biodiesel blends, such as corn, sunflower, and palm
biodiesels on the performance of a CI engine were examined experimentally in this research
paper. According to the experimental observations and main findings, the most important
outcomes can be concluded as follows:

• When compared to pure diesel, all biodiesel blends boost brake power. Because of its
slightly higher calorific value and higher oxygen content, palm biodiesel offers the
highest brake power increase of 8.7%, compared to other biodiesel blends.

• On average, there is a reduction in BTE of 6.7%, 4.4%, and 2.4% for palm, sunflower,
and corn biodiesels, respectively, as compared to pure diesel. For all the biodiesel
blends, BSFC increases, while heating value decreases. However, in this case, the
increase in brake-specific fuel consumption is more significant. This explains why
biodiesel blends have a poorer BTE, despite their low heating value. Furthermore,
biodiesel mixes have a shorter ignition delay than pure diesel, implying that combus-
tion starts sooner. More heat is lost to the atmosphere, as a result of the shorter ignition
delay, necessitating more power for the piston to perform the compression stroke.

• Palm, sunflower, and corn biodiesels had an average increase in BSFC of 7.4%, 4.9%,
and 2.5%, respectively, compared to pure diesel. Because biodiesel blends have a lower
calorific value than pure diesel, they consume more fuel to provide the same braking
power output.

• Palm biodiesel has the highest kinematic viscosity, resulting in poor fuel atomization
and mixture formation, as well as a larger BSFC rise than the other test fuels.
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• The physical and chemical characteristics of biodiesel blends, such as oxygen content,
cetane number, calorific value, kinematic viscosity, and latent heat of vaporization
have a direct impact on combustion efficiency.

• The average R2 value, utilizing a fuzzy-based model, has been increased by 27.7% and
29.3%, for training and testing, respectively, as compared to ANOVA.

• Based on the optimization process using PSO, the optimal engine speed is 1648 rpm,
and the best fuel is sunflower oil.

• Using the proposed strategy (integration between fuzzy logic and PSO), the overall per-
formance has been increased by 2.065% and 8.256%, as compared to the experimental
results and RSM.
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Nomenclatures

AI artificial intelligence
ANFIS adaptive network-based fuzzy inference system
ANN artificial neural network
ANOVA analysis of variance
ASTM American Society for Testing and Materials
B0, Bi, Bii, and Bij regression coefficients
BP brake power
BSFC brake specific fuel consumption
BT brake torque
BTDC before top dead center
BTE brake thermal efficiency
c1, c2 a cognitive and social factor
CFPP cold filter plugging point
CN cetane number
CO carbon monoxide
DC direct current
F fuel type
FS full scale
FSD full scale deflection
FTIR Fourier-transform infrared spectroscopy
gbest the global best
K number of factors
M mean of the gaussian curve
MF fuzzy membership function of the input
MSE mean square error
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N rotation engine speed
NOx nitrogen oxides
NREL national renewable energy laboratory
Pbest best solution
PSO particle swarm optimization
R outcome function
r random value
RMS root mean square
RMSE root mean square error
rpm revolution per minute
RSM response surface methodology
RTD resistance temperature detectors
R2 coefficient of determination
S speed
SFC specific fuel consumption
TBHQ tert-butylhydroquinone
V velocity
vol. volume
WR uncertainty error
Wt. weight
x Variable, factors
Y predicted output response
ω realistic error
σ spread of the curve
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8. Dal, H.; Emiroğlu, A.O.; Bilge, H.; Şen, M. Experimental Investigation of the Effects of Chicken and Turkey Biodiesel Blends on

Diesel Engine Noise Emissions. Int. J. Environ. Sci. Technol. 2019, 16, 5147–5154. [CrossRef]
9. Alahmer, A. Reduction a Particulate Matter of Diesel Emission by the Use of Several Oxygenated Diesel Blend Fuels. Int. J. Therm.

