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Abstract: We study the relationship between the category of R-modules (CR-M) and the category
of intuitionistic fuzzy modules (CR-IFM). We construct a category CLat(R-IFM) of complete lattices
corresponding to every object in CR-M and then show that, corresponding to each morphism in
CR-M, there exists a contravariant functor from CR-IFM to the category CLat (=union of all CLat(R-IFM),
corresponding to each object in CR-M) that preserve infima. Then, we show that the category CR-IFM

forms a top category over the category CR-M. Finally, we define and discuss the concept of kernel
and cokernel in CR-IFM and show that CR-IFM is not an Abelian Category.

Keywords: intuitionistic fuzzy modules; intuitionistic fuzzy R-homomorphism; category; covariant
functor; contravariant functor.

1. Introduction

The category theory is concerned with the mathematical entities and the relationships
between them. Categories also emerge as unifying concepts in many fields of mathematics,
particularly in all other areas of computer technology and mathematical physics. In the
L.A. Zadeh [1] introductory paper, fundamental research is being carried out in the fuzzy
sets context. Almost all of this mathematical development has been categorical. Several
other researchers have developed and researched theories of fuzzy modules, fuzzy exact
sequences of fuzzy complexes, and fuzzy homologies of fuzzy chain complexes [2–6].

K.T. Atanassov [7,8] suggested the interpretation of intuitionistic fuzzy sets that
could be a generalized form of fuzzy sets. R. Biswas was the first to apply the criterion
of intuitionistic fuzzy sets in algebra and led to the introduction of an intuitionistic fuzzy
subgroup of a group in [9]. Later on, Hur and others in [10] and [11], brought the perception
of the intuitionistic fuzzy subring and ideals. B. Davaaz and others in [12] delivered the
perception of an intuitionistic fuzzy submodule of a module. Later, many mathematicians
contributed to the study of intuitionistic fuzzy submodules, see [13–19]. The focus of this
study is to carry the analysis of intuitionistic fuzzy modules over a commutative ring, to a
categorical approach, to pave the way for future research.

Along with the commutative ring R with unity, we defined a category (CR-IFM) of
intuitionistic fuzzy modules where the classes of all intuitionistic fuzzy modules and
intuitionistic fuzzy R-homomorphisms constitute objects and morphisms. The composi-
tions of morphisms are the ordinary compositions of functions. Moreover, we reveal that
Hom(A, B) is an abelian group under the ordinary addition of R-homomorphisms, where
A and B are intuitionistic fuzzy submodules. In the context of the additive composition,
this structure appears to have a distributive influence on the left and at the right. This
paper shows that CR-IFM seems to be an additive category, even though it is not an abelian
category (Section 4).

In this approach, we are implementing an important technological tool to “optimally
intuitionistic fuzzify” the R-homomorphism families. This capability to intuitionistic
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fuzzify provides CR-IFM with the top category structure over CR-M (Section 3). We even
characterize zero objects, kernels, cokernels in CR-IFM. Our objective is to study the in-
tuitionistic fuzzy aspects of some algebraic structures, such as rings and modules. The
study of fuzzy aspects of rings and modules is well developed, even then there are many
scopes for further studies in intuitionistic fuzzification of such algebraic structures. The
adopted approach is better than the previously developed fuzzy approach as it includes a
non-membership function, which provides a more effective and efficient tool for dealing
with uncertainties.

Finally, we have shown that the category of fuzzy modules CR-FM is a subcategory of a
category of intuitionistic fuzzy modules CR-IFM, and we established a contravariant functor
from the category CR-IFM to the category CLat (= union of all CLat(R-IFM), corresponding to
each object in CR-M). For basic definitions and results about category, we follow [20–22].

2. Materials and Methods

1. Construct the category of intuitionistic fuzzy modules (CR-IFM.
2. Study the relationship between the category of R-modules (CR-M) and the category of

intuitionistic fuzzy modules (CR-IFM).
3. Analyze the concept of kernel and cokernel in CR-IFM.
4. Investigate that CR-IFM is not an abelian category.

3. Results

Throughout the paper, R is a commutative ring with unity 1 and 1 6= 0. M is a unitary
R-module, θ is a zero element of M, and I represents the unit interval [0, 1].

3.1. Preliminaries

Definition 1 ([20]). A category C is a quadruple (Ob, Hom, id, o) consisting of:

(C1) Ob, an object class;

(C2) Hom(X, Y) a set of morphisms is associated with each ordered object pair (X, Y);

(C3) a morphism idX ∈ Hom(X, X), for each object X;

(C4) a composition law holds i.e., if f ∈ Hom(X, Y) and g ∈ Hom(Y, Z), go f ∈ Hom(X, Z);
such that it satisfies the following axioms:

(M1) ho(go f ) = (hog)o f , ∀ f ∈ Hom(X, Y), g ∈ Hom(Y, Z) and h ∈ Hom(Z, W);

(M2) idYo f = f o idX = f , ∀ f ∈ Hom(X, Y);

(M3) a set of Hom(X, Y) morphisms are pairwise disjoint.

Example 1.

(1) Set, the category with sets as objects, functions as morphisms, and the usual compositions of
functions, as compositions.

(2) Grp, the category with groups as objects, group homomorphisms as morphisms, and their
compositions as compositions.

(3) Ab, the category with abelian groups as objects, group homomorphisms as morphisms, and
their compositions as compositions.

