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Abstract: The identification and estimation of trends in hydroclimatic time series remains an impor-
tant task in applied climate research. The statistical challenge arises from the inherent nonlinearity,
complex dependence structure, heterogeneity and resulting non-standard distributions of the un-
derlying time series. Quantile regressions are considered an important modeling technique for such
analyses because of their rich interpretation and their broad insensitivity to extreme distributions.
This paper provides an asymptotic justification of quantile trend regression in terms of unknown
heterogeneity and dependence structure and the corresponding interpretation. An empirical appli-
cation sheds light on the relevance of quantile regression modeling for analyzing monthly Central
England temperature anomalies and illustrates their various heterogenous trends. Our results suggest
the presence of heterogeneities across the considered seasonal cycle and an increase in the relative
frequency of observing unusually high temperatures.

Keywords: temperature; trend modeling; seasonality; heterogeneity; quantile regression

JEL Classification: C02; C14; C18; C22; Q54

1. Introduction

The current phase of rapidly accelerating impacts of global warming reveals many
immediate effects on direct and indirect threats to global health and clearly illustrates
the role of human activities (e.g., [1,2]). Recently, the International Panel on Climate
Change [3] reported unprecedented increases in global surface temperature over the last
four decades since the start of geo-referenced systematic climatological records in 1850—
with larger increases for land- than sea-surface temperatures. Substantial increases in
mean temperatures across the world and heterogeneity in temperature increases across
months are noted in Vogelsang and Franses [4], who emphasize that especially winters
are warming in the northern hemisphere. King et al. [1] document substantial warming
in the Central England Temperature (CET) time series for 2014 based on simulated and
observed datasets and provide evidence for a human-induced increase in the relative
frequency of observing record high temperatures. King [5] extends their previous analysis
beyond the univariate approach and provides a proxy for the local response to global
warming by modeling local temperature as a nonlinear parametric function of global
temperature. Rivas and Gonzalo [6] provide a definition of global warming and trending
time series and present evidence for warming based on the CET and global temperature
time series.

The properties of climatologic time series have been frequently studied in the literature
and the related findings fuel an ongoing debate about the analysis and attribution of
trends (see, e.g., [7,8], for recent summaries and discussions). When investigating the
properties of climatologic time series, seasonality is typically filtered in a first step, as it
may frustrate diagnostic tests and complicate inference (e.g., [9], in the context of long
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range dependence and structural breaks). After filtering the seasonal annual cycle, Gao and
Franzke [10] test temperature series for the presence of long range dependence. Proietti
and Hillebrand [11] conduct a series of univariate (and multivariate) stationarity (and
cointegration) checks against various alternatives and find evidence of nonstationarity.
Their findings are in line with He et al. [12]. Among others, Fomby and Vogelsang [13],
Barbosa [14], and Franzke [15] discuss previous studies suggesting that temperature series
are mean stationary and exhibit long range dependence. While such dynamics do not
generate trends in the long run (e.g., thousand years or longer), series such as the CET
ranging over a few hundred years may exhibit stochastic trends. Whether such trends
are deterministic or stochastic and due to short run or long run dependence has been
investigated intensively (e.g., [4,11,16]).

Koenker and Schorfheide [17] investigate curvature in temperature trends in greater
detail. They discuss an upward trend in global Hansen-Lebedeff temperatures [18] be-
tween 1880 and 1940 and after 1965, and identify a trend break in a period of decreasing
temperatures between 1940 and 1965. An important challenge in the analysis of hydrologic
and climatologic processes is the delicate interplay of nonlinearities, temporal dependence,
bimodality, and heterogeneity (e.g., [5,17,19–23]). Rial et al. [24] provide potential expla-
nations of the mechanisms underlying the climate system such as the superposition of
shift and trends in long-term and short-term dynamics, ocean atmosphere interactions, and
feedback effects from the carbon-cycle. Koenker and Schorfheide [17] suggest to broaden
the perspective of analysis beyond the common practice of modeling the deviations around
deterministic trends for the conditional mean temperature using ARIMA (autoregressive
integrated moving average) processes. They propose the use of conditional quantiles
as “serial correlation may be due to a variety of mechanisms that could plausibly effect
year-to-year changes” in temperature and climatic conditions in general (e.g., [25]). As
a consequence, in recent contributions to statistical modeling of temperature series, the
method of quantiles introduced by Koenker and Bassett [26] plays a major role to define
and identify anomalies (e.g., [27,28]).

