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Abstract: We propose a new Quadratic Unconstrained Binary Optimization (QUBO) formulation of
the Travelling Salesman Problem (TSP), with which we overcame the best formulation of the Vehicle
Routing Problem (VRP) in terms of the minimum number of necessary variables. After, we will
present a detailed study of the constraints subject to the new TSP model and benchmark it with MTZ
and native formulations. Finally, we will test whether the correctness of the formulation by entering
it into a QUBO problem solver. The solver chosen is a D-Wave_2000Q6 quantum computer simulator
due to the connection between Quantum Annealing and QUBO formulations.
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1. Introduction

The Travelling Salesman Problem, known as TSP [1], is one of the most studied
statements belonging to the combinatorial optimisation problems. In this, we are given a
set of cities and the distances between them with which we must try to find the best route
to travel all the towns, minimizing the total length.

Both the TSP and its more well-known derivative, the Vehicle Routing Problem (VRP),
are routing problems with a great impact on most of the issues in our society. For this
reason, and because both are NP-Hard [2], the scientific community has continued the
search for a better formulation that makes their resolution efficient. However, unfortunately,
we cannot use traditional search methods based on differentiability when defining the
problem with discrete variables.

One of the models that allows us to write TSP like problems more generically is
Quadratic Unconstrained Binary Optimization (QUBO) [3]. QUBO is a framework that
enables us to model problems in a quadratic form subject to linear restrictions natively.
However, with the help of penalty functions, it is possible to reformulate the tasks of order
greater than two and inequality constraints to the QUBO model. Another characteristic
that makes QUBO a very important modelling environment is its close connection with
the Ising model [4]. The QUBO model constitutes a central problem for adiabatic quantum
computing [5], which is solved through a physical process called quantum annealing [6,7].

It is known that the best current QUBO formulation of the TSP requires N2 binary
variables Section A.1. However, when we try to generalise this formulation to other set of
problems such as VRP, we find that polynomial terms of order greater than two appear
in these models. As QUBO modelling requires that the function to minimize must be
quadratic, it is necessary to decrease the degree of these terms by introducing auxiliary
variables, which greatly increases the number of required variables. This is crucial to
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achieving good results through the solvers dedicated to it, especially if it is going to be
implemented on a quantum computer.

Quantum annealing is the paradigm of using quantum processes to solve combinato-
rial optimization problems. This paradigm uses entropy as a target to force exploration,
given that any function that smoothes the probability in the search space can have the same
purpose according to the adiabatic theorem [8,9].

The D-Wave Quantum Processor Unit (QPU) is considered as a heuristic that mini-
mizes the objective QUBO functions using a physically performed version of quantum
annealing; this shows how the number of variables in the QUBO model is related to the
number of qubits in a quantum computer [10].

The VRP encompasses two different problems: one in which the distance travelled by
vehicles subject to capacity restrictions is minimized [11–14] and another, in which the time
taken for cars to complete their routes is minimized. In this article, everything related to
the VRP will optimize the time to complete these routes, equivalent to reducing the total of
the distances travelled by all vehicles.

As we will explain later in the section dedicated to the VRP, to generalise a QUBO
formulation from the TSP to the VRP, the objective function for calculating the distance
travelled by the vehicles must be linear so that the formulation discussed above with N2

variables cannot be used.
The most widely used QUBO model of the TSP that can represent distance linearly uses

more than N3 variables (native TSP formulation). However, there is indeed a formulation
that uses N2log2(N) variables; this formulation is known as MTZ [15]. But generalising
the MTZ formulation for the VRPs that minimises the maximum distances travelled by all
the vehicles give us quadratic restrictions and, therefore, a penalty function of the order
greater than two.

Our purpose in this work is to present a new QUBO model of the TSP in which
the travelled distance calculation is linear, and uses only 3N2 variables, considerably
improving the existing TSP models (both of N3 and N2log2(N) variables). Furthermore,
this new formulation of the TSP we refer to as GPS will be generalized to define an
efficient formulation which consider the number of variables of a new VRP formulation.
Unfortunately, after reviewing state of the art, we have not found a QUBO formulation of
the VRP that minimises the maximum of the distances travelled by all the vehicles, thus we
have not been able to make comparisons. When we talk about the number of variables in a
model, we will describe it according to its dominant term, so for a model that, for example,
requires N3 + 3N2 + 2N variables, we will say that it is modelling with N3 variables since
it gives us enough information on its scalability.

The document is organised as follows. Section 2 presents our main motivation be-
hind this work. Section 3 shows previous work on the TSP algorithm and its derivatives.
Section 4 presents the QUBO framework and its connection to quantum annealing. In
Section 5, we recall the native formulation of TSP and the MTZ QUBO model. Section 6
presents our TSP proposal with the improvements in the numbers of variables. A generali-
sation of our contribution is seen in Section 7 where we propose our VRP into the QUBO
model. Section 8 presents the obtained results, and finally, Section 9 concludes the work
carried out, and we open ourselves to some lines of the future of the proposed model.

2. Motivation

Our primary motivation is to find a suitable formulation that uses the minimum
number of variables; and thus, the minimum number of qubits when implementing said
models in quantum computers. This motivation is increased by solving the problem
presented in our article [14] in which we desire that the mobile robots minimise the time,
which is equivalent to reducing the maximum of the distances travelled by all the vehicles.
What implies reducing the number of qubits necessary to implement this model in this era
of very few qubits.
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3. Related Work

In the mid-1920s, the following referenced articles [16,17], were the first articles to
provide a solution to the minimal spanning tree (MST) problem. Based on these works, the
mathematical researcher, Joseph B. Kruskal Jr, applied these solutions to the TSP [18], giving
life to some of the first solutions to this problem that will arise during the next decades.