Definition 2 ([21]). The opposite category Cop of the specified category C is constructed when
reversing the arrows, i.e., for each ordered object pair (X, Y)

HomCop(Y, X) = HomC(X, Y)

Definition 3 ([21]). Category D is said to be a subcategory of the category C when ob(D) ⊆
Ob(C), HomD(X, Y) ⊆ HomC(X, Y) ∀ ordered object pair (X, Y) and composition of morphisms,
and the identity of D should be the same as that of C.
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Example 2. The category Grp is a subcategory of Set.

Definition 4 ([21]). For the ordered object pair (X, Y) of D, a full subcategory of a category C is a
category D if ob(D) ⊆ Ob(C) and HomD(X, Y) = HomC(X, Y).

Example 3. The category Ab is a full subcategory of Grp.

Definition 5 ([21]). A category C is called abelian if

1. C does have a zero object.
2. There is a product and a co-product for any pair of objects of C.
3. Each morphism in C does have a kernel and a cokernel.
4. Each monomorphism in C seems to be the kernel of its cokernel.
5. Any epimorphism in C seems to be the cokernel of its kernel.

Example 4. The category Ab is an example of an abelian category.

Proposition 1 ([4]). The collection of all R-modules and R-homomorphisms is a category. This
category is denoted by CR-M.

Definition 6 ([21]). Let C = (Ob(C), Hom(C), id, o) and D = (Ob(D), Hom(D), id, o) be two
categories and let F1 : Ob(C) → Ob(D) and F2 : Hom(C) → Hom(D) be maps. Then the
quadruple F = (C, D, F1, F2) is a functor provided:

(i) X ∈ Ob(C) implies F1(X) ∈ Ob(D);
(ii) f ∈ Hom(X, Y) implies F2( f ) ∈ Hom(F1(X), F1(Y)), ∀ X, Y ∈ Ob(C);
(iii) F2 preserves composition, i.e., F2(go f ) = F2(g)oF2( f ), ∀ f ∈ Hom(X, Y) and g ∈

Hom(Y, Z);
(iv) F preserves identities, i.e., F2(eX) = eF1(X), ∀ X ∈ Ob(C).

Remark 1 ([21]).

(i) Instead of F1(X) we write F(X).
(ii) In preference to F2( f ) we write F( f ).
(iii) We call F : C → D a functor from C to D.
(iv) A functor defined above is called a covariant functor that preserves:

• The domains, the co-domains, and identities.
• The composition of arrows, it especially retains the path of the arrows.

(v) A contravariant functor F is similar to the covariant functor in addition to the other side
of the arrow, F( f ) : F(Y) → F(X) and F(go f ) = F( f )oF(g), ∀ f ∈ Hom(X, Y), g ∈
Hom(Y, Z).

Thus, a contravariant functor F : C → D is the same as a covariant functor F : Cop → D.

Definition 7 ([22]). The category CS formed from a given category C is called a top category over
C, if corresponding to every object A in C, the collection s(A) of elements of C with the ordered
relation defined on it, form a complete lattice, and the inverse image map s( f ), s(B)→ s(A), form
a contravariant functor.

Definition 8 ([7–9]). An intuitionistic fuzzy set (IFS) A in X can be represented as an object
of the form A = {< x, µA(x), νA(x) >: x ∈ X}, where the functions µA : X → [0, 1] and
νA : X → [0, 1] denote the degree of membership (namely µA(x)) and the degree of non-membership
(namely νA(x)) of each element x ∈ X to A respectively and 0 ≤ µA(x) + νA(x) ≤ 1 for each
x ∈ X.

Definition 9 ([12,13,15]). An IFS A = (µA, νA) of R-module M is called an intuitionistic fuzzy
submodule (IFSM) if
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(i) µA(θ) = 1 , νA(θ) = 0;
(ii) µA(a + b) ≥ µA(a) ∧ µA(b) and νA(a + b) ≤ νA(a) ∨ νA(b) , ∀ a, b ∈ M;
(iii) µA(ra) ≥ µA(a) and νA(ra) ≤ νA(a), ∀a ∈ M, r ∈ R.

Example 5. Let M = R2. Then M is an R-module under usual componentwise addition and
scalar multiplication composition. Then the intuitionistic fuzzy set A = (µA, νA) of M defined by

µA((x, y)) =

{
1, if (x, y) = (0, 0)
0.4, if (x, y) 6= (0, 0)

; νA((x, y)) =

{
0, if (x, y) = (0, 0)
0.1, if (x, y) 6= (0, 0).

is an intuitionistic fuzzy submodule of M.

Definition 10 ([13,19]). Let K as a submodule of an R-module M. The intuitionistic fuzzy
characteristic function of K is defined by χK, described by χK(a) = (µχK (a), νχK (a)), where

µχK (a) =

{
1, if a ∈ K
0, if a /∈ K

; νχK (a) =

{
0, if a ∈ K
1, if a /∈ K.

Clearly, χK is an IFSM of M. The IFSMs χ{θ}, χM are called trivial IFSMs of module M.
Any IFSM of the module M apart from this is called proper IFSM.

Definition 11 ([17]). Let A = (µA, νA), B = (µB, νB) are IFSM of R-modules M and N respec-
tively. Then the map f : A→ B is called an intuitionistic fuzzy R-homomorphism ( or IF R-hom )
from A to B if

(i) f : M→ N is R-homomorphism and
(ii) µB( f (a)) ≥ µA(a) and νB( f (a)) ≤ νA(a), ∀a ∈ M.