The presence of seasonal trends has been discussed for climatologic time series by
Colman [29], who argues that sea-surface temperature anomalies may drive seasonal trends
in temperature series, which entails important consequences for ecologic policy (e.g., [30]).
Recently, He et al. [12] emphasized that seasonal trends are difficult to model and forecast
due to time-varying patterns in their components. In what follows, we avoid the perils
of applying a particular approach to filter seasonality and use the assumption of cyclosta-
tionarity (e.g., [31]) in a quantile trend regression (QTR) framework. Cyclostationarity is
based on the literature on periodically autocorrelated processes (e.g., [32]) and assumes
that trend patterns vary cyclically over time. As a consequence of this, temperature can be
understood as a stationary process fluctuating around a deterministic trend component.
Thus, by splitting up the original series into S non-seasonal subseries, where S corresponds
to the length of the seasonal cycle, the estimating equations in our QTR framework can then
be decomposed into two parts which are allowed to vary over the temperature distribution:
the conditional temperature quantile estimated by a trend polynomial and a stationary
colored noise process. We provide a detailed derivation and discussion of the assumptions
underlying the QTR model and show the asymptotic normality of the QTR estimator.
Additionally, we analyze temperature time series which are known to be crucial factors in
models explaining morbidity and mortality and which are frequently used as predictors
for other entities in epidemiology, climatology, ecology and economics.

The paper is structured as follows. Section 2 introduces a sketch of a baseline math-
ematical model and from this derives the QTR model, its assumptions, and asymptotic
properties. Section 3 provides an overview of the CET anomaly data, illustrates the rele-
vance of quantile regression for analyzing anomalies, and summarizes and discusses the
modeling results. Section 4 provides concluding remarks.
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2. Methods

Figures 1 and 2 highlight stylized facts of the CET data from January 1850 to December
2020 analyzed in the empirical section of the paper. Figure 1 shows the CET data, Figure 2
illustrates the corresponding annual mean temperatures. A season plot for the CET data
is given in Figure 3, which includes the monthly mean temperature for each month from
1850 until 1900 via the grey horizontal lines. The latter figure illustrates the presence
of heterogeneity in the respective monthly levels of temperature and also in the month-
specific trajectories of temperature. The figures illustrate the generic nonlinearity and
nonstationarity often found in environmental and hydroclimatic processes due to seasonal
cycles or trend patterns. The decomposition of time series into trend and seasonality is the
starting point for our modeling framework. We thereby address the requirements identified
by Proietti and Hillebrand [11] that the temperature exhibits month-specific variation,
dependence and trend patterns, while a global trend affects all months in a potentially
different way. We will address this problem by using an approach similar to the modeling
of periodically correlated sequences (e.g., [32]).
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Figure 1. CET data from 1850 until 2020.
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Figure 2. Annual mean temperature in Central England from 1850 until 2020. Dashed grey line
represents annual mean temperature during years 1850 until 1900.
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Figure 3. CET data for each month from 1961 until 2020. From left to right, months January to
December are displayed over the years. Grey lines indicate monthly mean temperature from 1850
until 1900. Different months separated by dashed vertical lines.

2.1. Baseline Model

Let (Ω,F ,P) be a complete probability space and, following Koenker and Schorfheide [17],
consider temperature data {Y}t≥0 to be an F -measurable scalar random sequence. Fur-
ther assume that this process has a single cyclical component due to the annual season
s = 0, . . . , S− 1. This assumption implies that potential nonstationarities at seasonal posi-
tion s (i.e., for each of the S = 12 months in our application) can only be generated by trend
components (see [12] for a discussion in autoregressive models). Our approach deviates
from the concept of periodical correlation in the Hilbert space L2(Ω,F ,P) of random
variables with finite second moment, as we do not require the existence of any moments of
the random processes constituting the estimating equation. However, we will exploit that
the quantile regression loss function ρτ defined below belongs to the class of absolutely
continuous (on every interval) functions with right-hand-derivative ψτ , which is a function
of bounded variation (e.g., [33], Section 2.3).

Employing a common notation for seasonal time series (e.g., [12,34]) we denote the
time index t as t = s + Si where i = 0, 1, . . . is a new (annual) time index and consider
a realization {Yt}n

t=0 with sample size n + 1. We assume that the data are generated
according to

Ys+Si = h(xs+Si,n, βs) + Us+Si, (1)

where h(.) is an unknown function continuous in xs+Si,n, which depends on unknown
but fixed season-specific parameters βs ∈ RL, the row vector xt,n contains known and
deterministic covariates depending on n, and Us+Si is an error process.

We assume that the set of control variables does not vary over the seasons. Then,
following Yang and Tschernig [34], the task of variable selection and parameter estimation
has to be carried out for each month and corresponding data set

{xs+Si,n, Ys+Si}
bn/Sc
i=0 , s = 0, . . . , S− 1. (2)

The Weierstrass approximation theorem states that we can approximate

hS(xs+Si, β) ≈ xs+Siβs.

In the semiparametric context of model (1), we assume a polynomial regression design

xs+Si,n = (1, xs+Si,n, x2
s+Si,n, . . . , xK

s+Si,n). (3)
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The baseline example in our data analysis is to assume that month-specific temperature
series are generated by linear deterministic trends h(xs+Si,n, βs) = µs + βs(s + Si)/n and
additive, stationary and weakly dependent errors Us+Si.

