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Abstract: The paper generalizes the models of the standard first- and second-price auctions (FPA and
SPA) by using the Cobb-Douglas function to evaluate bidders’ two conflicting bidding preferences for
the probability of winning the item (Cpwin) and the profit conditional on winning (Cprofit). Compared
with the popular expected profit function, this function has the advantage of allowing the bidders
to equally or differently value Cpwin and Cprofit from the point of view of multiple criteria decision
making, and then can capture bidders’ bidding behavior in reality. Introduction of the Cobb-Douglas
function into the FPA allows us to provide new interpretations for overbidding (underbidding)
behavior and the dependence of the optimal reserve price on the number of bidders. Our new
interpretations are all attributed to the bidders’ different preferences for Cpwin and Cprofit. In contrast,
this introduction into the SPA does not matter. Our findings suggest that the seller should prefer the
FPA (SPA) over the SPA (FPA) and set a lower (higher) optimal reserve price if he conjectures that the
bidders have a stronger desire to win an auction (to obtain a profit). The above results help the seller
to select between the two auctions and set a reserve price in practice.

Keywords: first-price auction; second-price auction; reserve price; Cobb-Douglas preference;
overbidding and underbidding; multiple criteria decision making; order statistics

1. Introduction

It is well known that auctions have been applied to discover price and resource
allocation in practice. In the standard auction model, when a bidder submits a bid, he
has to care about both the probability of winning the item and the profit conditional on
winning. It is assumed that a risk-neutral bidder’s optimal bid is found by maximizing
his expected profit. As indicated in [1], from both an economics perspective and a point
of view of a multiple criteria decision making (MCDM) and followed by [2], the expected
profit maximization that is utilized to find an equilibrium bid implicitly assumes that the
two conflicting bidding criteria of “the probability of winning the item” (hereafter Cpwin)
and “the profit conditional on winning” (hereafter Cprofit) have the same importance to
the bidder, and it cannot match real auctions because some bidders may prefer Cpwin to
Cprofit, whereas other bidders may do the opposite. This indicates that a bidder’s different
preference between Cpwin and Cprofit might interpret overbidding and underbidding. Indeed,
this is verified in Section 4. Particularly, Wang et al. [2] show some evidence to support
why a bidder might have a different preference between Cpwin and Cprofit. We find evidence
associated with a reverse auction. Boughton [3] reports that in a survey of 126 construction
contractors with six company objectives, the leading objective is to “maximize expected
profit” (40 percent of respondents), but this is closely followed by “gaining or maintaining
market share” (30 percent of respondents). Clearly, the secondary objective implies that
some contractors prefer Cpwin to Cprofit.

Because of the above-mentioned theoretical concern and evidence, this article intro-
duces the bidders’ Cobb-Douglas preference between the Cpwin and Cprofit into the models
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of the standard first- and second-price auctions (hereafter the standard FPA and SPA) with
a reserve price r set by a risk-neutral seller. The resulting models are referred to as the
generalized FPA and SPA models, respectively. They include the standard FPA and SPA
models as special cases. According to [1,2], the Cobb-Douglas preference can capture the
bidders’ different or same preference between Cpwin and Cprofit, which accords with bidders’
responses to real auctions. Accordingly, the other motivation is to confirm whether the
well-known results for the standard FPA and SPA are robust or not with the introduction of
such a preference. We find that the introduction of such a preference into the standard SPA
does not alter bidding behavior. Thus, the generalized SPA is equivalent to the standard
SPA. In contrast, we find the introduction of such a preference into the standard FPA
has significant effects on the bidders and the seller. Our first three aims are to focus on
investigating implications of the introduction of such a preference into the standard FPA,
as shown follows.

First, we want to study the implications for the resulting bidding behavior. Particularly,
we want to give alternative reasons for underbidding and overbidding using the bidders’
Cobb-Douglas preference between Cpwin and Cprofit (i.e., two weights of α and β).

Second, we focus on implications for the optimal reserve prices. Specifically, we want
to interpret why the optimal reserve prices are independent of or dependent on the number
of bidders. We study whether the optimal reserve prices increase or decrease with the
number of bidders and whether these monotonicities are related to the relative size of two
weights. We are also interested in analyzing the effects of two weights on the optimal
reserve prices.

Third, we analyze the effects of such preference (i.e., two weights) on the seller’s
(maximum) expected revenue. It is well known that the seller’s (maximum) expected
revenue increases with the number of bidders. We want to study whether such monotonicity
is related to the relative size of two weights.

Lastly, we aim to compare the optimal reserve price and the seller’s expected revenue
across four kinds of auctions: the standard FPA and SPA and the generalized FPA and
SPA. Particularly, with the introduction of such a preference we want to study whether
the revenue equivalence principle still holds or not. Particularly, we are interested in the
seller’s preference over the generalized FPA and SPA.

Our article contributes to existing auction literature in the following four main aspects:
(1) We provide alternative interpretations for overbidding and underbidding behavior by
using the bidders’ Cobb-Douglas preference between Cpwin and Cprofit in the FPA. Specif-
ically, overbidding and underbidding for all values in the FPA are attributed to bidders’
greater (less) preference for Cpwin than Cprofit, i.e., α > β (α < β). (2) We generalize the
necessary condition and the sufficient condition of the optimal reserve price in the FPA.
The generalized necessary condition shows that the reason that the optimal reserve price
is independent of the number of the bidders is due to the bidders’ same preference be-
tween Cpwin and Cprofit, i.e., α = β. The optimal reserve price decreases (increases) with the
number of bidders if α > β (α < β). (3) We show that as the weight assigned to the Cpwin
(Cprofit) or α (β) increases, the optimal reserve price decreases (increases) and the seller’s
(maximum) expected revenue increases (decreases) in the FPA. (4) The generalized FPA
(SPA) revenue-dominates the generalized SPA (FPA) if α > β (α < β), while the revenue
equivalence theorem holds if α = β.