To avoid confusion between an R-homomorphism f : M→ N and an intuitionistic fuzzy R-
homomorphism f : A→ B. We denote the latter by f̄ : A→ B. So, given an IF R-homomorphism
f̄ : A→ B, f : M→ N is the underlying R-homomorphism of f̄ . The set of all IF R-homs from A
to B is denoted by Hom(A, B).

Example 6. Let M = ({0, 1, 2, 3, 4},+4) and N = ({0, 1},+2) be two Z-modules. Define
intuitionistic fuzzy sets A = (µA, νA) and B = (µB, νB) on M and N, respectively, as

µA(x) =


0.8, if x = 0
0.6, if x = 2
0.4, if x = 1, 3

; νA(x) =


0, if x = 0
0.3, if x = 2
0.5, if x = 1, 3

µB(y) =

{
0.9, if y = 0
0.3, if y = 1

; νB(y) =

{
0, if y = 0
0.5, if y = 1.

Then A and B are intuitionistic fuzzy submodules of M and N, respectively.
Define the mapping f : M → N by f (a) = 0, ∀a ∈ M. Clearly, f is a R-homomorphism.

Consider µB( f (0)) = µB(0) = 0.9 ≥ 0.8 = µA(0), µB( f (1)) = µB(0) = 0.9 ≥ 0.4 = µA(1),
µB( f (2)) = µB(0) = 0.9 ≥ 0.6 = µA(2), µB( f (3)) = µB(0) = 0.9 ≥ 0.4 = µA(3).
Also,νB( f (0)) = µB(0) = 0 = 0 = νA(0), νB( f (1)) = µB(0) = 0 ≤ 0.5 = νA(1), νB( f (2)) =
µB(0) = 0 ≤ 0.3 = νA(2), νB( f (3)) = µB(0) = 0 ≤ 0.5 = νA(3). Thus, µB( f (a)) ≥ µA(a)
and νB( f (a)) ≤ νA(a), ∀a ∈ M.

Hence, f̄ : A→ B is an IF R-homomorphism.

Proposition 2. Hom(A, B) form an additive abelian group. Moreover, it is a unitary R-module
when R is a commutative ring with unity.
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Proof. Since µB(0̄(x)) = µB(0) = 1 ≥ µA(x) and νB(0̄(x)) = νB(0) = 0 ≤ νA(x) implies
that there exists zero IF homomorphism 0̄ : A → B. Let f̄ , ḡ ∈ Hom(A, B) and ∀x ∈ M,
we have µB(( f + g)(x)) = µB( f (x) + g(x)) ≥ µB( f (x)) ∧ µB(g(x)) ≥ µA(x) ∧ µA(x) =
µA(x).

Similarly, we can show that νB(( f + g)(x)) ≤ νA(x). This shows that f + g ∈
Hom(A, B). Now, we can define f̄ + ḡ = f + g ∈ Hom(A, B). The addition obviously
satisfies the commutative law and associative law. Also, define − f̄ = − f for every
f̄ ∈ Hom(A, B).

We have confidence in the definition, because: µB((− f )(x)) = µB(−( f (x))) =
µB( f (x)) ≥ µA(x) and νB((− f )(x)) = νB(−( f (x))) = νB( f (x)) ≤ νA(x), ∀x ∈ M. This
shows that − f ∈ Hom(A, B), ∀ f ∈ Hom(A, B).

Precisely, f̄ + 0̄ = 0̄ + f̄ and f̄ +− f = − f + f̄ = 0̄. This shows that − f̄ works as the
additive inverse of f̄ and 0̄ is the zero element (or additive identity) in Hom(A, B). Hence,
Hom(A, B) is an additive abelian group.

Furthermore, we define the R-scalar multiplication on Hom(A, B) as follows:
For any r ∈ R and f̄ ∈ Hom(A, B) define (r f̄ )(x) = r f̄ (x), ∀x ∈ M.
As the map x � f (rx) is the ordinary R-homomorphism of M into N and

µB((r f̄ )(x)) = µB(r f̄ (x)) = µB( f̄ (rx)) ≥ µA(rx) ≥ µA(x) and νB((r f̄ )(x)) = νB(r f̄ (x)) =
νB( f̄ (rx)) ≤ νA(rx) ≤ νA(x). It follows that r f̄ ∈ Hom(A, B). As R is a commuta-
tive ring. It is clear that (r( f̄ + ḡ))(x) = (r( f + g))(x) = f + g(rx) = ( f̄ + ḡ)(rx) =
f̄ (rx) + ḡ(rx) = (r f̄ )(x) + (rḡ)(x) = (r f̄ + rḡ)(x) implies that r( f̄ + ḡ) = r f̄ + rḡ. More-
over, for r1, r2 ∈ R, we have ((r1 + r2) f̄ )(x) = f̄ ((r1 + r2)x) = f̄ (r1x + r2x) = f̄ (r1x) +
f̄ (r2x) = (r1 f̄ )(x) + (r2 f̄ )(x) = (r1 f̄ + r2 f̄ )(x) implies that (r1 + r2) f̄ = r1 f̄ + r2 f̄ . Also,
((r1r2) f̄ )(x) = f̄ ((r1r2)x) = f̄ (r1(r2x)) = (r2 f̄ )(r1x) = (r1(r2 f̄ ))(x) ⇒ (r1r2) f̄ = r1(r2 f̄ ).
Further, (1. f̄ )(x) = f̄ (1.x) = f̄ (x) implies that 1. f̄ = f̄ .