Towards the end of the sixties, the following article [19] offered a compilation and
synthesis of the research on the travelling salesman problem. The authors began by defining
the problem and presenting several relevant theorems. They also classified and detailed
the solution techniques and computational results. Before that, in the mid-1960s, the TSP
started to emerge in many different contexts. The following article [20] highlights some
applications that began to occur in everyday life, such as vehicle routing or job shop
scheduling problems. Other applications such as planning, logistics and the manufacture
of electronic circuits became of particular interest.

By making a few small modifications to the original TSP, we could apply it in many
fields such as SWP [21] and DNA sequencing [22,23] among others. In this last application,
the concept of ‘city’ would come to be fragments of DNA and the idea of ‘distance’, a mea-
sure of similarity between the pieces of DNA. In many applications, additional restrictions
such as resource limits or time windows make the problem considerably difficult.

Computationally, the TSP [24] is an NP-Hard problem within combinatorial optimiza-
tion. As an NP-Hard problem, it is computationally complex, and heuristics are continually
being developed to get as close as possible to the optimal solution. However, considering
the computational complexity nature of these problems, the new approach that quantum
computing takes is very promising.

Many works are related to the standard/native TSP or some related variant in a
quantum environment within this new approach. For example, the referenced work [25],
the authors introduced a different quantum annealing scheme based on a path-integral
Monte Carlo process to address the symmetric version of the Travelling Salesman Problem
(sTSP). In these other articles [26,27], the authors did a comparative study using the D-
Wave platform to evaluate and compare the efficiency of quantum annealing with classical
methods for solving standard TSP.

In this reference [28], several comparisons of heuristic techniques were made for
some TSP Libraries (TSPLIB) [29] problems, both symmetric and asymmetric, and their
results have been compared to other methods such as Self Organizing Maps and Simulated
Annealing [30]. In both cases, the local search technique was applied to the results found
with Wang’s Recurrent Neural Network with “Winner Takes All” that improved the Self
Organizing Maps [31]. Other techniques such as the co-adaptive neural network approach
to the Euclidean Travelling Salesman Problem [32] equally important.

One of the generalizations of the TSP, known as the VRP, was studied on the D-Wave
platform [33,34]. In tasks where routing and planning capacity (time) was required, the TSP
with time windows (TSPTW) was generalized [35,36], and has high inherent complexity
which presents enormous resolution difficulties. In the following references [21,37–39],
the authors modelled combinatorial optimisation problems in which social workers visit
their patients at their respective homes and attend to them at a specific time, called Social
Workers’ Problem (SWP). SWP is a significant problem because additional time constraints
allow more realistic scenarios to be modelled than native TSP. The optimal or near-optimal
solution for such issues is important in minimising distance and time and environmental
problems such as reducing fuel consumption.

The generalization of the TSP that we will use in our work will be the VRP. However,
there are other TSP derivatives, such as the Job Shop Scheduling Problem (JSSP) [40] that
are not included in the study of this work.

During state of the art of these formulations carried out, we have found several arti-
cles [33,34,41] that solve the TSP and VRP (focusing on minimising distance and not time)
for annealing computers [7,30,42]. However, the number of variables is still intractable for
the current size of quantum computers. For this reason, we propose a new TSP formulation
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with a representation of the linear distance that uses only 3N2 variables, which we will use
to outperform the current best VRP modelling in terms of the number of required variables.
For example, a possible formulation of the VRP uses N3 variables where N is the number of
cities, thus with only 10 towns, we would go to 1000 necessary variables. In quantum com-
puting, each of these variables can be represented with a qubit, and that is why computers
possessing 1000 qubits would be needed to carry out these tasks. However, the gate-based
computers that mark this era of quantum computing [43] have around 100 qubits making
this task intractable today. The number of qubits is higher for computers based on quantum
annealing, reaching 2000 qubits like the D-Wave computer. However, the correspondence
between variables and qubits will not be one-to-one due to the architecture of these com-
puters, so that we will have a smaller number of useful qubits. The following reference [44]
deals with the topology and graph problem mapping on the D-Wave 2000Q QPU computer
in detail.

4. QUBO Model in Quantum Computing

Quantum computing as a new computational paradigm can help solve a set of complex
problems (routing, scheduling, banking problems, etc.) or solve tasks that respond to
the law of quantum mechanics. However, before solving a problem, we first need to
express it in a mathematical formulation that is largely compatible with the underlying
physical hardware. This methodology is also useful for quantum computation. One of
the frameworks that allows us to define said mathematical formulation to be solved in a
quantum computer is the QUBO.

Adiabatic computation was born from the use of the adiabatic theorem [8,9] to perform
the calculations using the tunnel effect to go from the global minimum of a simple Hamil-
tonian (A Hamiltonian system is a dynamic system governed by Hamilton equations. In
physics, these active systems describe the evolution of a physical system, such as an electron
in an electromagnetic field.) [45,46] to the global minimum of the problem of interest.

One of the market leaders for this type of computing is D-Wave, which roughly solves
the quadratic unconstrained binary optimisation problem (QUBO). The QUBO formulation
(1) is suitable for running a D-Wave architecture [47]; however, QUBO can be mapped to
the Ising [6] model and thus be used in computers based on quantum gates, for example,
IBMQ, Rigetti, Xanadu (strawberryfields), etc.