The remainder of this article is followed by a literature review in Section 2. Section 3
introduces our model and discusses its relationship with other auction models. Section 4
interprets the respective reasons why bidders overbid and underbid for all valuations in
the FPA. Section 5 characterizes the optimal reserve price and interprets the respective
reasons that the optimal reserve price is dependent on and independent of the number
of bidders. Section 6 makes a comparative analysis by analyzing the respective effects
of the number of bidders and two weights on the optimal reserve price and the seller’s
(maximum) expected revenue and investigates the seller’s preference over the generalized
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FPA and SPA. Section 7 concludes with the main management insights and directions for
future research. All proofs are collected in the Appendix A.

2. Literature Review

This article is closely related to four strands of the literature.

2.1. Applications of Cobb-Douglas Functions

This paper is highly related to a growing body of literature, in which authors uti-
lize Cobb-Douglas functions to model individual’s utility and decision-making problems
(e.g., [1,2,4–6]). Particularly, Liu and Wang [1] initially incorporate bidders’ Cobb-Douglas
preference between the two conflicting bidding criteria of Cpwin and Cprofit into the models
of the standard FPA and SPA. Wang et al. [2] extend the work of Liu and Wang [1] by
considering both the commission rate and the reserve price. Ghatak and Jiang [5] assume
that individuals have identical Cobb-Douglas utility functions over consumption and be-
quests which are conflicting. Corchón and Dahm [4] combine the probability of winning
the prize and the quality of the prize in a Cobb-Douglas way to represent each contes-
tant’s utility. Tsai [6] uses the Cobb-Douglas utility function to capture a bank’s preference
between the like of higher equity returns and the dislike or disutility of higher equity
risks. Similar to [1,2], we utilize the Cobb-Douglas utility function to capture bidders’ two
conflicting bidding preferences between Cpwin and Cprofit.

2.2. Interpretations of Overbidding and Underbidding

Different interpretations for the overbidding, underbidding, or both phenomena
have been given. As for the FPA, overbidding (underbidding) means that bidders tend
to bid above (below) the risk-neutral Bayesian Nash equilibrium. Initially, overbidding
phenomenon is explained by risk aversion within the expected utility framework in, for
example, [7,8]. It is argued that risk aversion cannot be the sole factor and may well not
be the most important factor behind overbidding (e.g., [9,10]). Along this line, a series
of articles have provided alternative explanations, for example, by using a Star-shaped
probability weighting function (hereafter PWF) [11], the anticipation of loser regret [12],
and ambiguity aversion [10].

On the other hand, both overbidding and underbidding have been theoretically
or experimentally rationalized. Some articles predict that bidders with higher values
overbid, while those with lower values underbid, for example, by loss aversion [13], the
inverse S-shaped PWF [14], the anticipated emotions [15], whereas other articles predict
the opposite results experimentally (e.g., [16,17]) and theoretically (e.g., [18,19]).

In sharp contrast to the above papers, we find that both overbidding and underbidding
for all valuations can be predicted by the bidders’ Cobb-Douglas preference between Cpwin
and Cprofit. We show that overbidding (underbidding) for all valuations is due to the
bidders’ more (less) preference for Cpwin than Cprofit. This is driven by the fact that a bidder
with a more (less) preference for Cpwin than Cprofit might be induced to bid more (less)
aggressively compared to the same preference between them (As shown in Section 4, the
equilibrium bidding strategy with the same preference reduces to the risk-neutral Bayesian
Nash equilibrium). Thus, our interpretation is consistent with intuition but is different
from the previous interpretations.

Few articles focus on the amounts of overbidding and underbidding. Roider and
Schmitz [15] theoretically show that the amount of overbidding of a participating bidder
is independent of the valuation in their generalized SPA model, and increases with the
valuation in their generalized FPA model if the anticipated disappointment from losing
the auction is positive. Kirchkamp and Reiß [17] find that the amount of underbidding
depends on the seemingly innocuous parameters of the experimental setup. In contrast, we
show that the amount of overbidding of a participating bidder increases with the weight
assigned to Cpwin (i.e., α) and decreases with the weight assigned to Cprofit (i.e., β) if α > β,
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the amount of underbidding decreases with α and increases with β if α < β, and both of
them depend on the bidder’s valuation.

2.3. Optimal Reserve Prices

This article is mostly related to the auction literature that focuses on optimal reserve
prices with the risk-neutral seller and bidders. It is well known that the optimal reserve
price is independent of the number of bidders in the standard FPA (e.g., [20]). Rosenkranz
and Schmitz [19] modify the standard FPA model by using the reference point (that equals
the weighted average of the reserve price r and an exogenous variable x, i.e., λr + (1 − λ)x
with λ ≥ 0) to adjust bidder’s utility and show that the optimal reserve price increases
with (is independent of) the number of bidders if the reference point is (is not) affected
by the reserve price (i.e., λ > 0 (λ = 0)). In contrast, Roider and Schmitz [15] extend the
standard FPA model by utilizing a bidder’s feelings of both the anticipated joy of winning
the auction (ε ≥ 0) and the anticipated disappointment from losing the auction (γ ≥ 0)
to adjust the bidder’s utility and show that the optimal reserve price decreases with (is
independent of) the number of bidders if γ > 0 (γ = 0), increases with ε and decreases
with γ. More recently, Li [21] extends the standard FPA model by applying the exogenous
reference point ρ for the price of the item to adjust a bidder’s utility and shows that the
optimal reserve price increases with ρ and is independent of the number of bidders when
there is no reference effect in the bidder’s utility. However, he neglects the monotonicity of
the optimal reserve price in the number of bidders.

In sharp contrast with the above articles, we extend the standard FPA model by
adopting bidders’ Cobb-Douglas preference. We find that the reserve price is independent
of (dependent on) the number of bidders in the generalized FPA if bidders have the same
(different) preference between Cpwin and Cprofit. We also find that whether the optimal
reserve price increases or decreases with the number of bidders is due to bidders’ less or
more preference over Cpwin. Interestingly, the two weights play similar roles as the reference
point ρ [21], the anticipated disappointment γ [15], and the weight λ [19].