Hence, Hom(A, B) is a unitary R-module.

If f ∈ Hom(M, N) and f̄ ∈ Hom(A, B), define

Ker f̄ = {a ∈ M : µB( f (a)) = 1; νB( f (a)) = 0}

and
Im f̄ = { f̄ (a) : a ∈ M}

As Ker f is the pre-image of {θ} under f , we have Ker f ⊆ Ker f̄ . Especially, if B = χN , then
we have Ker f̄ = A, for all f̄ ∈ Hom(A, B).

Proposition 3. Let A and B are IFSM of R-modules M and N, respectively, and f̄ : A→ B is IF
R-hom, then:

(i) Ker f̄ is a submodule of M;
(ii) The restriction of A to Ker f̄ i.e., A|Ker f̄ is an IFSM of A.

Proof.

(i) Since f̄ : A→ B is IF R-hom.
Let θ be zero element of M, then θ ∈ Ker f̄ . Let a ∈ Ker f̄ and r ∈ R, then µA( f̄ (ra)) =
µA(r f̄ (a)) ≥ µA( f̄ (a)) = 1 and νA( f̄ (ra)) = νA(r f̄ (a)) ≤ νA( f̄ (a)) = 0 implies that
ra ∈ Ker f̄ . In particular −a ∈ Ker f̄ . Further, if a, b ∈ Ker f̄ , Conveniently, we can
predict a + b ∈ Ker f̄ . Thus, Ker f̄ is a submodule of M.

(ii) Let C = A|Ker f̄ . Then C = (µC, νC), where µC(a) = µA(a) and νC(a) = νA(a), ∀a ∈
Ker f̄ . Now it is simple to prove that C is an IFSM of M and C ⊆ A.

3.2. Categories of Intuitionistic Fuzzy Modules

In this section, we analyze the IF-modules category and the existence of the covariant
functor between the modules category and IF-modules category.
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Theorem 1. Let A = (µA, νA) and B = (µB, νB) are two IF modules of R-modules M and N
respectively. Then the function β : Hom(A, B)→ I × I on R-module Hom(A, B) defined by

β( f̄ ) = (µβ( f̄ ), νβ( f̄ ))

where µβ( f̄ ) = ∧{µB( f̄ (a)) : a ∈ M} and νβ( f̄ ) = ∨{νB( f̄ (a)) : a ∈ M} is an intuitionistic
fuzzy submodule of Hom(A, B).

Proof. As shown in Proposition 2, Hom(A, B) is an R-module, where the scalar multiplica-
tion on Hom(A, B) is defined as (r. f̄ )(a) = r f̄ (a), ∀a ∈ M.

Next, we show that the function β : Hom(A, B) → I × I on R-module Hom(A, B)
defined by

β( f̄ ) = (µβ( f̄ ), νβ( f̄ ))

where µβ( f̄ ) = ∧{µB( f̄ (a)) : a ∈ M} and νβ( f̄ ) = ∨{νB( f̄ (a)) : a ∈ M} is IFSM of
Hom(A, B).

Let f̄ ∈ Hom(A, B) and r ∈ R, Consider

µβ(r. f̄ ) = ∧{µB((r. f̄ )(a)) : a ∈ M}
= ∧{µB((r. f̄ (a)) : a ∈ M}
≥ ∧{µB( f̄ (a)) : a ∈ M}
= µβ( f̄ ).

Thus µβ(r. f̄ ) ≥ µβ( f̄ ). Likewise, we are able to exhibit that νβ(r. f̄ ) ≤ νβ( f̄ ).

Further, let f̄ , ḡ ∈ Hom(A, B) and a ∈ M. Consider

µβ( f̄+ḡ) = ∧{µB(( f̄ + ḡ)(a)) : a ∈ M}
= ∧{µB( f̄ (a) + ḡ(a)) : a ∈ M}
≥ ∧{{µB( f̄ (a) ∧ ḡ(a))} : a ∈ M}
= {∧{µB( f̄ (a)) : a ∈ M}} ∧ {∧{µB(ḡ(a)) : a ∈ M}}
= µβ( f̄ ) ∧ µβ(ḡ).

Thus, µβ( f̄+ḡ) ≥ µβ( f̄ ) ∧ µβ(ḡ). Likewise, we are able to exhibit that νβ( f̄+ḡ) ≤ νβ( f̄ ) ∨
νβ(ḡ).

Also, µβ(0̄) = ∧{µB(0̄(a)) : a ∈ M} = ∧{µB(0) : a ∈ M} = 1.
Likewise, we can demonstrate that νβ(0̄) = 0. Hence β is IFSM of R-module

Hom(A, B).

Definition 12. The category CR-M = (Ob(CR-M), Hom(CR-M), o) has R-modules as objects
and R-homomorphisms as morphisms, with composition of morphisms defined as the composition
of mappings.