Example 1. Our empirical analysis of the CET data investigates temperature anomalies over
the last 60 years from 1961 to 2020. Thus, n = 720, S = 12, and the effective sample size is
N = n/S = 60. For convenience we consider the index i = 1, . . . , N. A simple special case for a
month-specific trend equation is the linear trend equation

Yi = xiβ0 + Ui = µ + β · i/60 + Ui, i = 1, . . . , 60. (4)

Using the QTR model, we will estimate β0 for each month s, 1 ≤ s ≤ 12, and various
quantiles τ, 1 < τ < 1. Least squares based diagnostic testing, estimation, and inference
of temperature trend regressions (4) have been discussed among others by Fomby and
Vogelsang [13], Fatichi et al. [16], Barbosa [14], and in detail by Mudelsee [23].

2.2. Quantile Trend Regression

Instead of a least squares based trend modeling of the month-specific annual average
increase of temperature data over time, we employ quantile regression. The resilience
of quantile regression to extreme values in the temperature distribution allows robust
estimation of annual median increases but also other non-central aspects of the temperature
processes. As a consequence, the QTR estimator introduced in this chapter allows to draw
inferences on trend patterns and their variation over the temperature distribution. We
derive the asymptotic normality of the QTR estimator under primitive assumptions. Our
argumentation is similar to Pollard [35], Fitzenberger [36], and Koenker [37], but builds on
the weaker assumptions and corresponding results of Oberhofer and Haupt [38,39,40].

2.2.1. Basic Structure of a Quantile Regression Model

Our goal is to study season-specific trend patterns and investigate their heterogeneity
over the temperature distribution. For this purpose we formulate a QTR model for each
seasonal position s. For the sake of simplicity we will omit the index s whenever the context
is clear. Using annual data, we assume that the temperature processes are generated
according to the QTR equation

Yi = xiβ0 + Ui, i = 1, . . . , N, (5)

where xi := xiN , 1 ≤ i ≤ N, are known deterministic (1× K + 1) design vectors, and the
true parameter β0 is an inner point of a compact subset of RK+1. The unknown parameter
vector β is estimated by the minimizer

β̂N = arg min
β∈RK+1

N

∑
i=1

ρτ(Yi − xiβ), (6)

where 0 < τ < 1 and the conditional quantile Qτ(Y|x) = xβ0 is the optimal predictor of Y
under quantile regression loss [26]

ρτ(w) := |τ − 1(w ≤ 0)| · |w|, (7)

where 1(.) is the usual indicator function. By Fi(v) we denote the distribution of Ui, by
Fi,j(v, w) the joint distribution of (Ui, Uj) for i 6= j, and employ the usual normalization in
quantile regression:

(A1) Fi(0) = P(Ui ≤ 0) = τ, 0 < τ < 1, ∀ i.

Starting from these core components of a quantile regression model, we motivate
further assumptions required to derive the asymptotic normality of the QTR estimator.



Mathematics 2022, 10, 413 6 of 20

Due to the different growth rates of the components in the polynomial design (3), a
normalization has to be applied (see [41], Ch. 7.2, for a detailed discussion in the case of
least squares regression). Define

ziN := xiD−1
N , (8)

where DN = diag(d0N , d1N , . . . , dKN) is a nonsingular (K + 1× K + 1) diagonal matrix
with positive elements dkN for 0 ≤ k ≤ K and for large enough N. The normalization (8)
has to ensure that the elements of ziN are Cesàro-summable (e.g., [33]).

Example 2. For the cubic polynomial trend model Yi = µ + β1xi + β2x2
i + β3x3

i + Ui employed in
Franzke [28], d0N is of order 1, d1N is of order N/2, d2N is of order N2/3, and d3N is of order N3/4.

(A2) The (1 × K + 1) vectors xi are deterministic and known and for some real number M,
|| ziN || ≤ M < ∞, for 1 ≤ i ≤ N, and all N.

For our asymptotic analysis we re-write the argument of (6) according to (5) as

Yi − xiβ = xiβ0 − xiβ + Ui

= Ui − xi(β− β0)

= Ui −
1√
N

xiD−1
N

√
NDN(β− β0) (9)

= Ui −
1√
N

ziNγ (10)

= Ui − hi(γ), (11)

with local parameters γ :=
√

NDN(β− β0) and hi(γ) := N−1/2ziNγ = xi(β− β0). Fol-
lowing Huber [42], we can then write the QTR objective function as

QN(γ) =
N

∑
i=1

qiN(γ), (12)

with summands

qiN(γ) = ρτ(Ui − hi(γ))− ρτ(Ui) =


−ϑhi if Ui > max(0, hi),

Ui − ϑhi if hi < Ui ≤ 0,
−Ui + (1− ϑ)hi if 0 < Ui ≤ hi,

(1− ϑ)hi if Ui ≤ min(0, hi).