2.4. The Revenue Equivalence Principle

This article is closely related to the auction literature on the revenue equivalence prin-
ciple with the risk-neutral seller and bidders. Ahmad [18] shows that the first- and second-
price auctions are revenue equivalent when naive bidders have dependent preferences
and an exogenous reference point that is increasing. However, when the naive bidders
are loss-averse, revenue equivalence is broken down. Wang and Liu [1] show that the
FPA and SPA without a reserve price are revenue equivalent if bidders have the same
preference between Cpwin and Cprofit, and that the FPA (the SPA) revenue-dominates the
SPA (the FPA) if the weight assigned to Cpwin is greater (less) the weight assigned to Cprofit,
while we obtain similar results with a reserve price. Roider and Schmitz [15] show the FPA
and SPA with bidders’ anticipated motions are also revenue equivalent. Rosenkranz and
Schmitz [19] show the FPA and SPA with the reference point mentioned above are revenue
equivalent. More recently, Wang, et al. [2] show that the revenue equivalence theorem fails
in practical auctions with the commission rate, and Li [21] shows that the FPA (the SPA)
revenue-dominates the SPA (the FPA) with loss-averse bidders, but the converse is true
with gain-seeking bidders.

3. The Model

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

A seller has a personal value v0 ∈ (L, H) for a single indivisible item to be sold. He
sets a reserve price r within the interval [L, H]. The item is to be sold to one of n ≥ 2
bidders through the generalized FPA or SPA auction with a reserve price r, where all
the bidders simultaneously submit their sealed bids and the bidder with the highest
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bid being greater than the reserve price r wins the auction and pays his bid price to
the seller. Each bidder i ∈ {1, 2, . . . , n} has a private value for the object, vi, which is
unknown to the others. These values are independently and identically distributed on
[L, H] according to distribution function F, with a density function f = F′ that is strictly
positive and continuously differentiable on [L, H]. In equilibrium, a bidder drops from
bidding if his value v is less than r, and submits a bid of r if his value v is equal to r. By a
participating bidder with a value v we mean v ≥ r.

In the generalized FPA, the bidder is assumed to solve the following Cobb-Douglas
utility maximization problem:

maxb [Pwin(b)]α(v − b)β, α, β > 0, α + β =1, (1)

where Pwin(b) denotes the bidder’s probability of winning at a bid b, α and β represent
the bidder’s preference between (or the two weights that the bidder places on) the two
bidding criteria Cpwin and Cprofit. Particularly, the bidder has more preference for Cpwin
(Cprofit) than Cprofit (Cpwin) if he assigns more weight to Cpwin (Cprofit) than to Cprofit (Cpwin),
i.e., α > β (α < β), and has the same preference between Cpwin and Cprofit if he weighs them
equally, i.e., α = β. All of these similar interpretations can also be found in [1,2], from both
an economics perspective and from the point of view of MCDM.

The following remark connects our Model (1) with the other well-known auction
models. It also distinguishes our Model (1) from them.

Remark 1. The generalized FPA model (1) has the following three features.
(i) First, Model (1) with α = β is equivalent to the FPA model, but it is different from the latter

when α 6= β. Clearly, the bidders are risk neutral as if they weigh Cpwin and Cprofit equally.
(ii) Second, Model (1) with α 6= β is equivalent to an expected utility maximization model

(EUMax) with a power utility function xd with d = β/α. However, Model (1) with α 6= β and the
expected utility maximization model differ by meanings of the relevant parameters. The quotient of
β and α (i.e., β/α) has the same meaning as d, where the degree of relative risk aversion (seeking)
is given as 1 − d (d − 1) if d < 1 (d > 1), but α and β have the separate meanings mentioned
above. Clearly, α > β (α < β) is equivalent to d < 1 (d > 1). Thus, bidders have more preference for
Cpwin (Cprofit) than Cprofit (Cpwin) as if they are CRRA (CRRS) bidders.

(iii) Third, Model (1) with α 6= β is equivalent to the probability weighting (PW) model with a
power PWF of [Pwin(b)]c and c = α/β. Specifically, it corresponds to a probability overweighting
(underweighting) model when α < β (α > β). However, Model (1) with α 6= β and the power
PW model differ by meanings of the relevant parameters. The quotient of α and β (i.e., α/β) has
the same meaning as c, but α and β have the separate meanings mentioned above. Bidders have
more preference for Cpwin (Cprofit) than Cprofit (Cpwin) as if they underweight (overweight) Pwin(b)
because α > β (α < β) is equivalent to c > 1 (c < 1).

It is worth mentioning that we mainly investigate the respective effects of the two
weights of α and β on bidding behavior, properties of optimal reserve prices, and the seller’s
(maximum) expected revenue instead of the related effects of parameter 1 − d (or d − 1) in
the EUMax model or parameter c in the PW model. Thus, all of the results obtained for our
model (1) generalize and are beyond the related well-known results for the above three
kinds of models because of Remark 1 and subsequent sections.

The following remark justifies our model (1) by the prospect theory [22].

Remark 2. When a bidder submits a bid of b, he receives a revenue of v − b with probabil-
ity of Pwin(b) and zero revenue with probability of 1 − Pwin(b). Thus, the bidder’s bid of
b yields a unique regular prospect (v − b, Pwin(b); 0, 1 − Pwin(b)) whose whole value is
π(Pwin(b))w(v − b) + π(1 − Pwin(b))w(0), where π(x) is referred as the weighting function and
increasing with π(0) = 0 and π(1) = 1, and w(x) the value function. Now, if we assume that
π(x) = xα and w(x) = xβ (for example, see [4]), then the whole value of the above prospect associated
with the bidder’s bid b is reduced to the objective function in (1).
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In a totally parallel method for proving Proposition 2.1 in [23] (or for proving Proposition 2
without a reserve price in [1]), we can show that in the generalized SPA, the weakly domi-
nant strategy of a bidder with a valuation v ≥ r is to submit a bid that is equal to v, which
is independent of the number of bidders and the two weights, and exactly the same as in
the standard SPA. Thus, the generalized SPA is totally equivalent to the standard SPA for
both the bidders and seller.