An IF-module category CR-IFM over the base category CR-M is completely described by
two mappings:

α : Ob(CR-M)→ I × I;

β : Hom(CR-M)→ I × I

IF-module category CR-IFM consists of

(C1) Ob(CR-IFM) the set of objects as IFSMs on Ob(CR-M), i.e., the objects of the form α :
Ob(CR-M)→ I × I;
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(C2) Hom(CR-IFM) the set of IF R-homomorphisms corresponding to underlying R-homomorphisms
from Hom(CR-M), i.e., IF R-homomorphisms of the form β : Hom(CR-M)→ I × I, such that for
f ∈ HomCR-M(M, N),

β( f̄ ) = (µβ( f̄ ), νβ( f̄ ))

as defined in Theorem 1, a composition law associating to each pair of morphisms f ∈ Hom(M, N)
and g ∈ Hom(N, P), a morphism go f ∈ Hom(P, Q), such that the following axioms hold:

(M1) Associativity: ho(go f ) = (hog)o f , for all f ∈ Hom(M, N), g ∈ Hom(N, P) and h ∈
Hom(P, Q);

(M2) preservation of morphisms: β(g ◦ f ) = β(g)oβ( f );

(M3) existence of identity: ∀M ∈ Ob(CR-M) there is an identity iM ∈ HomCR-M(M, M) such that
β(iM) = α(M).

Thus, A category of IF R-modules can be constructed as

CR-IFM = (Ob(CR-IFM), Hom(CR-IFM), o)

Proposition 4. CR-M is a subcategory of CR-IFM.

Proof. It follows from Definition 3, Proposition 1 and Theorem 1.

Proposition 5. There exist a covariant functor from CR-M to CR-IFM.

Proof. Define β = (µβ, νβ) : CR-M → CR-IFM by β(M) = (µβ(M), νβ(M)), where µβ(a) +
νβ(a) ≤ 1, ∀a ∈ M.

Let f ∈ HomCR-M(M, N). Thus β( f ) ∈ Hom(CR-IFM), where β( f ) : β(M) → β(N)
described by

β( f )(µβ, νβ) = (µβ ◦ f−1, νβ ◦ f−1) ; where

(i) µβ(a + b) ≥ µβ(a) ∧ µβ(b)
(ii) νβ(a + b) ≤ νβ(a) ∨ νβ(b)
(iii) µβ(−a) = µβ(a)
(iv) νβ(−a) = νβ(a)
(v) µβ(ra) = µβ(a)
(vi) νβ(ra) = νβ(a)
(vii) µβ(0) = 1
(viii) νβ(0) = 0, ∀a, b ∈ M, r ∈ R.

We want to prove that β preserves object, composition, domain, and codomain identity.
Let (µβ, νβ), (µβ1 , νβ1) ∈ Ob(CR-IFM) such that (µβ ◦ f−1, νβ ◦ f−1) = (µβ1 ◦ f−1, νβ1 ◦

f−1)
⇒ µβ ◦ f−1 = µβ1 ◦ f−1 and νβ ◦ f−1 = νβ1 ◦ f−1

⇒ µβ = µβ1 and νβ = νβ1 ⇒ (µβ, νβ) = (µβ1 , νβ1)
⇒ β is well defined.

Let f ∈ HomCR-M(M, N), g ∈ HomCR-M(N, P) then go f ∈ HomCR-M(M, P).
Then, β( f ) ∈ HomCR-IFM(β(M), β(N)), β(g) ∈ HomCR-IFM(β(N), β(P)) and β(go f ) ∈

HomCR-IFM(β(M), β(P)). For any (µβ, νβ) ∈ β(M), we have
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β(g ◦ f )(µβ, νβ) = (µβ ◦ (g ◦ f )−1, νβ ◦ (g ◦ f )−1)

= (µβ ◦ ( f−1 ◦ g−1), νβ ◦ ( f−1 ◦ g−1))

= ((µβ ◦ f−1) ◦ g−1, (νβ ◦ f−1) ◦ g−1)

= β(g)(µβ ◦ f−1, νβ ◦ f−1)

= β(g)β( f )(µβ, νβ).

Therefore, β(g ◦ f ) = β(g)β( f ).

Moreover, β(iM)(µβ, νβ) = (µβ ◦ i−1
M , νβ ◦ i−1

M ) = (µβ, νβ) implies that β(iM) is the
identity element in Hom(CR-IFM). Hence, β : CR-M → CR-IFM is a covariant functor.

3.3. Optimal Intuitionistic Fuzzification

In this section, we show that the category CR-IFM forms a top category over the
category CR-M. To prove this, we first construct a category CLat(R-IFM) of complete lattices
corresponding to every object in CR-M and then show that corresponding to each morphism
in CR-M, there exists a contravariant functor from CR-IFM to the category CLat (=union of all
CLat(R-IFM), corresponding to each object in CR-M) that preserve infima. Finally, we define
the notion of kernel and cokernel for the category CR-IFM and show that CR-IFM is not an
abelian category.

Let A = (µA, νA) and B = (µB, νB) are IFSM of R-modules M and N, respectively, and
f : M→ N is R-homomorphism. With the help of A and f , we can provide an IF module
structure on N by

µ f (A)(b) = sup{µA(a) : f (a) = b} and ν f (A)(b) = inf{ν(a) : f (a) = b}.

It is clear that f (A) = (µ f (A), ν f (A)) is an IFSM of and f̄ : A→ f (A) is an IF R-hom.

With the help of B and f , we can provide an IF module structure on M by

µ f−1(B)(a) = µB( f (a)) and ν f−1(B)(a) = νB( f (a)).

Hence, f−1(B) = (µ f−1(B), ν f−1(B)) is an IFSM of M and f̄ : f−1(B) → B is an IF
R-hom .

Lemma 1. Let M and N are R-modules and f : M→ N be R-homomorphism.

(i) If A = (µA, νA) is an IFSM of M, then there is an IFSM f (A) = (µ f (A), ν f (A)) of N such
that for any IFSM (µB, νB) of N, f̄ : A→ B is an IF R-hom if and only if f (A) ⊆ B.