The problems that D-Wave quantum computers are prepared to solve are those that
consist of finding the minimum of a function of the following form:

n

∑
i=1

bixi +
n

∑
i=1

n

∑
j=1

qi,jxixj, (1)

where the variables xi ∈ {0, 1} and the coefficients bi, qi,j ∈ R.
We are then, given a problem, we need to model it with the above structure where the

variables that form the solution will only take the values 0 or 1. Let us observe that, by
taking the variables xi the values 0 or 1, it is true that x2

i = xi. Therefore, we can group the
linear terms with the quadratic terms and express the above equation in matrix format:

xtQx, (2)

with x ∈ {0, 1}n and Q ∈Mn×n which is compactly representing the QUBO formulation.
QUBO can be mapped into the Ising model with the change variable: z = 1− 2x. Thus, we
pass a binary variable (0, 1) to a spin variable (−1, 1). Therefore, given a formulation of a
problem to the QUBO, we can implement it and solve it in computers based on quantum
gates, only applying the change of variable mentioned.
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5. TSP Formulation

As discussed in the introduction, before presenting our GPS model in section four, we
will analyze the native TSP model and the MTZ that we aim to improve in terms of the
number of variables.

5.1. Native Formulation

In this section, we will recall the formulation of the native TSP [41]. This modelling,
which has been defined in [48], despite appearing in a very natural way which facilitates
its understanding, requires N3 variables to be implemented.

The variables that appear in this model are the variables xi,j,t such that i, j ∈ {0, . . . , N + 1}
and t ∈ {0, . . . , N}. Let us consider that the variables xi,i,t do not exist in this model.
The interpretation of the variables xi,j,t is simple, since xi,j,t = 1 if at instant t we traverse
the edge that connects the cities i and j, and xi,j,t = 0 for all other cases.

We can define the objective function of the native (Native in the sense of general, the
most used) TSP [41] as:

N+1

∑
u=0

N+1

∑
v=0

N

∑
t=0

xu,v,tdu,v. (3)

where du,v represents the distance between nodes u and v. This objective function is subject
to a series of restrictions:

• Constraint 1. The salesman must leave each city once.

For each u ∈ {0, . . . , N}:
N+1

∑
v=1

N

∑
t=0

xu,v,t = 1. (4)

• Constraint 2. Each city must be reached once.

For each v ∈ {1, .., N + 1}:
N

∑
u=0

N

∑
t=0

xu,v,t = 1. (5)

• Constraint 3. If the salesman leaves a city, he cannot return to it later. This constraint
ensures that no unconnected cycles are formed as a solution. There are two ways of
posing this constraint.

– Imposing that once he leaves a city he cannot return to it.
For each u ∈ {1, . . . , N + 1}:

N+1

∑
v=0

N

∑
t=0

N+1

∑
w=0

N

∑
j=t+1

xu,v,txw,u,j = 0. (6)

– Imposing that once he arrives in a city, he must leave it.
For each t ∈ {0, . . . , N − 1}, u, v ∈ {0, . . . , N}:

xu,v,t(1−
N+1

∑
w=1

xv,w,t+1) = 0. (7)

This formulation requires N3 variables. Next, we will analyse another model used to
define the TSP which is less commonly used in quantum annealing articles.

5.2. MTZ Formulation

Recalling the idea of this formulation is to consider the variables xi,j = 1 if the edge
that connects the cities i and j appears in the solution path, where xi,j = 0 for all other cases.
Once we have these variables, we can establish order on the route by employing a set of
variables that will represent the moment the salesman arrives at that city (the variable ui
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expressed in binary format, will take the integer value t if the city i is reached in the tth
position.). This model requires N2log2(N), greatly improving the number of variables in the
general formulation. However, when implemented using annealing it presents surprisingly
inaccurate results. This is because the annealing algorithm gets stuck trying to minimise
the part of the objective function generated by the sub-tour’s constraint [15], since the
representation of integers in their binary format has the disadvantage that close numbers
such as 2n − 1 and 2n differ by a large number of qubits, so from the annealing they are
perceived as very different solutions.

Once the two most common QUBO models of the TSP have been presented, let us ana-
lyze the formulation with which we improve the number of variables of the previous two.

6. GPS Formulation

Now we are starting to present our work. To develop this model, we take the variables
xi,j,r with i, j ∈ {0, . . . , N + 1} and r ∈ {0, 1, 2}. In all the modelling, the variables xi,j,r such
that i = j are not considered. We work with directional edges, that is, if in the model the
edge (i, j) appears, we understand that first we must go through node i and immediately
after that we go to j. Let us analyse what each variable represents:

• xi,j,0 = 1 means that the edge (i, j) does not appear in the path and the node i is
reached earlier than the j.

• xi,j,1 = 1 means that the edge (i, j) appears in the path, so the node i is reached earlier
than the j.

• xi,j,2 = 1 means that the edge (i, j) does not appear in the path, and the node j is
reached earlier than the i.

Let us, therefore, see some examples (Figure 1) in which these variables do not take
the value zero:

Figure 1. Example of a TSP solution with six different cities. It begins at node 0, and the arrows
indicate the order in which the towns will be visited.

In this particular case, x4,5,0 = 0 and x4,5,2 = 0 since the edge (4, 5) does appear in the
solution. On the other hand x4,5,1 will also be 0 because although edge (4, 5) does appear
in the graph, node 5 will be visited before node 4.

Let us, therefore, see examples in which these variables do not take the value zero:

• x5,1,1 = 1: in this case it will take the value 1 since edge (5, 1) appears in the solution
and node 5 is visited first.

• x4,1,2 = 1: because in the solution we don’t have the connection (4, 1), we have the
connection (1, 4) and the node 4 is visited later node 1.

• x5,3,2 = 1: since the edge (3, 5) does not appear and node 3 is visited first.