4. Overbidding and Underbidding

In an entirely similar way that Liu and Wang [1] obtain a bidder’s symmetric equilib-
rium bid without a reserve price in their Proposition 1, we can derive a bidder’s symmetric
equilibrium bid function for the generalized FPA model (1), as follows:

bI(v, r, n, α, β) = v−
∫ v

r

[
F(y)
F(v)

]α(n−1)/β

dy for v ∈ [r, H] (2)

Clearly, bI(v, r, n, α, β) reduces to the well-known bid function in the standard FPA
when α = β and r = 0 (for example, [23], p. 16), increases in both n and α, and decreases
in β when v ∈ (r, H] (Throughout this article, “increase” and “nondecrease” mean in strong
and weak senses, respectively; “decrease” and “nonincrease” have similar meanings.). For
simplicity, we drop some arguments in bI(v, r, n, α, β) when we are not interested in them.
For example, we rewrite bI(v, r, n, α, β) as bI(v, r) when given n, α, and β. In addition, bI

v(v, r)
and bI

r(v, r) denote the partial derivatives of bI(v, r) with respect to v and r, respectively.
Intuitively, when a bidder participates in the generalized FPA, his more (less) prefer-

ence for Cpwin than Cprofit might induce him to bid above (below) what he would bid with
the same preference (i.e., the risk-neutral Nash equilibrium). Our first proposition confirms
this intuition. Liu and Wang [1] have not talked about the overbidding and underbidding
phenomena for the generalized FPA without a reserve price.

Proposition 1. Consider the generalized FPA.
(i) A bidder will overbid (underbid) for all v > r if α > β (α < β).
(ii) The amount of overbidding increases with α and decreases with β if α > β, while the amount

of underbidding decreases with α and increases with β if α < β.

Remark 3. The proof of Proposition 1 shows that both the amount of overbidding and the amount
of underbidding depend on the valuations.

5. Optimal Reserve Price

This section analyzes the implications of the bidders’ Cobb-Douglas preference for
optimal reserve prices. Let VI(r) denote the seller’s equilibrium expected revenue as a
function of the reserve price, and rI be an optimal reserve price in the generalized FPA. It is
well known that we have for r ∈ [L, H]

VI(r) =
∫ H

r
bI(v, r)dFn(v) + v0Fn(r). (3)

Since b(r, r) = r, differentiating (3) with respect to r yields

V′I (r) =
∫ H

r
bI

r(v, r)dFn(v)− nFn−1(r) f (r)(r− v0). (4)

Substituting bI
r(v, r) = [F(r)/F(v)]α(n−1)/β by (2) into (4) and simplifying yield

V′I (r) = nFn−1(r) f (r)[Ψ(r, m)− r + v0], (5)



Mathematics 2022, 10, 403 7 of 15

where Ψ(r, m) = 1
f (r)

∫ H
r

[
F(v)
F(r)

]m
dF(v), m = (1 − α/β)(n − 1). Furthermore,

Ψ(r, m) =


1

m+1
F−m(r)−F(r)

f (r) , if m 6= −1

− F(r) ln F(r)
f (r) , if m = −1

(6)

5.1. A Necessary Condition and a Sufficient Condition

Using Equations (5) and (6) and the following lemma we can obtain a necessary condi-
tion and a sufficient condition for the optimal reserve prices under the generalized FPA.

Proposition 2. Consider the generalized FPA. Let m = (1 − α/β)(n − 1).
(i) (A necessary condition) rI exists within the open interval (v0, H) and satisfies

rI = v0 + Ψ(rI, m), (7)

or

rI =

v0 +
1

m+1
F−m(rI)−F(rI)

f (rI)
, if m 6= −1

v0 − F(rI) ln F(rI)
f (rI)

, if m = −1
(8)

(ii) (A sufficient condition) there exists a unique solution rI∈ (v0, H) to (7) that is the optimal
reserve price if r − Ψ(r, m) strictly increase in r over [L, H] for any m.

Remark 4. Suppose that α = β. Then, Model (1) reduces to the standard FPA model as indicated
in Remark 1, m = 0, and Ψ(r, 0) = 1−F(r)

f (r) . Hence, from Proposition 2 our necessary condition (7)
degenerates into the well-known necessary condition for the standard FPA model as expected
(e.g., see Equation (2.12) in [23] and the equation in Proposition 4 in [20]):

rI = v0 +
1− F(rI)

f (rI)

and our sufficient condition (i.e., Ψ(r, 0) nonincreases in [L, H]) becomes

d
dr

(
r− 1− F(r)

f (r)

)
> 0

which is weaker than the well-known sufficient condition in the standard FPA model—the hazard
rate function associated with the distribution F, λ(v) = f(v)/(1 − F(v)), is nondecreasing (e.g., [23]).

Let VII(r) denote the seller’s equilibrium expected revenue as a function of the reserve
price r, and rII be an optimal reserve price in the generalized SPA. Since the weakly
dominant strategy of a bidder with v ≥ r is to submit a bid that is equal to v, for r ∈ [L, H]
we have

VI I(r) = nFn−1(r)(1− F(r))r + n
∫ H

r
v(1− F(v))dFn−1(v) + v0Fn(r), (9)

The Equation (9) directly follows from three events that occur in the auction: (i) the
highest value v[1] is greater than the reserve price r and the second highest value v[2] is
less than r, i.e., v[1] > r and v[2] < r; (ii) v[1] > r and v[2] ≥ r; and (iii) v[1] ≤ r. When the first
event occurs, i.e., there is only one bidder’s value being greater than r and the other bidders’
values are all less than r, the seller receives r with a probability of nF(n − 1)(r)(1 − F(r)),
which leads to the first term in (9). When the second event occurs, the seller receives v[2]
with the probability density function of n(n − 1)F(n − 2)(v)(1 − F(v))f (v), which provides the
second term. When the third event occurs, the auction fails and the seller keeps the item
with a probability of P{v[1] ≤ r} = F(n)(r), which yields the third term.
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Remark 5. (i) Equation (9) is a special case of Equation (8) in [24]. However, Hu, et al. [24] have
not interpreted how to obtain their Equation (8).