(ii) If B = (µB, νB) is an IFSM of N, then there is an IFSM f−1(B) = (µ f−1(B), ν f−1(B)) of M
such that for any IFSM A of M, f̄ : A→ B is an IF R-hom if and only if A ⊆ f−1(B).

Proof. (i) Now, f̄ : A→ B is an IF R-hom if and only if µB( f (a)) ≥ µA(a) and νB( f (a)) ≤
νA(a), ∀a ∈ M. Let b ∈ N be any element, then µ f (A)(b) = ∨{µA(a) : f (a) = b} ≤
µA(a) ≤ µB( f (a)).

Likewise, we are able to exhibit that ν f (A)(b) ≥ νB( f (a)) i.e., f (A) ⊆ B.
(ii) Now, f̄ : A → B is an IF R-hom if and only if µB( f (a)) ≥ µA(a) and νB( f (a)) ≤

νA(a), ∀a ∈ M. Now, µ f−1(B)(a) = µB( f (a)) ≥ µA(a) and ν f−1(B)(a) = νB( f (a)) ≤ νA(a)
implies that A ⊆ f−1(B).

Observe that If f ∈ Hom(M, N), now for each IFSM A [B] on M [N] one will have
f (A) [ f−1(B)] IFSMs, we conclude that f is trivially intuitionistic fuzzified relative to A [B].
In particular, we will say that for each IFSM A [B] of M[N], we have obtained IF R-hom
f̄ : A→ χN [ f̄ : χM → B].
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Lemma 2. The set s(M) = {(µ, ν) : M→ I × I : (µ, ν) is IF module of R-module M }
form a complete lattice associated with the order relation (µ1, ν1) ≤ (µ2, ν2) if µ1(a) ≤ µ2(a) and
ν1(a) ≥ ν2(a), ∀a ∈ M.

Proof. Let {(µi, νi) : i ∈ J} be a collection of elements of s(M). Then infimum and supre-
mum on s(M) are explicitly specified as:

∧i∈J(µi, νi)(a) = (In fi∈J{µi(a)}, Supi∈J{νi(a)})

and

∨i∈J(µi, νi)(a) = (In fi∈J{µ(a) : (µi, νi) ∈ s(M) and µi ≤ µ, ∀i ∈ J}, Supi∈J{ν(a) :
(µi, νi) ∈ s(M) and νi ≥ ν, ∀i ∈ J}).

Then s(M) form a complete lattice.

Remark 2.

(i) The least element of s(M) is 0̄ and the greatest element of s(M) is 1̄.
(ii) s(M) under the order relation defined above form a category where

Ob(s(M)) = all IF-modules of M and Hom(s(M)) = order relation defined above.
(iii) Supremum can also be defined as ∨i∈J(µi, νi)(a) = (Supi∈J{µi(a)}, In fi∈J{νi(a)}), which

only holds for IF sets but does not hold for IF modules including when J is finite.

For e.g., let M = Z-module Z and IFSMs (µ1, ν1) and (µ2, ν2) of M described as:

(µ1, ν1)(t) =

{
(1, 0), if t is even
(0, 1), if t is odd

; (µ2, ν2)(t) =

{
(1, 0), if 3|t
(0, 1), if 3 - t.

Take (µ1, ν1)∨ (µ2, ν2) = (µ3, ν3), where µ3(t) = max{µ1(t), µ2(t)} and ν3(t) = min{ν1(t),
ν2(t)}. Here we can check that (µ3, ν3)) is not an IFSM of M, for 0 = µ3(1) = µ3(3− 2) �
µ3(3) ∧ µ3(2) = 1 and 1 = ν3(1) = ν3(3− 2) � ν3(3) ∨ ν3(2) = 0.

Lemma 3. The set t(M) = {(µ, ν) : M → I × I : (µ, ν) is IF module of R-module M } form
a complete lattice associated with the order relation (µ1, ν1) ≤ (µ2, ν2) if µ1(a) ≥ µ2(a) and
ν1(a) ≤ ν2(a) ∀a ∈ M.

Proof. Let {(µi, νi) : i ∈ J} be a collection of elements of t(M). Then infimum and supre-
mum on t(M) are explicitly specified as :

∧i∈J(µi, νi)(a) = (Supi∈J{µi(a)}, In fi∈J{νi(a)})

and

∨i∈J(µi, νi)(a) = (In fi∈J{µ(a) : (µi, νi) ∈ t(M) and µi ≤ µ, ∀i ∈ J}, Supi∈J{ν(a) :
(µi, νi) ∈ t(M) and νi ≥ ν, ∀i ∈ J}).

Then t(M) form a complete lattice.

Remark 3. t(M) under the order relation defined above form a category where Ob(t(M)) = all
IF-modules of M and Hom(t(M)) = order relation as defined above.

Theorem 2. CR-IFM is a top category over CR-M.

Proof. This becomes sufficient to prove that, with every M ∈ Ob(CR-M), the correspond-
ing complete lattice s(M) specified in Lemma 2. For each f ∈ HomCR-M(M, N), s( f ) :
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s(N) → s(M) defined as s( f )(µB, νB) = (µ f−1(B), ν f−1(B)), ∀(µB, νB) ∈ s(N) determine a
contravariant functor s : CR-IFM → CLat. Thus, we are trying to prove that

(i) for all f ∈ HomCR-M(M, N), s( f ) preserve infima,
(ii) for each f , g ∈ HomCR-M(M, N), s(g ◦ f ) = s( f ) ◦ s(g) and
(iii) for each identity R-homomorphism iM : M → M, we have the identity function

s(iM) : s(M)→ s(M) .