From the definition of our variables, we can define the distance travelled through the
following objective function as:

N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1. (8)
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The constraints that must be met are:

• Constraint 1: For each i, j one and only one of the 3 cases of r must be given, so

For all i, j:
2

∑
r=0

xi,j,r = 1. (9)

• Constraint 2: Each node must be exited once.

For each i ∈ {0, . . . , N}:
N+1

∑
j=0

xi,j,1 = 1. (10)

• Constraint 3: Each node must be reached once.

For each j ∈ {1, . . . , N + 1}:
N

∑
i=0

xi,j,1 = 1. (11)

• Constraint 4: If node i is reached before j, then node j is reached after i, so, for all i, j ∈
{0, . . . , N + 1} such that i 6= j:

xi,j,2 = 1− xj,i,2. (12)

It would also have to be specified for r = 0 and r = 1, however this restriction is
sufficient since by (9) it is implicit.

• Constraint 5: If node i is reached before node j and node j is reached before node
k, then node i must be reached before k. This condition will prevent the route from
returning to a node from which it had already exited, thus preventing cycles from
forming. We then arrive at the penalty function Equation (13).

N

∑
i=1

N

∑
j=1

N

∑
k=1

(xj,i,2xk,j,2 − xj,i,2xk,i,2 − xk,j,2xk,i,2 + xk,i,2). (13)

With only the cases in which i 6= j, i 6= k and j 6= k will be taken in the summation and
in the annex (Appendix B) we will provide the approach followed to arrive at it.

The following is deduced from the Equation (13). We have xi,j,2 = 0 if i is reached
before j and xi,j,2 = 1 in the case where j is reached before i. Thus, with the previous
equation we penalise these following cases in which xi,j,2 = 0, xj,k,2 = 0 and xi,k,2 = 1 and
xi,j,2 = 1, xj,k,2 = 1 and xi,k,2 = 0 which lead to cases in which it would be forming cycles
(for these two situations the value of the parentheses is 1 and for the rest 0). In (27) we have
a similar situation for our VRP formulation, where we offer more details. For this condition,
we must have directly constructed a penalty function that avoids erroneous cases without
first posing linear conditions through which to generate its corresponding penalty function.

Formulated in this way we have managed to reduce the number of variables required
from N2 log2 N to 3N2, achieving very noticeable reductions when working with large
problems. Once we have this formulation, let us see how we can generalise it to the new
VRP formulation.

7. New VRP Formulation

This section develops our VRP into the QUBO model using the GPS formulation.
As discussed in the introduction, this model is optimal concerning the number of binary

variables used. However, this generalisation does not appear as naturally as expected because
it requires a delicate step to get the constraints of the Equation (27). To do this, we will detail
each step and explain each of the constraints step by step.
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Original Formulation 5N2Q

For this new VRP, we will consider that N is the number of cities and Q is the number
of available vehicles. We first present the variables that will form the problem. We then
take the following set of variables.

xi,j,r,q with i, j ∈ {0, . . . , N + 1}, r ∈ {0, 1, 2, 3, 4} and q ∈ {1, . . . , Q} (14)

In all the modelling, the variables xi,j,r such that i = j are not considered. The variables
i, j refer to the cities must travel to, and the variable q refers to the vehicle. The nodes 0
and N + 1 correspond to the starting and ending points. Note that they may be the same
node but we will separate them for convenience in the formulation. The values di,j with
i, j ∈ {0, . . . , N + 1} correspond to the distance between node i and j. Let us dive into the
interpretation of each variable:

• xi,j,0,q = 1 means that the vehicle q travels to the cities i and j, does not travel across
the edge (i, j) and arrives at the city i before the j.

• xi,j,1,q = 1 means that the vehicle q travels to the cities i and j travels across the edge
(i, j) (that is, once it passes through the city i the next city it reaches is the j) and
therefore the city i is reached earlier than the city j.

• xi,j,2,q = 1 means that the vehicle q travels through the cities i and j and arrives at the
city j earlier than at the city i.

• xi,j,3,q = 1 means that the vehicle q does not go through the cities i and j, and the city
i is reached earlier than the city j. Note that xi,j,3,q can take the value 1 whether the
vehicle q passes through one of both cities or neither of them.

• xi,j,4,q = 1 means that the vehicle q does not travel to the cities i and j, and the city j is
reached earlier than the city i.

Even if no vehicle passes through the objects i and j, the formulation must establish an
order between them. However, this restriction does not make the modelling meaningless,
since we can assume that if the vehicles are ordered in the order of {1, . . . , Q}, then i will
be reached before j if the vehicle that passes through node i has a lower number than the
one that passes through node j. Once the interpretation of each variable is explained, let us
analyse the constraints that must be met.

• Constraint 1: For each i, j, q, one and only one of the possibilities must be met for r, so:

For all i, j, q:
4

∑
r=0

xi,j,r,q = 1, (15)

• Constraint 2: Each vehicle has to fulfill that it leaves the starting position. For this
situation, we are going to impose that:

For all q:
N+1

∑
j=1

x0,j,1,q = 1, (16)

No vehicle can return to the starting position from a city, so:

For all q:
N+1

∑
i=0

xi,0,1,q = 0, (17)

• Constraint 3: Every vehicle must finish in the final position. For this, it must be
fulfilled that:

For all q:
N

∑
i=0

xi,N+1,1,q = 1, (18)
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No vehicle can leave the final position. We then have that:

For all q:
N+1

∑
j=0

xN+1,j,1,q = 0. (19)

Vehicles that do not travel on any road will meet all constraints when taking the fol-
lowing condition:

x0,N+1,1,q = 1.