(ii) To our best knowledge, we cannot find an interpretation of (9) in existing auction literature.
Without the reserve price (i.e., r = 0), (9) reduces to VI I(0) = n

∫ H
0 v(1− F(v))dFn−1(v), which

is exactly the same as Equation (3.14) in [25].(p. 19). Menezes and Monteiro [25] provide the same
interpretation of Equation (3.14) as we do for the second term in (9).

(iii) The necessary condition and the sufficient condition for the optimal reserve price rII comes
directly from Equations (11) and (12), and Proposition 5 for the risk averse bidders in [24].

5.2. Independence of and Dependence on the Number of Bidders

The next interesting result comes directly from Proposition 2(i).

Corollary 1. Consider the generalized FPA. Let m = (1 − α/β)(n − 1). Then,
(i) rI is independent of the number of bidders if α = β (or equivalently m = 0) or α = n/(2n − 1)

(or equivalently m = −1).
(ii) rI is dependent on the number of bidders if α 6= β (or equivalently m 6= 0) and α 6= n/(2n − 1)

(or equivalently m 6= −1).

Note that our model (1) for α = β is equivalent to the standard FPA model in the sense
that both models give the identical equilibrium bid. Corollary 1 (i) shows that one of the
reasons why the optimal reserve price rI is independent of the number of bidders in the
standard FPA model is due to the bidders’ same weight being placed on Cpwin and Cprofit.
However, Part (ii) shows that the optimal reserve price rI is dependent on the number of
bidders when the two weights are different and the weight placed on Cpwin does not equal
n/(2n − 1).

6. Comparative Analysis

This section considers the respective effects of the parameters n, α, and β on the optimal
reserve price, and the seller’s (maximum) expected revenue under the generalized FPA. Let
VI(r, n, α, β) and rI(n, α, β) be the seller’s expected revenue and the optimal reserve price.
For simplicity, we may drop some arguments in VI(r, n, α, β) and rI(r, n, α, β) when we are
not interested in them. For example, we rewrite VI(v, r, n, α, β) as VI(r, n) and rI(n, α, β) as
rI(n) when given α and β.

6.1. Effects on the Optimal Reserve Price

To investigate the effect of the number of n on the optimal reserve price for a fixed pair
(α, β), we establish the following lemma.

Lemma 1. Suppose that for any fixed positive number n, hn(x) is differentiable and quasi-concave
on (c, d), and hn

′(x) = pn(x)qn(x). Let x*(n) maximize hn(x) on (c, d). If pn(x) > 0 holds on (c, d)
for any fixed n, and qn(x) increases (decreases) in n for any fixed x∈ (c, d), then x*(n) < x*(n + 1)
(x*(n) > x*(n + 1)).

The next proposition shows that the relative importance of the two bidding criteria
has significant effects on the monotonic properties of the optimal reserve price rI(n). It
shows that rI(n) increases (decreases) with the number of bidders if the bidders have a less
(more) preference for Cpwin than Cprofit.

Proposition 3. Consider the generalized FPA. Let m = (1− α/β)(n− 1) and fix a pair (α, β). Then,
rI(n) < rI(n + 1) (rI(n) > rI(n + 1)) if α < β (α > β and α 6= n/(2n − 1)).

To investigate the effects of the two weights α and β on the optimal reserve price, we
introduce the following lemma.



Mathematics 2022, 10, 403 9 of 15

Lemma 2. ([24]) For c < d ≤ ∞ and i =1, 2, let the functions hi: [c, d]→ R be differentiable and
satisfy h1

′ < h2
′ on (c, d). Let ti maximize hi on [c, d]. If ti∈ (c, d) for i = 1 or i = 2, then t1 < t2.

The following proposition shows that the more weight that the bidders place on the
probability of winning (the profit conditional on winning), the lower (higher) the optimal
reserve price rI(α, β) that the seller should set. It could help the seller to set an appropriate
reserve price.

Proposition 4. Consider the generalized FPA. Then, rI(α, β) decreases (increases) in α(β).

6.2. Effects on the Seller’s (Maximum) Expected Revenue

This subsection analyzes the respective effects of the number of bidders and the two
weights on the seller’s (maximum) expected revenue.

What happens to the seller’s expected revenue under the generalized FPA if the
number of bidders increases? Intuitively, the seller benefits from the more participating
bidders. However, the answer is not clear by the expression of the seller’s expected
revenue (3) although the bidding strategy increases with the number of participants. The
following proposition shows that the seller’s expected revenue increases with the number of
participants if the seller’s personal value is less than or equal to the reserve price(Menezes
and Monteiro [25] (p. 21) have shown this result under both the standard FPA and SPA
auctions without a reserve price. Our proof is significantly different from theirs and shows
that some specific manipulation is needed), and the seller’s maximum expected revenue
always increases with the number of bidders.

Proposition 5. Consider the generalized FPA. Suppose that there are n participating bidders. Then
(i) the seller’s expected revenue increases with n if r∈ [v0, H);
(ii) the seller’s optimal expected revenue increases with n.

The following proposition shows that under the generalized FPA both the seller’s
expected revenue and maximum expected revenue increase with the weight assigned to
the probability of winning and decrease with the weight assigned to the profit conditional
on winning.

Proposition 6. Consider the generalized FPA. Suppose that all the n bidders’ values are greater
than the reserve price. Then

(i) the seller’s expected revenue increase (decrease) in α(β).
(ii) the seller’s optimal expected revenue increase (decrease) in α(β).