(13)

Then, under suitable assumptions (e.g., [37], Ch. 4, for the assumption of independent
but not identically distributed random variables) the limiting distribution of γ̂N can be
derived from that of QN(γ). If γ̂N is the minimand of the scalar random variable QN(γ),
then the QTR estimator β̂N of β0 is given by

β̂N = β0 +
1√
N

ziN γ̂. (14)

Remark 1. In least squares regression, asymptotic analysis relies on the twice continuously differ-
entiable loss function and local uniform approximation of QN(γ). As this approach is not feasible
in quantile regression, we have to approximate QN(γ) by a sufficiently smooth function QN(γ).
Due to its inherent smoothing, the expectation E[QN(γ)] is a suitable choice, whenever a uniform
LLN can be established such that

plim
N

sup
γ

∣∣∣∣ 1
N

QN(γ)−E
[

1
N

QN(γ)

]∣∣∣∣ = 0, (15)
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for γ in a compact subset of RK+1. Further elaboration is beyond the scope of this paper (see,
e.g., [40], Lemma 2C), but we will get back to (15) in Remark 2 below and then analyze the
asymptotic behaviour of E[QN(γ)] in Lemma 2.

Knight [43] suggests a useful decomposition of QN(γ), which allows to study its
asymptotic behavior by examining that of its partial sums separately. Knight’s identity is
given by

QN(γ) = BN(γ) + ζN(γ) =
N

∑
i=1

biN(γ) +
N

∑
i=1

ζiN(γ), (16)

where the second summand in (16) is defined as

ζN(γ) := −
N

∑
i=1

hi(γ)ψτ(Ui), (17)

where
ψτ(w) := τ − 1(w ≤ 0) (18)

is the right-hand-derivative of (7), and

ζiN(γ) = −hi(γ)ψτ(Ui) = −
1√
N

ziNγ[τ − 1(Ui ≤ 0)]. (19)

The first summand in (16) is defined as

biN(γ) = |hi −Ui|[1(0 < Ui ≤ hi) + 1(hi < Ui ≤ 0)]

=


0 if Ui > max(0, hi),

Ui − hi if ht < Ui ≤ 0,
−Ui + hi if 0 < Ui ≤ hi,

0 if Ui ≤ min(0, hi).

(20)

The definition of summands qiN(γ) implies (e.g., [44], Lemma 3.1)

|qiN(γ)| ≤ |hi(γ)|. (21)

As a consequence, every moment of qiN(γ) exists for finite hi(γ). Then, due to
assumption (A1), E[ψτ(Ui)] = 0, and it holds that

E[ζiN(γ)] = 0, (22)

and

E[qiN(γ)] = E[biN(γ)] =


∫ hi

0 (hi − v) fi(v)dv, if hi > 0,
0, if hi = 0,∫ 0

hi
(v− hi) fi(v)dv, if hi < 0.

(23)

2.2.2. Modeling the QTR Dependence Structure

In the case of independence, the previous arguments suffice to describe the relevant
properties of QN(γ) and E[QN(γ)]. In this case we obtain Fi,j(0, 0) = Fi(0)Fj(0) = τ2 and
Cov[ζiN(γ), ζ jN(γ)] = 0 for i 6= j. In the case of dependence, we require a suitable assump-
tion concerning the asymptotic behavior of Cov[ζiN(γ), ζ jN(γ)]. From the definition of
ζiN(γ) in (19) follows

Cov[ζiN(γ), ζ jN(γ)] = hihjωij, (24)
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where ωij can be interpreted as local measures of dependence, defined as

ωi,j = τP(Ui > 0, Uj > 0) + (1− τ)P(Ui ≤ 0, Uj ≤ 0)

−τ(1− τ)[P(Ui > 0, Uj ≤ 0) + P(Ui ≤ 0, Uj > 0)]

=

{
Fi,j(0, 0)− Fi(0)Fj(0) for i 6= j,

Fi(0)[1− Fi(0)] for i = j,
1 ≤ i, j ≤ N. (25)

Define the (K + 1× K + 1) matrix ΩN with generic elements (25). Further define the
(N × K + 1) design matrix XN with rows defined in (3) and Z>N := X>N D−1

N in analogy
to (8). Then

Var[ζN(γ)] =
1
N

γ>Z>NΩN ZNγ. (26)

Given (24) and (26), we can derive the limiting distribution of ζN(γ) by introducing a
suitable assumption on the limiting behavior of ωi,j defined in (25).

(A3) Let ωr = supi |ωi,i+r|, r = 1, 2, . . .. Then, ωr → 0 of size −r, where r > 2.

As has been pointed out by Oberhofer and Haupt [39], only the properties of the
Bernoulli process {ψτ(Ui)} and the local behavior of the distribution functions and densities
in the neighborhood of v = 0 and (v, w) = (0, 0), respectively, are essential for dependence
in quantile regression. Assumption (A3) implies that {ψτ(Ui)} = τ − 1(Ui ≤ 0)) is strong
mixing of size −r, where r > 2. Let σ(ψi) denote the sigma-algebra generated by ψi. Then,
supj |P(Bi ∩ Bi+r)− P(Bi)P(Bi+r) | → 0, as r approaches infinity, where Bi ∈ σ(ψi) and
Bi+r ∈ σ(ψi+r). For mathematical convenience it is typically assumed that the error process
{Ui} is strong mixing (e.g., [40]), as there exist numerous examples in time series analysis
on mixing processes and a rich mathematical theory (e.g., [33,45–47]).