Environ. Eng. 2014, 7, 45–50.
10. Gomaa, M.R.; Mustafa, R.J.; Al-Dmour, N. Solar Thermochemical Conversion of Carbonaceous Materials into Syngas by

Co-Gasification. J. Clean. Prod. 2020, 248, 119185. [CrossRef]
11. Dey, S.; Deb, M.; Das, P.K. An Investigation of Diesohol-Biodiesel Mixture in Performance-Emission Characteristics of a Single

Cylinder Diesel Engine: A Trade-off Benchmark. Int. J. Automot. Mech. Eng. 2019, 16, 7464–7479. [CrossRef]
12. Bae, C.; Kim, J. Alternative Fuels for Internal Combustion Engines. Proc. Combust. Inst. 2017, 36, 3389–3413. [CrossRef]
13. Hasan, A.O.; Osman, A.I.; Ala’a, H.; Al-Rawashdeh, H.; Abu-jrai, A.; Ahmad, R.; Gomaa, M.R.; Deka, T.J.; Rooney, D.W. An Ex-

perimental Study of Engine Characteristics and Tailpipe Emissions from Modern DI Diesel Engine Fuelled with Methanol/Diesel
Blends. Fuel Process. Technol. 2021, 220, 106901. [CrossRef]

14. Reang, N.M.; Dey, S.; Deb, M.; Deb Barma, J. Effect of Diesel-biodiesel-alcohol Blends on Combustion, Performance, and Emission
Characteristics of a Single Cylinder Compression Ignition Engine. Environ. Prog. Sustain. Energy 2021, e13752. [CrossRef]

15. Song, J.T.; Zhang, C.H. An Experimental Study on the Performance and Exhaust Emissions of a Diesel Engine Fuelled with
Soybean Oil Methyl Ester. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2008, 222, 2487–2496. [CrossRef]

16. Ramadhas, A.S.; Muraleedharan, C.; Jayaraj, S. Performance and Emission Evaluation of a Diesel Engine Fueled with Methyl
Esters of Rubber Seed Oil. Renew. Energy 2005, 30, 1789–1800. [CrossRef]

http://doi.org/10.1016/j.ijhydene.2017.09.072
http://doi.org/10.1155/2015/495418
http://doi.org/10.1504/IJVNV.2014.064250
http://doi.org/10.1016/j.energy.2021.120988
http://doi.org/10.1016/j.renene.2019.12.010
http://doi.org/10.12913/22998624/140784
http://doi.org/10.1016/j.fuel.2012.06.109
http://doi.org/10.1007/s13762-018-1946-x
http://doi.org/10.1016/j.jclepro.2019.119185
http://doi.org/10.15282/ijame.16.4.2019.18.0552
http://doi.org/10.1016/j.proci.2016.09.009
http://doi.org/10.1016/j.fuproc.2021.106901
http://doi.org/10.1002/ep.13752
http://doi.org/10.1243/09544070JAUTO932
http://doi.org/10.1016/j.renene.2005.01.009


Mathematics 2022, 10, 420 26 of 29

17. Pinzi, S.; Garcia, I.L.; Lopez-Gimenez, F.J.; Luque de Castro, M.D.; Dorado, G.; Dorado, M.P. The Ideal Vegetable Oil-Based
Biodiesel Composition: A Review of Social, Economical and Technical Implications. Energy Fuels 2009, 23, 2325–2341. [CrossRef]

18. Labeckas, G.; Slavinskas, S. Comparative Evaluation of the Combustion Process and Emissions of a Diesel Engine Operating on
the Cetane Improver 2-Ethylhexyl Nitrate Doped Rapeseed Oil and Aviation JP-8 Fuel. Energy Convers. Manag. X 2021, 11, 100106.
[CrossRef]

19. Graboski, M.S.; McCormick, R.L.; Alleman, T.L.; Herring, A.M. The Effect of Biodiesel Composition on Engine Emissions from a
DDC Series 60 Diesel Engine. Natl. Renew. Energy Lab. 2003. Available online: https://www.nrel.gov/docs/fy03osti/31461.pdf
(accessed on 25 November 2021).