6.3. Comparisons across Four Kinds of Auctions

This subsection compares the optimal reserve price and the seller’s expected revenue
across the standard FPA and SPA, and the generalized FPA and SPA. Let V1(r) and V2(r)
denote the seller’s equilibrium expected revenues as a function of the reserve price, and
r1* and r2* be the optimal reserve prices in the standard FPA and SPA, respectively. To
investigate the effects of the bidders’ preference on the optimal reserve price and the seller’s
expected revenue, we rewrite (3) as

VI(r, α, β) =
∫ H

r
bI(v, r, α, β)dFn(v) + v0Fn(r) (10)

Since bI(v, r, α, β) is identical to the equilibrium bidding strategy in the standard FPA
by (1) when α = β = 1/2, we have VI(r, 1/2, 1/2) = V1(r). Because the generalized SPA is
equivalent to the standard SPA, as mentioned in Section 3, we have V2(r) = VII(r). Further-
more, using the integration by part and repeated integral we can prove that V1(r) = V2(r)
(Menezes and Monteiro [25] (p. 20–21) have shown this result when there is no reserve
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price. Our proof is significantly different from theirs and more difficult than theirs (See the
Appendix A).). Thus,

VI(r, 1/2, 1/2) = V1(r) = V2(r) = VII(r), (11)

and
rI(1/2, 1/2) = r1*= r2* = rII (12)

Hence, the introduction of the bidders’ Cobb-Douglas preference into the standard
SPA has no effect on the optimal reserve price and the seller’s expected revenue. However,
it does have significant effects on the optimal reserve price and the seller’s expected revenue
for the standard FPA, as shown in the following Corollary.

The following proposition shows that with the presence of the bidders’ different
preference between the two bidding criteria, the results of optimal reserve prices and the
seller’s expected revenue comparisons between the generalized FPA and the generalized
SPA are significantly different from the two standard auctions, and that the revenue
equivalence theorem no longer holds when α 6= β. Particularly, the seller should prefer the
generalized FPA over the generalized SPA if he guesses that all the bidders are eager to win
the auction. Otherwise, the seller should prefer the generalized SPA to the generalized FPA.

Proposition 7. Consider the generalized FPA and SPA. Let m = (1 − α/β)(n − 1). If α > β (α = β,
α < β) or m > 0 (m = 0, m < 0), then

(i) rI(α, β) < rII (respectively, rI(α, β) = rII, rI(α, β) > rII);
(ii) VI(r, α, β) > VII(r) (respectively, VI(r, α, β) = VII(r), VI(r, α, β) < VII(r));
(iii) VI(rI, α, β) > VII(rII) (respectively, VI(rI, α, β) = VII(rII), VI(rI, α, β) < VII(rII)).

Corollary 2. Consider the generalized FPA and the standard FPA. Let m = (1 − α/β)(n − 1). If
α > β (α = β, α < β) or m > 0 (m = 0, m < 0), then,

(i) rI(α, β) < r1* (respectively, rI(α, β) = r1*, rI(α, β) > r1*);
(ii) VI(r, α, β) > V1(r) (respectively, VI(r, α, β) = V1(r), VI(r, α, β) < V1(r));
(iii) VI(rI, α, β) > V1(r1*) (respectively, VI(rI, α, β) = V1(r1*), VI(rI, α, β) < V1(r1*)).

7. Concluding Remarks

This article adopts the bidders’ Cobb-Douglas preference to extend the standard FPA
and SPA models, where the two powers α and β in the Cobb-Douglas utility function
represent the relative importance of the two conflicting bidding criteria Cpwin and Cprofit
to the bidder or capture the bidder’s same or different preference between Cpwin and
Cprofit. We analyze the resulting bidding behavior, optimal reserve prices, and the seller’s
(maximum) expected revenue. Interestingly, we have shown that in the presence of the
bidders’ different preferences between Cpwin and Cprofit, our results for bidding behavior,
optimal reserve prices, and the seller’s expected revenue are significantly different from
the standard FPA model. However, the prominent results for the standard SPA are robust.

For the generalized FPA we find that both the reason that the bidders tend to overbid
and underbid for all valuations and the reason that the optimal reserve price is dependent
on the number of bidders are all attributed to the bidders’ different preferences between
Cpwin and Cprofit. Specifically, our results predict overbidding (underbidding) for all valua-
tions (In the artwork market, there are many real examples of expensive prices at auctions.
“Paradise” painted by Alibaba co-founder Jack Ma with his friend and well-known Chi-
nese artist Zeng Fanzhi was sold at Sotheby’s for about 42.2 million Hong Kong dollars
(HKD; $5.4 million)—17 times more than the price estimated by the auction house—to
Chinese businessman Qian Fenglei (see http://money.cnn.com/2015/10/04/technolog
y/jack-ma-painting-charity-sothebys/, accessed on 22 January 2022). This implies that
the overbidding phenomenon occurred in this real auction because the bidder wanted to
hold the piece at any cost (i.e., the bidder has a greater preference for Cpwin than Cprofit).
According to Proposition 1, overbidding is predicted. Thus, our result can explain the

http://money.cnn.com/2015/10/04/technology/jack-ma-painting-charity-sothebys/
http://money.cnn.com/2015/10/04/technology/jack-ma-painting-charity-sothebys/
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outcome of this real auction.) and show that the optimal reserve price decreases (increases)
with the number of bidders if the bidders have a greater (less) preference for Cpwin than
Cprofit. The reason that the optimal reserve price is independent of the number of bidders
is due to the bidders’ same preference between Cpwin and Cprofit. In contrast, the standard
FPA theory cannot interpret overbidding or underbidding and establishes that the optimal
reserve price is independent of the number of bidders. The bidders’ preference between
Cpwin and Cprofit does not affect the well-known fact in the standard FPA theory that the
seller’s (maximum) expected revenue increases with the number of bidders. We show
that the optimal reserve price decreases (increases) with the weight assigned to the Cpwin
(Cprofit). These results help the seller to set a reasonable reserve price. We find that both
the seller’s expected revenue and optimal expected revenue increase (decrease) with the
weight assigned to the Cpwin (Cprofit).

We show that the optimal reserve price is lower and the seller’s (maximum) expected
revenue is higher in the generalized FPA (SPA) than in the generalized SPA (FPA) if the
bidders have a greater (less) preference for Cpwin than Cprofit. In this case, the revenue
equivalence theorem no longer holds. This finding suggests that the seller should prefer
the FPA (SPA) over the SPA (FPA) if he thinks the bidders are more eager to win the auction
(to obtain the profit conditional on winning). This helps the seller to select between the
two auctions in practice.