Lemma 1. Under assumptions (A1), (A2), and (A3), ∑N
i=1 ζiN(γ) converges in distribution to

c>γ, where c is normally distributed with mean zero and covariance

lim
N→∞

1
N

γ>Z>NΩN ZNγ.

Proof. Assumption (A3) implies that {Ui} is strong mixing of size −r, where r > 2, with
mixing coefficient ωr. Since {ζiN(γ)} is near-epoch dependent (L1-approximable) on
{ψτ(Ui)}, we can apply Theorem 10.2 in Pötscher and Prucha [47]. Then, the assertion
follows from (26) and upon application of the Cramér-Wold device [48].

Instead of relying on the existence of moments as in least squares regression, in
quantile regression we require that Fi has a density fi (with respect to Lebesgue measure),
and that fi is informative at the conditional quantile we want to estimate.

(A4) For some ε f > 0, the density fi(v) of Fi(v) exists for every i and |v| ≤ ε f , is uniformly
continuous in i at v = 0, and sup1≤i≤N fi(0) = o(

√
N).

Define the (N × N) diagonal matrix ΦN with elements ϕi = fi(0), 1 ≤ i ≤ N. Then,
in our main result we show that(

N−1Z>NΦN ZN

)−1(
N−1Z>NΩN ZN

)(
N−1Z>NΦN ZN

)−1
(27)

converges to the asymptotic covariance matrix of the QTR estimator as N → ∞. Expres-
sion (27) reveals that dependence and heterogeneity can be treated separately in quantile
regressions under non-iid settings:

Fi,j(0, 0)− τ2

fi(0) f j(0)
(28)
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corresponds to covariances and
τ(1− τ)

f 2
i (0)

(29)

to variances. This discussion reveals the need for further assumptions on the dependence
structure guaranteeing the existence of (27) as N → ∞.

(A5) For some ε f > 0, the density fi,j(v, w) of Fi,j(v, w) exists for |v| ≤ ε f , |w| ≤ ε f , and i 6= j, is
continuous at (v, w) = (0, 0) uniformly in i and j, and limN→∞ N−1 ∑N

| r|=1 α0(r| u) = 0, where
α0(r| u) = sup | fi,i+r(0, 0)− fi(0) fi+r(0)|, and the supremum is taken over i, i + r ∈ N.

(A6) N−1Z>NΩN ZN converges for N → ∞ to a (K + 1× K + 1) matrix Σ.

(A7)N−1Z>NΦN ZN converges for N → ∞ to a non-singular (K + 1× K + 1) matrix V .

If the errors are independent, fi,j(0, 0) = fi(0) f j(0) and the sum in assumption (A5) is
equal to zero for all N. Then assumptions (A4) and (A5) are implied by the existence of f (v)
in the neighborhood of v = 0, and the continuity of f (v) at v = 0. Assumption (A5) can
be interpreted as an infinitesimal weak dependence condition similar to the “dependence
index sequence" of Castellana and Leadbetter [49]. Assumptions (A6) and (A7) ensure
the existence of the covariance matrix (27) in the limit. While the dependence structure is
contained in assumption (A6), the heterogeneity is captured by assumption (A7). Note that
a too strong dependence hinders convergence in (A6). Obviously, if the limit of the matrix
Z>NΩN ZN is singular, then the limiting distribution of

√
NDN(β̂− β0) is singular, too.

2.2.3. Main Result

The proof of our main result rests on Lemma 1 and two additional Lemmas. Lemma 1
derived the limiting distribution of QN(γ)−E[QN(γ)]. Lemma 2 establishes that QN(γ) =
E[QN(γ)] = E[BN(γ)] (see Remark 1) converges uniformly for γ in a compact subset of
RK+1 to γ>Vγ. Lemma 3 establishes that Var[BN(γ)] converges uniformly to 0 for γ in a
compact subset of RK+1.

Remark 2. In our derivations we assume hi ≤ ε f and apply assumptions (A4) and (A5). Hence
we implicitly assume the consistency of γ̂. The ULLN (15) required for this can be derived from
(i) a weak LLN for weakly dependent sequences using the L1-approximability of {ζiN(γ)} by
{ψτ(Ui)} (see [47], Theorem 6.2, and the proof of Lemma 1) and (ii) stochastic equicontinuity of the
qiN(γ) (e.g., [33], Section 21.3). Then, weak consistency of γ̂ in the QTR model can be established
using the arguments in (Oberhofer and Haupt [40], Lemma 2C, Theorem 1) or (Fitzenberger [36],
Theorem 2.2).

Lemma 2. Under assumptions (A2), (A4), and (A7), E[BN(γ)] converges for N → ∞ to
0.5γ>Vγ. The convergence is uniform for γ in a compact subset of RK+1.

Proof. For hi > 0, from (20) and assumption (A4) follows from the mean value theorem

1
2

h2
i inf

0≤v≤ht
fi(v) ≤ E[biN(γ)] ≤

1
2

h2
i sup

0≤v≤ht

fi(v).