• Constraint 4: The vehicle must leave once and only once from each city, then:

For each i ∈ {1, . . . , N}:
Q

∑
q=1

N+1

∑
j=1

xi,j,1,q = 1. (20)

• Constraint 5: The vehicle must arrive once and only once to each city, then:

For each j ∈ {1, . . . , N}:
Q

∑
q=1

N

∑
i=0

xi,j,1,q = 1. (21)

• Constraint 6: The city i is reached before the city j does not depend on each vehicle.
Therefore, for all the vehicles that either arrive at city i earlier than j, or arrive at city j
earlier than i. Introducing the auxiliary variables ai,j, we have the following constraint.
For all i, j ∈ {1, . . . , N}:

Q

∑
q=1

xi,j,0,q + xi,j,1,q + xi,j,3,q = ai,jQ. (22)

It will then be true that for each i, j or ai,j = 1, which means that the city i is reached
earlier than the city j and therefore for each q we will have xi,j,r,q = 1 for any value of
the r in which i is reached before j, or ai,j = 0, and we will have xi,j,r,q = 0 for all the
vehicles and for values r where i is reached before j.

• Constraint 7: If the vehicle q arrives in the city j, then the vehicle q must leave the
city j. For this we impose the constraint that for i ∈ {0, . . . , N}, j ∈ {1, . . . , N} and
q ∈ {1, . . . , Q}:

xi,j,1,q(1−
N+1

∑
k=1

xj,k,1,q) = 0. (23)

Let us now impose the conditions that make vehicles run on a tour.

• Constraint 8: It must be fulfilled that either the vehicle pass through the city i before
the j or arrive before to the city j rather than the city i. Therefore, it must be verified
that, for i ∈ {0, . . . , N}, j ∈ {1, . . . , N} and q ∈ {1, . . . , Q}:

xi,j,0,q + xi,j,1,q + xi,j,3,q = 1− (xj,i,0,q + xj,i,1,q + xj,i,3,q). (24)

• Constraint 9: If city i is reached before j and city j is reached before city k, then city i
must be reached before city k. This condition will prevent the vehicle from returning
to a city it has already passed through and therefore prevents a cycle from forming.
To introduce this constraint, we will directly calculate a penalty function worth 0 in
the correct cases and 1 in those that are not. To facilitate the understanding of the
penalty function, we are going to take, for i, j, k, q, the following variables:

ai,j = xi,j,0,1 + xi,j,1,1 + xi,j,3,1

aj,k = xj,k,0,1 + xj,k,1,1 + xj,k,3,1

ai,k = xi,k,0,1 + xi,k,1,1 + xi,k,3,1.

(25)
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Remember that it is not necessary to introduce these conditions because the constraint
(22) establishes the correct values of the variables ai,j. Therefore, ai,j = 1 means that the
city i is reached before the city j and the same with j and k. Also, it is very important
to remember that due to the same constraint (22), we can take any of the vehicles as a
reference. In this case, we have taken the first vehicle as a reference.
In this way, fixed i, j, k, we have the 3 variables ai,j, aj,k, ai,k. Remember that ai,j, aj,k, ai,k
only take the values 0 or 1. Also, let us note that the cases that lead to values of the variables
for which cycles can be formed and that we must discard are (ai,j, aj,k, ai,k) = (0, 0, 1)
and (ai,j, aj,k, ai,k) = (1, 1, 0).
In the case (0, 0, 1) we would have that the city j is reached after the i, the k after the j,
and yet the city k is reached rather than i, which is absurd. The case (1, 1, 0) cannot be
given either, since it reaches i before j and j before k, so it cannot be that we also reach
k before i. We therefore must construct a penalty function so that for f (ai,j, aj,k, ai,k)
it holds that f (0, 0, 1) > 0, f (1, 1, 0) > 0 y f (ai,j, aj,k, ai,k) = 0 for all other cases. A
function that satisfies these conditions is from the Equation (26).

f (ai,j, aj,k, ai,k) := ai,jaj,k − ai,jai,k − aj,kai,k + a2
i,k. (26)

then, adding to the cost function the Equation (27)

λ
N

∑
i=1

N

∑
j=1

N

∑
k=1

(ai,jaj,k − ai,jai,k − aj,kai,k + a2
i,k), (27)

we will have that the best solutions will be those that comply with this constraint.
• Constraint 10: The objective we seek is to minimise vehicle travel time. What we could

do is see how long each vehicle takes to complete the route and try to minimise as
much of the time as possible. However, this function soon becomes complex so we
have decided to develop a different idea that simplifies the process and smoothes the
objective function. If we impose the condition that all vehicles travel less distance
than the distance travelled by vehicle number 1, we will have that minimising the
maximum of the distances will be equivalent to minimising the distance travelled by
the first vehicle. We then have the following condition. For each q ∈ {2, . . . , Q}:

N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1,q ≤
N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1,1. (28)

We transform this inequality into equality by taking once again Dmax := ∑n
i=0 maxj{di,j}

and the variables bh,q (the variables bh,q are like the sub tour’s one in the MTZ slack
variables and they are in their binary expression) in:

N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1,q +
hmax

∑
h=0

2hbh,q −
N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1,1 = 0. (29)

Under these conditions the function to be minimized corresponds to:

N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1,1. (30)
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This condition has the disadvantage that we are eliminating solutions where it is
another vehicle that travels the longest distance. Let us explore how to avoid this
problem and get more flexibility in the model to make it easier for the Quantum
Annealing to find the optimum one. We can establish an auxiliary variable D and we
set that the distance travelled by each vehicle must be less than this variable, that is
to say:

N+1

∑
i=0

N+1

∑
j=0

di,jxi,j,1,q ≤ D , for all q ∈ {1, . . . , Q}. (31)

The variable D is an integer, so we must treat it in some way in order to include it
in the model. As we explained in the introduction of the section dedicated to the
formulation of the MTZ model Section 5.2, it is convenient to try to avoid the binary
representation of integer variables. To do so, we can express D as a combination of the
distances between edges by taking D = ∑N+1

i=0 ∑N+1
j=0 xi,jbi,j. Thus after imposing the

constraint (31) we have that the function to minimize is D.