Consider {(µBi , νBi ) : i ∈ J} ⊂ s(N) is a non-empty subfamily of s(N), and let a ∈ M.
Then,

s( f )[∧(µBi , νBi )](a) = (In f {µ f−1(Bi)
}, Sup{ν f−1(Bi)

})(a)

= (In f {µ f−1(Bi)
(a)}, Sup{ν f−1(Bi)

(a)})
= (In f {µBi ( f (a))}, Sup{νBi ( f (a))})
= (In f {µBi}, Sup{νBi})( f (a))

= ∧(µBi , νBi )( f (a))

= ∧(µBi ( f (a)), νBi ( f (a)))

= ∧(µ f−1(Bi)
(a), ν f−1(Bi)

(a))

= ∧(µ f−1(Bi)
, ν f−1(Bi)

)(a)

= ∧[s( f )(µBi , νBi )](a).

Thus, s( f ) preserves infima.
Let f : M→ N, g : N → T is homomorphism, and let (µC, νC) ∈ s(T) and a ∈ M, then

s(go f )(µC, νC)(a) = (µ(go f )−1(C), ν(go f )−1(C))(a)

= (µ( f−1og−1)(C)(a), ν( f−1og−1)(C)(a))

= (µ( f−1(g−1(C)))(a), ν( f−1(g−1(C)))(a))

= s( f )(µg−1(C)(a), νg−1(C)(a))

= s( f )(s(g)(µC(a), νC(a)))

= s( f )s(g)(µC, νC)(a).

Thus, s(go f ) = s( f )s(g).

Further, iM : M → M is the identity R-homomorphism, such that iM(a) = a, ∀a ∈
M. Then s(iM) be the identity element in Hom(CR-IFM), for if (µA, νA) ∈ s(M) be
any element, then s(iM)(µA, νA)(a) = (µi−1

M (A)(a), νi−1
M (A)(a)) = (µiM(A)(a), νiM(A)(a)) =

(µA(a), νA(a)) = (µA, νA)(a). Hence proved.

Remark 4. There exists a covariant functor t : CR-IFM → CLat so t( f ) : t(M)→ t(N) preserves
suprema and is determined by t( f )(µA, νA) = (µ f (A), ν f (A)), ∀(µA, νA) ∈ t(M) so that t(g ◦
f ) = t(g) ◦ t( f ), ∀ f : M→ N, g : N → T.

Proof. It is very simple to find that t( f ) preserves suprema and t(iM) is the identity element
in Hom(CR-IFM). Furthermore, we have

t(go f )(µA, νA)(a) = (µ(go f )(A)(a), ν(go f )(A)(a))

= (µg( f (A))(a), νg( f (A))(a))

= t(g)(µ f (A)(a), µ f (A)(a))

= t(g)(t( f )(µA(a), νA(a)))

= t(g)t( f )(µA(a), νA(a))

= t(g)t( f )(µA, νA)(a)
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Thus t(go f ) = t(g)t( f ). Hence, the result is proved.

Lemma 4. (i) Let {Mi : i ∈ J}, N are R-modules and A = { fi : Mi → N : i ∈ J} be a collection
of R-homomorphisms. If {Ai : i ∈ J} is a collection of IFSMs of Mi, then there exists a smallest
IFSM B = (µB, νB) of N so that f̄i : Ai → B is an IF R-hom, ∀i ∈ J, where (µB, νB) = (µ, ν)A =
(µA, νA), here µB = µA = ∨{µ fi(Ai)

: i ∈ J} and νB = νA = ∧{ν fi(Ai)
: i ∈ J}.

(ii) Let M and {Ni : i ∈ J} are R-modules and B = {gi : M→ Ni : i ∈ J} be a collection of
R-homomorphisms. If {Bi : i ∈ J} are IFSMs of Ni, then there exists a largest IFSM A = (µA, νA)
of M so that ḡi : A → Bi is an IF R-hom, ∀i ∈ J, where (µA, νA) = (µ, ν)B = (µB, νB), here
µA = µB = ∧{µg−1

i (Bi)
: i ∈ J} and νA = νB = ∨{νg−1

i (Bi)
: i ∈ J}.

Proof. (i) Using Lemma 1(i), for each i ∈ J, Ai is IFSM of Mi, there exists IFSM fi(Ai) on
N so that for every IFSM B = (µB, νB) of N, f̄i : Ai → B is an IF R-hom if and only if
fi(Ai) ⊆ B, i.e., µB ≥ µ fi(Ai)

and νB ≤ ν fi(Ai)
.

Let µA = ∨{µ fi(Ai)
: i ∈ J} and νA = ∧{ν fi(Ai)

: i ∈ J}. Subsequently, the conse-
quence follows.

(ii) Using Lemma 1(ii), for each i ∈ J, Bi is IFSM of N, then there exists an IFSM
g−1

i (Bi) of M, such that for any IFSM A = (µA, νA) of M, ḡi : A→ Bi is an IF R-hom if and
only if A ⊆ g−1

i (Bi), i.e., µA ≤ µg−1
i (Bi)

and νA ≥ νg−1
i (Bi)

.

Let µB = ∧{(µg−1
i (Bi)

: i ∈ J} and νB = ∨{(νg−1
i (Bi)

: i ∈ J}. Subsequently, the
consequence follows.