Apply an analogous argumentation for hi < 0. From assumption (A2) follows
∑N

i=1 h2
i = O(1). Finally, due to assumption (A4),

lim
N→∞

E
[

N

∑
i=1

biN(γ)

]
= lim

N→∞

1
2

N

∑
i=1

h2
i fi(0) =

1
2

γ>
[

lim
N→∞

1
N

Z>NΦN ZN

]
γ,

and the assertion follows from assumption (A7) (e.g., [37], Theorem 4.1).
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Lemma 3. Under assumptions (A2), (A4), and (A5), lim
N→∞

Var[BN(γ)] = 0. The convergence is

uniform for γ in a compact subset of RK+1.

Proof. For i 6= j, hi > 0, and hj > 0,

E[biN(γ)bjN(γ)]−E[biN(γ)bjN(γ)] =∫
0≤v≤hi

∫
0≤w≤hj

(hi − v)(hj − w)[ fi,j(v, w)− fi(v) f j(w)]dvdw

≤ 1
4

h2
i h2

j sup
0≤v≤hi
0≤w≤hj

| fi,j(v, w)− fi(v) f j(w)|.

An analogous argumentation applies for hi > 0, hj < 0 and all other cases. Then,

N

∑
i,j=1
i 6=j

Cov[(biN(γ), bjN(γ))] ≤
1
4

N

∑
i,j=1
i 6=j

h2
i h2

j sup
| v|≤| hi |
|w|≤| hj |

| fi,j(v, w)− fi(v) f j(w)|. (30)

The expression on the right hand side is bounded from above by

1
4

1
N

N−1

∑
| r|=0

sup
i,i+r∈N

sup
| v|≤| hi |
|w|≤| hi+r |

| fi,i+r(v, w)− fi(v) fi+r(w)| 1
N

N−r

∑
j=1

(zjNγ)2(zj+rNγ)2.

Thus, according to assumptions (A5) and (A2), the left hand side of (30) tends to zero
as N → ∞. Analogously, for i = j,

N

∑
i=1

Var[biN(γ)] ≤
N

∑
i=1

[
1
3
|hi|3 sup

| v|≤| hi |
fi(v)

]
≤ 1

N

N

∑
i=1
|zjNγ|3 1√

N
sup

1≤j≤N
f j(0).

Then, the assertion follows from assumptions (A2) and (A4).

Theorem 1. Under assumptions (A1)–(A7), the minimizing value γ̂N =
√

NDN(β̂N − β0) of
QN(γ) converges in distribution to a normal distribution with mean zero and covariance matrix
V−1ΣV−1.

Proof. According to Lemmas 1–3 and assumption (A6), QN(γ) converges for N → ∞ in
distribution to

Q(γ) =
1
2

γ>Vγ + c>γ, (31)

with minimizing value γ̂ = −V−1c. The limiting value Q(γ) can be interpreted as the
limit of a second order Taylor expansion of E[QN(γ)]. The convergence in distribution
of the minimizing value γ̂N to γ̂ requires the convexity of QN(γ) [35] and the uniform
convergence results established in our Lemmas for γ in a compact subset of RK+1.

3. Data and Results

This section provides descriptives for the CET data from 1850 until 2020 used for fitting
the QTR models and summarizes the modeling results. All temperatures are measured in
Celsius degrees (◦C). The CET time series is recorded by a network of monitoring stations
(see [1], Figure 1a for a visualization of the locations) and designed to represent the climate
of the English Midlands. The time series decomposition of the CET time series and the
description of its key characteristics has received considerable attention in the literature
(see, e.g., [1,4,11,12,15,29,50,51] for contributions over the past two decades).
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All computations and visualizations were obtained with the statistical software R
version 4.1.1 [52] using the addon packages quantreg [53], forecast [54], ggplot2 [55],
and gridExtra [56]. Data and code (Supplementary Materials) is available from an online
repository [57].

3.1. Descriptives for CET Anomalies

In the following analysis of the CET data, we focus on monthly temperature anomalies
Y∗s (hereafter anomalies). To construct the anomalies, we first compute mean monthly
temperatures for each month over the years 1850 until 1900 Ȳs. This time period is gener-
ally considered to approximate pre-industrial levels and facilitates comparability of our
results for Central England with other regions due to the availability of gridded surface
temperature records (see, e.g., Chapter 3, p. 20 in [3], and the references cited therein). The
anomalies Y∗s are obtained by subtracting Ȳs from the CET data for the years 1961 until
2020 shown in Figure 3. Table 1 displays Ȳs for each month of the years 1850 until 1900
(first row), mean monthly temperatures Ỹs for the years 1961 until 2020 (second row) and
the anomalies Y∗s . Note that all displayed anomalies are positive.

Table 1. Mean monthly temperatures (◦C) for years 1850 until 1900 Ȳs (first row) and years 1961 until
2020 Ỹs (second row). The third row displays corresponding anomalies Y∗s for years 1961 until 2020.