Thanks to this modelling of the new VRP we have been able to reduce the number
of variables required to the order of 5N2Q. However, we have managed to reduce it even
further to 3N2Q, which is detailed in Section A.2. However, we have preferred to present
this other model due to its easy understanding.

8. Results

To test the correct VRP model developed in QUBO, which minimises the maximum dis-
tance that all the vehicles travel, we will present some comparisons of the results obtained
through the simulator of the different models that have been discussed in this paper.

The code has been implemented on the Ocean library [49] from D-Wave in python.
The reader can find the code at [50].

Figure 2 offers a sample of our GPS formulation’s results when using the D-Wave
solver in different scenarios. We highlight some important cases that help us see the good
functioning of the algorithm.

Figure 3 offers a sample of our VRP formulation’s results based on the GPS when
using the D-Wave solver in different scenarios. We highlight some important cases that
help us see the good functioning of the algorithm. It is important to note that our algorithm
minimizes the maximum distance travelled by all the vehicles (this is equivalent to reducing
the time spanned by all cars). It is worth mentioning that the number of the qubits needed
in the case N = 8 and Q = 3 is 1778. Where N is the number of cities and Q, the vehicles.
In the discussion section, we will analyze this point and its impact on the topology of the
QPU architecture and in this case of the D-Wave.

Let us observe in Tables 1–5 the comparison of the number of qubits, time during
which the D-Wave Quantum Annealing simulator has been executed, and the length of the
path found. The sign “-” represents that the algorithm did not find a possible way during
the elapsed time (in minutes). In this examples, the cities which form the TSP to solve are
the vertex of the regular polygon with these number of vertex.
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Figure 2. In these graphs, we can observe the algorithm’s results in different scenarios of the GPS
formulation. We can follow the correct scalability of the algorithm. We provide the code [50] to check
its proper functioning and to allow others to simulate lower values or values higher than N = 16.

Figure 3. In these graphs, we can observe the algorithm’s results in different scenarios of the VRP
formulation. We can follow the correct scalability of the algorithm. We provide the code [50] to verify
the proper functioning of the formulation. Vehicle number 1 is red, and the next is light-steel-blue.
While the depot is the 0 node in pale-green colour, and the rest are represented in light-steel-blue. In
this case, we have variables cities from 4 to 12 and using up to 2 vehicles. It is important to highlight
that this VRP minimises the time travelled by the cars. The number of qubits used is 2418 to test the
last case.

Table 1. A regular polygon layout has been taken where the cities occupy the positions of the
nodes [50] for the elaboration of all tables. In this scenario of 4 cities, we set comparison with the
3 models, MTZ, native TSP and GPS. The comparison is based on the number of times to find the
solution, the distance travelled, and the number of qubits. We can appreciate the good performance
of our GPS model, and above all the savings it offers us in the number of qubits.

GPS Native TSP MTZ

Number of qubits 75 100 140
Elapsed Time (min) 0.332 0.08 0.569

Path Length (m) 5.65 5.65 5.65
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Table 2. A regular polygon layout has been taken where the cities occupy the positions of the
nodes [50] for the elaboration of all tables. In this scenario of 6 cities, we set comparison with the
3 models, MTZ, native TSP and GPS. The comparison is based on the number of times to find the
solution, the distance travelled, and the number of qubits. We can appreciate the good performance
of our GPS model, and above all the savings it offers us in the number of qubits.

GPS Native TSP MTZ

Number of qubits 147 294 266
Elapsed Time (min) 0.337 0.39 1.338

Path Length (m) 6.00 6.00 8.46

Table 3. A regular polygon layout has been taken where the cities occupy the positions of the
nodes [50] for the elaboration of all tables. In this scenario of 8 cities, we set comparison with the
3 models, MTZ, native TSP and GPS. The comparison is based on the number of times to find the
solution, the distance travelled, and the number of qubits. We can appreciate the good performance
of our GPS model, and above all the savings it offers us in the number of qubits.

GPS Native TSP MTZ

Number of qubits 243 648 522
Elapsed Time (min) 1.209 1.177 2.676

Path Length (m) 6.122 9.58 11.46

Table 4. A regular polygon layout has been taken where the cities occupy the positions of the
nodes [50] for the elaboration of all tables. In this scenario of 10 cities, we set comparison with the
3 models, MTZ, native TSP and GPS. The comparison is based on the number of times to find the
solution, the distance travelled, and the number of qubits. We can appreciate the good performance
of our GPS model, and above all the savings it offers us in the number of qubits.

GPS Native TSP MTZ

Number of qubits 363 1210 770
Elapsed Time (min) 3.316 3.087 4.175

Path Length (m) 12.51 10.978 -

Table 5. A regular polygon layout has been taken where the cities occupy the positions of the
nodes [50] for the elaboration of all tables. In this scenario of 12 cities, we set comparison with the
3 models, MTZ, native TSP and GPS. The comparison is based on the number of times to find the
solution, the distance travelled, and the number of qubits.