Finally, we think that the Cobb-Douglas preference between the two conflicting bid-
ding criteria Cpwin and Cprofit might be applied to extend other kinds of auction models.
Our related results could be useful for investigating econometrics of auctions and can be
used to, for example, test bidders’ preferences over Cpwin and Cprofit by using real auction
data or Monte Carlo simulations.
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Appendix A

Proof of Proposition 1. (i) By the increase (decrease) of bI(v, α, β) in α (β) and α + β =1
we have

bI(v, α, β) > (<) bI(v, 1/2, 1/2), (A1)

if α > β (α < β) or α > 1/2 (α < 1/2). Since maxb[Pwin(b)]1/2(v − b)1/2 is equivalent to
maxbPwin(b)(v− b), bI(v, 1/2, 1/2) is also the risk-neutral Nash equilibrium in the standard
FPA model. Thus, the proof is completed by (A1).

(ii) When α > β, a bidder will overbid from (i), and by (1) the amount of overbidding is

bI(v, α, β)− bI(v, 1/2, 1/2) =
∫ v

r

[(
F(y)
F(v)

)n−1

−
(

F(y)
F(v)

)α(n−1)/β
]

dy,

which increases with α and decreases with β since 0 < F(y)/F(v) < 1 for all y ∈ [r, v]. Similarly,
we can prove the second part since the amount of underbidding is bI(v, 1/2, 1/2) − bI(v, α, β)
when α < β. �
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Proof of Proposition 2. (i) Since VI(r) is continuous over a closed interval [L, H] by (3),
rI ∈ [L, H] exists. For any r ∈ (L, v0], the first term in (4) is positive since for v ∈ (r, H),
br(v, r) > 0 by (1), F(v) > 0, and f (v) > 0, and the second term is nonpositive. Hence, VI

′(r) > 0
on (L, v0], implying that rI ∈ (v0, H]. Since lim

r→H−0
V′I (r) = −n(H − v0) f (H) < 0 by (4),

rI ∈ (v0, H). Thus, rI must satisfy the first-order condition VI
′(r*) = 0, i.e., (7) by (5).

(ii) Since Ψ(r, m) nonincreases in r for any m, Ψ(r, m) − r decreases in r for any m. Thus,
there exists a unique solution rI ∈ (v0, H) to (7). Differentiating (5) with respect to r yields

V ′′I (r) = n(n− 1)Fn−2(r)( f (r))2[Ψ(r, m)− r + v0]
+nFn−1(r) f ′(r)[Ψ(r, m)− r + v0]
+nFn−1(r) f (r)[∂Ψ(r, m)/∂r− 1]

Thus, by (7) we have VI”(rI) = nf (rI)F(n − 1)(rI)[∂Ψ(rI, m)/∂r − 1] < 0 since r − Ψ(r, m)
strictly increase in r over [L, H] for any m. Hence, the unique solution rI ∈ (v0, H) to (7) is
the optimal reserve price since (7) is equivalent to VI

′(rI) = 0 by (5). �

Proof of Lemma 1. Suppose that qn(x) increases in n for any fixed x ∈ (c, d). Since
hn+1

′(x*(n + 1)) = 0 and pn+1(x*(n + 1)) > 0, qn+1(x*(n + 1)) = 0. Thus, from pn(x*(n + 1)) > 0
we have

hn
′(x*(n + 1)) = pn(x*(n + 1))qn(x*(n + 1)) < pn(x*(n + 1))qn+1(x*(n + 1)) = 0,

which implies x*(n) 6= x*(n + 1). Now, suppose that x*(n) > x*(n + 1). Since hn(x*(n)) ≥
hn(x*(n + 1)) and hn(x) is quasi-concave, we have (x*(n) − x*(n + 1))hn

′(x*(n + 1)) ≥ 0 or
hn
′( x*(n + 1)) ≥ 0 by x*(n) > x*(n + 1), contradicting hn

′(x*(n + 1)) < 0. Thus, we must have
x*(n) < x*(n + 1).

Suppose that qn(x) decreases in n for any fixed x ∈ (c, d). Since hn
′(x*(n)) = 0 and

pn(x*(n)) > 0, qn(x*(n)) = 0. Furthermore, by pn+1(x*(n)) > 0 we have

hn+1
′(x*(n)) = pn+1(x*(n))qn+1(x*(n)) < pn+1(x*(n))qn(x*(n)) = 0,

which implies x*(n + 1) 6= x*(n). Now, suppose that x*(n) < x*(n + 1). Since hn+1(x*(n + 1))
≥ hn+1(x*(n)) and hn+1(x) is quasi-concave, we have (x*(n + 1) − x*(n))hn+1

′(x*(n)) ≥ 0 or
hn+1

′(x*(n)) ≥ 0 by x*(n) < x*(n + 1), contradicting hn+1
′(x*(n)) < 0. Thus, we must have

x*(n) > x*(n + 1). �

Proof of Proposition 3. In the proof, we treat n as if it were a continuous variable. When
α < β, or α > β and α 6= n/(2n − 1), we have m 6= 0 and m 6= − 1, implying that the optimal
reserve price depends on the number of the bidders by Corollary 1(ii). To analyze the effect
of n on r*(n), we rewrite (5) as

∂V(r, n)/∂r = nF(n − 1)(r)Φn(r),

where

Φn(r) =
∫ H

r

[
F(v)
F(r)

]m
dF(v)− f (r)(r− v0)

Since F(v) > F(r) and f (v) > 0 for v∈ (r, H],

∂Φn(r)
∂n

=
∫ H

r
(1− α/β)

[
F(v)
F(r)

]m
ln

F(v)
F(r)

dF(v) > (<)0,

and then Φn(r) increases (decreases) in n for any fixed r if α < β (α > β and α 6= n/(2n − 1)).
By Proposition 2(i) both rI(n) and rI(n + 1) are within the interval (v0, H). Since nF(n−1)(r) > 0
for r ∈ (v0, H) for any fixed n, the conclusion follows from applying Lemma 1 to the function
V(r, n). �
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Proof of Proposition 4. Substituting br
I(v, r) = [F(r)/F(v)]α(n−1)/β into (4) yields