Years Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Ȳs 1850–1900 3.48 4.13 5.11 8.07 10.79 14.28 15.87 15.48 13.20 9.34 5.84 3.99
Ỹs 1961–2020 4.24 4.33 6.21 8.42 11.53 14.42 16.42 16.14 13.88 10.77 6.98 4.81
Y∗s 1961–2020 0.76 0.20 1.09 0.35 0.74 0.15 0.55 0.66 0.69 1.43 1.14 0.82

Figure 4 shows the time series plot of the anomalies for the years 1961 until 2020.
Similar to King et al. [21], we include threshold lines for 0 ◦C (green), 1.5 ◦C (orange), and
2 ◦C (red) in all visualizations of the anomalies (for detailed reasoning and brief summaries,
see [58–60]).
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Figure 4. Anomalies for years 1961 until 2020 (grey line). Horizontal lines indicate anomalies of 0 ◦C
(green), 1.5 ◦C (orange), and 2 ◦C (red).

Figure 5 visualizes the anomalies for the different months (left display) and the
empirical density of the anomalies (right display). Each line in the left display visualizes
one time series of anomalies for a particular month from Figure 4. The anomalies show
an upward trend and most of the anomaly time series are located above the green line
after the year 2000. The empirical density of the anomalies shows a location shift when
comparing the years 1961 until 2020 (green area) to the years 1850 until 1900 (grey area),
with a mean anomaly during the years 1961 until 2020 of 0.71. Note that the empirical
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density that an anomaly exceeds 2 ◦C (marked by the red line) triples for the years 1961
until 2020 compared to the years 1850 until 1900.
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Figure 5. Anomalies for years 1961 until 2020 (left display), where each line represents anomalies for
one month. Right display shows empirical densities of anomalies for years 1850 until 1900 (grey)
and 1961 until 2020 (green). Horizontal lines indicate anomalies of 0 ◦C (green), 1.5 ◦C (orange), and
2 ◦C (red).

To obtain a more complete picture of potential heterogeneities across the different
months, we investigate the months separately. Figure 6 shows boxplots for the anomalies
for each month over the years 1850 until 1900 (grey) and the years 1961 until 2020 (green).
The different boxplots indicate substantial heterogeneities across the months with respect
to the dispersion of the distribution of the anomalies. The dispersion is higher for the
winter months compared to the summer months. Additionally the boxplots illustrate that
location shifts in the anomalies are more pronounced for the autumn and winter months
compared to the other months. Figure 7 shows the empirical densities for the anomalies
from January 1850 until December 1900 (darkgrey) and from January 1961 until December
2020 (green) separately for each month. Starting from December in the top left corner to
November in the bottom right corner, the rows of the figure represent the winter (first),
spring (second), summer (third), and fall (fourth) months. The figure indicates the presence
of a location and scale shift in the conditional distribution of temperature anomalies, which
varies across the different months and is more pronounced in fall and winter.
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Figure 6. Boxplots for anomalies for years 1850 until 1900 (grey) and 1961 until 2020 (green) for each
month. Horizontal lines indicate anomalies of 0 ◦C (green), 1.5 ◦C (orange), and 2 ◦C (red).
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Figure 7. Empirical densities of anomalies plotted for each month from January 1850 until December
1900 (grey) and from January 1961 until December 2020 (green). Vertical lines indicate anomalies of
0 ◦C (green), 1.5 ◦C (orange), and 2 ◦C (red).

3.2. Relevance of Quantile Regression for Analyzing Anomalies

In this subsection, we highlight properties of the anomalies that indicate that quantile
regression analysis is more appropriate in this case compared to least squares analysis.
Figure 8 displays QQ-plots of the sample quantiles of the anomalies (ordinate) for each
month against the theoretical quantiles of the standard normal distribution (abscissa) and
reveals that the empirical anomaly distributions appear “almost normal” only for months
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May and November, while there are a number of deviations from normality in all other
months. In particular, we observe evidence of skewness (left: January, February, June; right:
April, July, August) and outliers (December, January, February, March), which may heavily
influence the accuracy of least squares based statistics. Additional evidence of fat tails
(September, October, December) may trouble the existence of moments.
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Figure 8. Sample quantiles of anomalies for each month from January 1961 until December 2020
(ordinate) and theoretical quantiles of standard normal distribution (abscissa). Dashed grey line
connects points constituted of respective 0.25%- and 0.75%-quantiles.
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Figure 9 displays estimated mean versus median trends of anomalies for each month
starting from December (top left) to November (bottom right). The trend regressions were
fitted by employing a polynomial of degree three in a quantile regression with τ = 0.5
(solid green line) and a least squares regression (dashed green line). The figure highlights
that there are considerable differences between the conditional mean and the conditional
median for all months except December. In particular, skewness and extreme values lead
to a much more wiggly behavior of the mean trend compared to the median trend.
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Figure 9. Estimated trend polynomial of degree three by quantile regression (τ = 0.5; solid green
line) and least squares regression (dashed green line) for anomalies for each month from January 1961
until December 2020 (grey lines).
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3.3. Results of QTR Estimation

In the sense of our mathematical model in Equation (1), we analyze all monthly
CET anomaly time series separately (e.g., [4,34,61]) by fitting a QTR model as defined
in Equation (5) for time series of monthly temperature anomalies Y∗s to capture month-
specific patterns of trend and heterogeneity. Similar to Franzke [15], we use a low-order
polynomial for trend modeling and fix the order of the polynomial regression design given
in Equation (3) to K = 3:

xs+Si,n = (1, xs+Si,n, x2
s+Si,n, x3

s+Si,n).