GPS Native TSP MTZ

Number of qubits 507 2028 1066
Elapsed Time (min) 7.992 9.677 10.578

Path Length (m) 14.286 12.28 -

These results have been obtained using a simulator because we would require access to
a quantum computer for a time similar to that needed to perform the simulations (in some
cases more than an hour). However, it is the benefits of modelling with few qubits (such as
GPS modelling) that will be much more notable when these problems are implemented on
real quantum computers. Other studies that did not require many hours of the quantum
computer were carried out on the D-Wave_2000Q_6. In the discussion section, we detail
some interesting cases.

Discussion

Once the different models had been implemented, we achieved the following results.
Through the results of the Figures 4–7 and Tables 1–5, the good performance of our formu-
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lation compared to the general TSP [41] can be observed. An almost identical operation is
seen with the generic TSP, except that we are improving at least the number of qubits for
the same cases in our proposal. Although the time difference is not significant again, the
difference between path lengths is. Let us remember that the advantage of the formulation
in which we have worked is based on improving the number of qubits used. We then
have that the larger the problems we are working on, the better this difference will be
appreciated in the number of variables.

The MTZ model does not offer positive results. This is since Annealing presents many
difficulties to find minimum expressions in which the representation of integers appears
in their binary format. This is because although the numbers 2k − 1 and 2k are close, they
are not close in their binary form since they differ in k variables, so the annealing tends
to present bad results. Apart from that adjusting, the Lagrange coefficient of this type of
constraint is also a complicated task.

Native TSP and GPS modelling show better results. While it is true that general
modelling gives slightly better results, it requires the use of a higher number of qubits. This
may be since the function to be optimised for this model has a smaller number of local
minima where the Annealing can get stuck or there can be a bad of the Lagrange coefficients.

The problem on which the simulations are carried out consists in finding the optimal
path when the points are placed on the vertices of the regular polygons that have the same
number of vertices as nodes in our problem.

Figure 4. Path length comparison for N = 9. In this graph, we see how the length of the solution
paths for the case of 9 Cities is very similar so that both models give good results.

Figure 5. Time comparison for N = 9. This graph shows the time taken to carry out the executions in
the case of 9 cities. Although it seems that there is a lot of difference, it only represents 10% of the
total time, which, as we have seen in other experiences, is not significant.
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Figure 6. Path length comparison for N = 11. For the example of 11 cities, we can observe that
the outcomes are quite similar. Although the time difference is not significant again, the difference
between path lengths is. Let us remember that the advantage of the modelling we have worked is
based on improving the number of qubits used. We then have that the larger the problems we are
working on, the better that difference will be appreciated in the number of variables.

Figure 7. Time comparison for N = 11. For the example of 11 cities, we can observe that the outcomes
are quite similar because although there is a mean difference of about 20 s between the results of both
simulations, the experience with this problem and other similar ones is that this very small difference
does not affect the results on the length of the solution path.

One of the behaviours and results that we believe is important to mention is the
following. We realized that it is even more important to consider the number of edges
that our model generates. The vertex/connections in a quantum computer are limited and
define our quantum computer’s typology and quality for error mitigation. Thus, a model
that produces many edges (direct links) may request more from a computer than another
which generates fewer. The Figure 8 offers us a comparative study between our GPS
model and the native TSP. This figure shows the exponential behaviour and the number of
interconnections that each model offers. Our model improves the number of qubits and
gives us a great result reducing the number of connections a lot. The native TSP behaves as
0.8(N + 2)5 while the GPS as 2(N + 2)3.

One aspect of GPS worth commenting on here is to generalize it also to be used for the
Cutting-plane method. We must change the current constraint (13) since this methodology
only works with linear constraints. The way to do this is as follows. For each i, j, k:

• xj,i,2 + xk,j,2 ≤ 2xk,i,2 + w1
i,j,k

• xj,i,2 + xk,j,2 ≥ 2xk,i,2 − w2
i,j,k.

In these equations, the variables wp
i,j,k are auxiliaries. The purpose of these vari-

ables is to satisfy the said constrains. These two restrictions are satisfied by all cases of
(xj,i,2, xk,j,2, xk,i,2) except for (0, 0, 1) (because it doesn’t satisfy the second constraint) and
(1, 1, 0) (because it doesn’t satisfy the first constraint).
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Figure 8. In this figure we can appreciate the exponential behaviour and the number of interconnec-
tions that each model offers. Our model (GPS) improves the number of qubits and gives us a great
result reducing the number of connections a lot. The Native_TSP behaves as 0.8(N + 2)5 while the
GPS as 2(N + 2)3.

9. Conclusions and Further Work

The importance of finding a good formulation in the QUBO model that minimises
the number of variables to be used is crucial for the computing era we are in, as we have
commented throughout this work. It is true that, although the technology of annealing-
based quantum computers allows us to have much more qubits than gate-based computers,
it remains a limitation and, therefore, a challenge to try to solve. Hence highlighting the
importance of our research.

With this work, we offer a new formulation for the TSP called GPS and apply it to find
an optimal formulation for the VRP that minimises the time the vehicles make their journey.
We have also seen that the results of the D-Wave simulator solver are consistent with the
expected solution. However, we consider it unnecessary to test it in gate-based quantum
computers, given their limitations today in the number of qubits. Still, we emphasise that
our current formulation is valid for such computers. The improvement in our models
represents a fairly significant order of magnitude because we went from N3 variables to
3N2. The Figures 9 and 10 summarises the major contribution of this article.

Our GPS formulation and the VRP proposal can help in optimisation problems when
we want to reduce the number of variables and therefore reduce the number of qubits
quite a bit. In addition, it is interesting in situations, such as the one raised in the future
line of the article [14], by modelling some biological activities on selected sets of organic
compounds as can be seen in [51], or resource optimization problems such as gasoline and
aircraft travel. Another interesting application could be to compare GPS with the approach
offered by this reference [52] using deep reinforcement learning to address combinatorial
optimisation problems with feasibility constraints. This leads us to project on how to make
this comparison in quantum computing using the proposal made in this reference [53].