∂VI(r, α, β)

∂r
= n

∫ H

r

[
Fn−1(r)
Fn−1(v)

]α/β

Fn−1(v)dF(v)− nFn−1(r) f (r)(r− v0) (A2)

Consider two pairs of (α1, β1) and (α2, β2) with α1 + β1 = 1, α2 + β2 = 1, and
0 < α1 < α2 < 1. Then, we have α1/β1 < α2/β2. Hence, [F(r)/F(v)]α1/β1 > [F(r)/F(v)]α2/β2

for v ∈ (r, H) since 0 < F(r)/F(v) < 1 for v ∈ (r, H). Thus, by (A2) we have

∂VI(r, α2, β2)

∂r
− ∂VI(r, α1, β1)

∂r
= n

∫ H

r
Fn−1(v)

[(
Fn−1(r)
Fn−1(v)

)α2/β2

−
(

Fn−1(r)
Fn−1(v)

)α1/β1
]

dF(v) < 0.

Since rI(αi, βi)∈ (v0, H) for i = 1, 2 by Proposition 2, we conclude that rI(α2, β2) < rI(α1, β1)
by applying Lemma 2 to VI(r, α1, β1) and VI(r, α2, β2). Similarly, we can show that rI(α, β)
increases in β. �

Proof of Proposition 5. (i) Since bI(v, r, n) increases in n by (2), i.e., bI(v, r, n) < bI(v, r, n + 1),
from (3) we have

VI(r, n) <
∫ H

r bI(v, r, n + 1)dFn(v) + v0Fn(r)

= bI(H, r, n + 1)−
∫ H

r Fn(v)bI
v(v, r, n + 1)dv + Fn(r)(v0 − r)

(A3)

where the equality follows from integration by part, F(H) = 1, and bI(r, r, n + 1) = r. Using
integration by part, we obtain

VI(r, n + 1) =
∫ H

r bI(v, r, n + 1)dFn+1(v) + v0Fn+1(r)

= bI(H, r, n + 1)−
∫ H

r Fn+1(v)bI
v(v, r, n + 1)dv + Fn+1(r)(v0 − r)

(A4)

Subtracting (A3) from (A4), we have

VI(r, n + 1)−VI(r, n) >
∫ H

r (Fn(v)− Fn+1(v))bI
v(v, r, n + 1)dv

+(Fn+1(r)− Fn(r))(v0 − r)
> 0

since Fn(v) > Fn+1(v) and bI
v(v, r, n + 1) > 0 for r < v < H by (2), Fn+1(r) ≤ Fn(r), and v0 ≤ r.

(ii) The proof follows from

VI(rI(n), n) < VI(rI(n), n + 1) ≤ VI(rI(n + 1), n + 1),

where the first inequality holds by part (i) and rI(n) ∈ (v0, H), and the second inequality is
true since rI(n + 1) is the optimal reserve price given n + 1 bidders. �

Proof of Proposition 6. (i) Since bI(v, r, α, β) increases in α and decreases in β by (2), so
does the seller’s expected revenue VI(r, α, β) by (3).

(ii) With (α1, β1) and (α2, β2) such that α1 + β1 = 1, α2 + β2 = 1, and 0 < α1 < α2 < 1 (or equiva-
lently, 0 < β2 < β1 < 1), we have VI(rI(α1, β1), α1, β1) < VI(rI(α1, β1), α2, β2)≤ VI(rI(α2, β2), α2, β2)
by part (i). This completes the proof. �

Proof of V1(r) = V2(r). Substituting α = β = 1/2 into (1) and simplifying lead to

bI(v, r, 1/2, 1/2) =
rFn−1(r)
Fn−1(v)

+
1

Fn−1(v)

∫ v

r
ydFn−1(y)
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Substituting the above equation into (3) yields

V1(r) = VI(r, 1/2, 1/2)

=
∫ H

r [r Fn−1(r)
Fn−1(v) +

1
Fn−1(v)

∫ v
r ydFn−1(y)]dFn(v) + v0Fn(r)

(A5)

Clearly, we have

∆1 =
∫ H

r

rFn−1(r)
Fn−1(v)

dFn(v) = nFn−1(r)(1− F(r))r, (A6)

and
∆2 =

∫ H
r

[
1

Fn−1(v)

∫ v
r ydFn−1(y)

]
dFn(v)

= n
∫ H

r [
∫ v

r (n− 1)yFn−2(y) f (y) f (v)dy]dv

= n
∫ H

r [
∫ H

y (n− 1)yFn−2(y) f (y) f (v)dv]dy

= n
∫ H

r (n− 1)yFn−2(y) f (y)(1− F(y))dy

= n
∫ H

r y(1− F(y))dFn−1(y)

(A7)

where the second equality holds by changing the order of integration. Observing (A5)–(A7),
we have V1(r) = ∆1 + ∆2 + v0Fn(r), which is equal to VII(r) = V2(r) by (9). This completes
the proof. �

Proof of Proposition 7. (i) Clearly, α > β (α = β, α < β) is equivalent to m > 0 (m = 0, m < 0).
Since rI(α, β) decreases (increases) in α(β) by Proposition 4,

rI(α, β) < rI(1/2, 1/2) (respectively, rI(α, β) = rI(1/2, 1/2), rI(α, β) > rI(1/2, 1/2),

holds when α > β (α = β, α < β), or equivalently, α > 1/2 (α = 1/2, α <1/2). This and
rI(1/2, 1/2) = rII by (12) imply the conclusion.

(ii) By Proposition 1, when α > β (α = β, α < β) we have b(v, r, α, β) > (respectively, =, <)
b(v, r, 1/2, 1/2), implying that VI(rI, α, β) > (respectively, =, < ) VI(rI, 1/2, 1/2) = VII(r)
by (10) and (11).

(iii) It directly follows from (ii). �
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