Figure 10 illustrates the QTR models fitted to the anomalies. Each display represents
the QTR model fit to a particular month from December (top left) to November (bottom
right). In our further analysis of the CET data, we focus on hot and cold extremes. Following
Franzke [28], we define the τ = 0.95 quantile as threshold for hot extremes and the τ = 0.05
quantile as threshold for cold extremes. Visualizations based on the exceedance of such
thresholds can be found, among others, in Mudelsee [62] and Dissanayake et al. [63].
Alternatively, Glick [64] considers the maximum and minimum as thresholds for hot and
cold extremes. The area between the estimated quantile trend curves for hot (τ = 0.95)
and cold (τ = 0.05) extremes is marked in green. The estimates indicate that there are
substantial heterogeneities with respect to two dimensions: Across the quantiles (when
contrasting the lines that bound the green area above and below for each display) and across
the monthly seasonal cycle (when contrasting the green areas over the different displays).
Upward trends in the anomalies are visible for almost all months, as larger fractions of
the areas move above the zero line over time. The divergence between the hot and cold
quantiles is larger for winter months compared to summer months. Overall, our results
are in accordance with earlier literature, which provided evidence for global warming and
trending in temperature time series and noted heterogeneity across the different months
(e.g., [4,6,28]).
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Figure 10. Cont.
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Figure 10. Anomalies for each month from January 1961 until December 2020. Green shaded area
colors region between QTR models for hot (τ = 0.95 quantile) and cold (τ = 0.05 quantile) extremes.
Horizontal lines indicate anomalies of 0 ◦C (green), 1.5 ◦C (orange), and 2 ◦C (red).

4. Concluding Remarks

We propose a model for season-specific trends motivated by cyclostationarity of tem-
perature anomalies. From this we derive a quantile trend regression (QTR) model by
introducing a set of assumptions reflecting that environmental processes such as temper-
ature anomalies are neither homoscedastic nor independent. The key assumption about
the trend is that temperature anomalies can be decomposed into a conditional temperature
anomaly quantile modeled as a polynomial trend and a stationary weakly dependent
remainder process. We provide asymptotic results for the QTR model and apply it to
seasonal temperature anomalies of the Central England temperature (CET).

Our empirical results suggest a location and scale shift in the distribution of CET
anomalies during the years 1961 until 2020 compared to 1850 until 1900 and an increase
of the relative frequency of observing hot extremes (i.e., anomalies, which exceed the 95%
quantile of temperature anomalies during 1850 until 1900). Additionally, our modeling
results indicate the presence of substantial heterogeneities of trend patterns over the
seasonal cycle for the years from 1961 to 2020, where warming is most pronounced for
autumn and winter months. Overall, our findings are in line with earlier work, which
documented upward trends for CET temperatures [1,6,17] and heterogeneity in trend across
winter and summer months Vogelsang and Franses [4].

The QTR approach imposes a weak set of assumptions and is particularly suited for
analyzing trends in temperature anomalies as highlighted by the visualizations provided in
the previous section. First, robust alternatives to least squares based modeling are necessary
due to the presence of outliers (in trend and remainder component), which may impact
the fitted trend regression polynomials substantially. Second, accounting for heterogeneity
across the different months is vital in the analysis of trends in hot and cold extremes.
Finally, on a theoretical level, the non-normal behaviour of the anomaly data suggests
that the assumptions underlying quantile regression are more suitable compared to the
moment-based assumptions of least squares methods.
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There are of course limitations of the proposed QTR modeling of anomalies. Polynomi-
als may tend to overfit in certain areas of the domain spanned by the design vectors. Local
overfitting could be mitigated by imposing suitable restrictions such as shape-constraints
or specifying particular distributions (e.g., [22,65]). This, however, requires a priori infor-
mation on the nature of the restrictions and may seriously flaw the modeling results if the
imposed restrictions are wrong. Future work could investigate suitable restrictions for
temperature time series based on different time horizons and/or regions. Alternatively,
QTR modeling could be extended to other processes which exhibit similar structures to
the temperature process. An example are air pollutant processes, which result from the
complex interplay of natural and anthropogenic influences such as diurnal cycles due to
traffic or cycles according to the annual seasons. This renders the usual filtering procedures
from time series analysis infeasible and QTR could be a valuable modeling approach.

Supplementary Materials: The code to reproduce the results is available online at https://github.
com/markusfritsch/quantWarming.
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