Figure 9. Comparison of the different models based on the number of qubits. This graph shows the
behaviour and evolution of the numbers of qubits for each model. We see the best performance of
our GPS model compared to the other models.
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Figure 10. Benchmark between MTZ and GPS model based on the number of qubits. We can
appreciate that for 30 cities, GPS model needs 2700 qubits while the MTZ 4458.

The results obtained from our VRP formulation and all the experiments carried out
maintain the number of variables QN2 and allow us to offer the community new formula-
tions that minimise the time it takes for vehicles to travel.

Future work will apply the ideas developed in the QUBO model of these problems to
similar ones. In particular, we will look for other variants of the TSP to use the modelling
of this that we have carried out.
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Appendix A

Appendix A.1. TSP Formulation N2

There is a TSP model that requires N2 variables, where these are the following:

xi,t such as i ∈ {0, . . . , N + 1} and t ∈ {0, . . . , N + 1}. (A1)

Under this formulation xi,t = 1 denotes that the city i is reached at position t. The
distance calculation function with this formulation is as follows

N+1

∑
i=0

N+1

∑
j=0

N

∑
t=0

di,jxi,txj,t+1, (A2)

where di,j represents the distance between the node i and the node j. This expression has
the problem that the distance formulation has terms of degree two and when trying to
generalize this idea to other types of problems such as the VRP it will become a 4 degree
constraint making use of a large number of auxiliary variables to convert it to QUBO
type format.
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Appendix A.2. Improved Model 3N2Q

In the previous modelling, we can improve the number of variables used from 5N2Q
to 3N2Q since certain variables are redundant. Let us see how we can do this. Let us take
the set of variables

xi,j,r,q with i < j ∈ {0, . . . , N + 1}, r ∈ {0, 1, 2} and q ∈ {1, . . . , Q}

In all of the modelling, the variables xi,j,r such that i = j are not considered. Let us
analyse the interpretation of each variable. For each edge (i, j), different cases depend on
whether a vehicle passes through both cities, which city is visited before the other and
whether the edge is travelled or not.

• xi,j,0,q = 1 means that the city i is reached earlier than the j and the edge (i, j) is
not travelled.

• xi,j,1,q = 1 means that the vehicle q travels the cities i and j, it reaches the city i before
the j and it travels the edge (i, j).

• xi,j,2,q = 1 means that the city j is reached earlier than the i and the edge (j, i) is
not travelled.

This new simplification keeps constraints (16), (18), (20), (21), (23) and (28) defined in
the same way as the first proposal of the VRP formulation, so we will only focus on the
changes of the remaining constraints:

• Constraint 1: For each i, j, q, one and only one of the possibilities must be met for r, so:

For all i, j, q:
2

∑
r=0

xi,j,r,q = 1, (A3)

• Constraint 6: That the city i is reached before the city j does not depend on each vehicle.
Therefore, for all the vehicles that either arrive at city i earlier than j, or arrive at city j
earlier than i. Introducing the auxiliary variables ai,j, we have the following constraint.
For all i, j ∈ {1, . . . , N}:

Q

∑
q=1

xi,j,0,q + xi,j,1,q = ai,jQ. (A4)

• Constraint 8: It must be fulfilled that either the vehicle pass through the city i before
the j or arrive before to the city j than the i. Therefore, it must be verified that,
for i ∈ {0, . . . , N}, j ∈ {1, . . . , N} and q ∈ {1, . . . , Q}:

xi,j,0,q + xi,j,1,q = 1− (xj,i,0,q + xj,i,1,q). (A5)

• Constraint 9: If the city i is reached before j and the city j is reached before the city
k, then the city i must be reached before the city k. This condition will prevent the
vehicle from returning to a city it has already passed through and therefore prevents a
cycle from forming.

λ
N

∑
i=1

N

∑
j=1

N

∑
k=1

(ai,jaj,k − ai,jai,k − aj,kai,k + a2
i,k), (A6)

Appendix B. Restriction Penalty

Let us analyze the system that must be solved to build the penalty function from
the Equation (13). Our penalty function P(ai,j, aj,k, ai,k) must satisfy that P(0, 0, 1) = 1,
P(1, 1, 0) = 1 and P(ai,j, aj,k, ai,k) = 0 for the rest of the cases. Let us call the variables
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ai,j = x, aj,k = y, ai,k = z to simplify the notation. Then, we arrive at the quadratic function
P, as is demonstrated in the following:

P(x, y, z) = c1x2 + c2xy + c3xz + c4y2 + c5yz + c6z2. (A7)

Imposing the previous restrictions, we have the following system of equations.

− P(0, 0, 1) = 1 So that c6 = 1.
− P(0, 1, 0) = 0 So that c4 = 0.
− P(0, 1, 1) = 0 So that c5 + c6 = 1⇒ c5 = −1.
− P(1, 0, 0) = 0 So that c1 = 0.
− P(1, 0, 1) = 0 So that c1 + c3 + c6 = 0⇒ c3 = −1
− P(1, 1, 0) = 1 So that c2 = 1.

So far, we have a system of six equations with six certain compatible unknowns. First,
however, an additional restriction must be verified. Let us verify if it is met.

− P(1, 1, 1) = 0. ∑6
i=1 ci = 1− 1− 1 + 1 = 0. So that indeed all the requirements are met.

We then have that the following function which is a penalty function for the constraint (13).

P(ai,j, aj,k, ai,k) = ai,jaj,k − ai,jai,k − aj,kai,k + a2
i,k (A8)
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