Lemma 5. (i) Let {Ai : i ∈ J} are IFSMs of Mi, i ∈ J and A = { fi : Mi → N : i ∈ J} be a
family of R-homomorphisms and R-homomorphism g : N → T then

(µ, ν)A1 = t(g)(µ, ν)A, where A1 = {go fi : Mi → T : i ∈ J}.

(ii) Let {Bi : i ∈ J} are IFSMs of Ni, ∀i ∈ J and B = {gi : M → Ni : i ∈ J} be a family of
R-homomorphisms and h : L→ M a homomorphism then

(µ, ν)B1 = s(h)(µ, ν)B, where B1 = {gioh : L→ Ni : i ∈ J}.

Proof.

(i) Let A1 = {gi = go fi : Ni → T : i ∈ J} be the collection of R-homomorphisms. Then,
by Lemma 4(i), there exists IFSM C = (µC, νC) of T such that gi : Ai → C is IF R-hom,
∀i ∈ J, where (µC, νC) = (µ, ν)A1 = (µA1 , νA1), here µA1 = ∨{µgi(Ai)

: i ∈ J} and
νA1 = ∧{νgi(Ai)

: i ∈ J}. Consider

(µ, ν)A1 = ∨{(µgi(Ai)
, νgi(Ai)

) : i ∈ J}
= ∨{(µ(go fi)(Ai)

, ν(go fi)(Ai)
) : i ∈ J}

= ∨{(µ(g( fi(Ai)))
, ν(g( fi(Ai)))

) : i ∈ J}
= ∨{t(g)(µ fi(Ai)

, ν fi(Ai)
) : i ∈ J}

= t(g) ∨ {(µ fi(Ai)
, ν fi(Ai)

) : i ∈ J}

= t(g)(µ, ν)A.

(ii) Let B1 = {hi = gioh : L→ Ni : i ∈ J} be the collection of R-homomorphisms. Then
by Lemma 4(ii), there exists IFSM A = (µA, νA) of L such that hi : A→ Ci is IF R-hom,
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∀i ∈ J, where (µA, νA) = (µ, ν)B1 = (µB1 , νB1), here µB1 = ∧{µh−1
i (Ci)

: i ∈ J} and

νB1 = ∨{νh−1
i (Ci)

: i ∈ J}. Now, we have

(µ, ν)B1 = ∧{(µh−1
i (Ci)

, νh−1
i (Ci)

) : i ∈ J}

= ∧{(µ(gioh)−1(Ci)
, ν(gioh)−1(Ci)

) : i ∈ J}
= ∧{(µ(h−1og−1

i )(Ci)
, ν(h−1og−1

i )(Ci)
) : i ∈ J}

= ∧{(µh−1(g−1
i (Ci))

, νh−1(g−1
i (Ci))

) : i ∈ J}

= ∧{s(h)(µg−1
i (Ci)

, νg−1
i (Ci)

) : i ∈ J}

= s(h) ∧ {(µg−1
i (Ci)

, νg−1
i (Ci)

) : i ∈ J}

= s(h)(µ, ν)B.

Thus, (µ, ν)B1 = s(h)(µ, ν)B.

Remark 5. From Lemma 4 and Lemma 5, we are able to optimally intuitionistically fuzzify fi [gi],
in respect to the family of IFSMs {Ai : i ∈ J} [{Bi : i ∈ J}].

Theorem 3. The category of IF modules CR-IFM has kernels and cokernels.

Proof. Let A = (µA, νA) and B = (µB, νB) be IFSM of R-modules M and N, respectively.
Let f̄ : A→ B be an IF R-hom corresponding to the R-homomorphism f : M→ N.

For Ker f, there exists an inclusion map g : ker f → M in order for the subsequent
diagram commutes

Ker f M

N

f og=0

g

f

Ker f M N

I × I

(µg−1(A)
,νg−1(A)

)

g f

(µA ,νA)
(µB ,νB)

For Ker f̄ , there exists an inclusion map ḡ : g−1(A) → A such that the following
diagram commutes

g−1(A) A

B

f̄ oḡ=0̄

ḡ

f̄

Therefore, the kernel of f̄ is defined as g−1(A) with the inclusion map ḡ : g−1(A)→ A.
Thus, the kernel of f̄ is given as ((ker f , g−1(A)), ḡ), where the inclusion map is g :

ker f → M.
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Similarly, the cokernel of f̄ is defined as ((N/Im f , π(B)), π̄), where the projection
map π : N → N/Im f and π̄ : B→ BN/Im f .

Remark 6. Although the category of IF modules CR-IFM has kernels and cokernels even then it is
not an abelian category.

By definition of the abelian category, every monomorphism should be normal, i.e, every
monomorphism is a kernel of some morphism. An IF R-hom h̄ : C → A of IFSM C of M on being
normal (i.e., being a kernel) C should be identical to g−1(A). Consequently, for M 6= {θ}, the IF
R-hom 1̄ : χ{θ} → χM is a sub-object of χM, which is not a kernel. Thus, CR-IFM is not an abelian
category.

4. Discussion

In this paper, we studied the category of intuitionistic fuzzy modules CR-IFM over the
category of fuzzy modules CR-M by constructing a contravariant functor from the category
CR-IFM to the category CLat (=union of all CLat(R-IFM), corresponding to each object in CR-M).
We showed that CR-M is a subcategory of CR-IFM. Further, we showed that CR-IFM is a top
category that is not an abelian category.
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