20. Broatch, A.; Tormos, B.; Olmeda, P.; Novella, R. Impact of Biodiesel Fuel on Cold Starting of Automotive Direct Injection Diesel
Engines. Energy 2014, 73, 653–660. [CrossRef]

21. Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M.; Founti, M.A. Comparative Environmental Behavior of
Bus Engine Operating on Blends of Diesel Fuel with Four Straight Vegetable Oils of Greek Origin: Sunflower, Cottonseed, Corn
and Olive. Fuel 2011, 90, 3439–3446. [CrossRef]

22. Sureshkumar, K.; Velraj, R.; Ganesan, R. Performance and Exhaust Emission Characteristics of a CI Engine Fueled with Pongamia
Pinnata Methyl Ester (PPME) and Its Blends with Diesel. Renew. Energy 2008, 33, 2294–2302. [CrossRef]

23. Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G. Comparative Performance and
Emissions Study of a Direct Injection Diesel Engine Using Blends of Diesel Fuel with Vegetable Oils or Bio-Diesels of Various
Origins. Energy Convers. Manag. 2006, 47, 3272–3287. [CrossRef]

24. Atmanlı, A.; Ileri, E.; Yüksel, B. Experimental Investigation of Engine Performance and Exhaust Emissions of a Diesel Engine
Fueled with Diesel–n-Butanol–Vegetable Oil Blends. Energy Convers. Manag. 2014, 81, 312–321. [CrossRef]

25. Chacko, N.; Jeyaseelan, T. Comparative Evaluation of Graphene Oxide and Graphene Nanoplatelets as Fuel Additives on the
Combustion and Emission Characteristics of a Diesel Engine Fuelled with Diesel and Biodiesel Blend. Fuel Process. Technol. 2020,
204, 106406. [CrossRef]

26. Gad, M.S.; Jayaraj, S. A Comparative Study on the Effect of Nano-Additives on the Performance and Emissions of a Diesel Engine
Run on Jatropha Biodiesel. Fuel 2020, 267, 117168. [CrossRef]

27. Rajak, U.; Chaurasiya, P.K.; Nashine, P.; Verma, M.; Kota, T.R.; Verma, T.N. Financial Assessment, Performance and Emission
Analysis of Moringa Oleifera and Jatropha Curcas Methyl Ester Fuel Blends in a Single-Cylinder Diesel Engine. Energy Convers.
Manag. 2020, 224, 113362. [CrossRef]

28. Tasca, A.L.; di Capaci, R.B.; Tognotti, L.; Puccini, M. Biomethane from Short Rotation Forestry and Microalgal Open Ponds:
System Modeling and Life Cycle Assessment. Bioresour. Technol. 2019, 273, 468–477. [CrossRef]

29. Dey, S.; Reang, N.M.; Das, P.K.; Deb, M. A Comprehensive Study on Prospects of Economy, Environment, and Efficiency of Palm
Oil Biodiesel as a Renewable Fuel. J. Clean. Prod. 2021, 286, 124981. [CrossRef]

30. Yee, K.F.; Tan, K.T.; Abdullah, A.Z.; Lee, K.T. Life Cycle Assessment of Palm Biodiesel: Revealing Facts and Benefits for
Sustainability. Appl. Energy 2009, 86, S189–S196. [CrossRef]

31. Jiaqiang, E.; Liu, T.; Yang, W.M.; Li, J.; Gong, J.; Deng, Y. Effects of Fatty Acid Methyl Esters Proportion on Combustion and
Emission Characteristics of a Biodiesel Fueled Diesel Engine. Energy Convers. Manag. 2016, 117, 410–419.

32. Boudy, F.; Seers, P. Impact of Physical Properties of Biodiesel on the Injection Process in a Common-Rail Direct Injection System.
Energy Convers. Manag. 2009, 50, 2905–2912. [CrossRef]
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