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Abstract: We investigate diffusion in three dimensions on a comb-like structure in which the particles
move freely in a plane, but, out of this plane, are constrained to move only in the perpendicular
direction. This model is an extension of the two-dimensional version of the comb model, which allows
diffusion along the backbone when the particles are not in the branches. We also consider memory
effects, which may be handled with different fractional derivative operators involving singular and
non-singular kernels. We find exact solutions for the particle distributions in this model that display
normal and anomalous diffusion regimes when the mean-squared displacement is determined. As
an application, we use this model to fit the anisotropic diffusion of water along and across the axons
in the optic nerve using magnetic resonance imaging. The results for the observed diffusion times (8
to 30 milliseconds) show an anomalous diffusion both along and across the fibers.

Keywords: comb model; fractional diffusion equation; memory effects; anomalous diffusion; magnetic
resonance imaging

1. Introduction

Mathematical models of diffusion are needed to interpet experimental measurements
designed to probe the micro-structure of heterogeneous materials [1–3]. For example, iden-
tifying the role of diffusion in the electrical response of electrolytic cells, in electrochromic
charge transfer in tungsten oxide films [4], in the dispersion of gold nanoparticles in a poly-
mer melt [5], in the neuronal growth on surfaces with controlled geometries [6], and in the
movement of proteins in living cells [7,8]. Depending on the interaction between the media
and the diffusing particles, these processes manifest different features that promote normal
or anomalous diffusion regimes. In the normal case, the mean square displacement exhibits
a linear time dependence, i.e.,

〈
(r− 〈r〉)2〉 ∼ t, where r is the position coordinate and t

the time, which is typical of Markovian processes. In the anomalous case, the anomalous
regime is characterized by a nonlinear time dependence of the mean-square displacement,
e.g.,

〈
(r− 〈r〉)2〉 ∼ tγ , where γ < 1 corresponds to subdiffusion, i.e., a diffusion process

slower than the normal one, whereas γ > 1, to superdiffusion—a diffusion process faster
than the normal one [9]. This power–law behavior of the mean-square displacement is
widely found in disordered structures [10], fractals [11], and percolation clusters [12], with
α = 2/dω, where dω is the fractal dimension. It is also possible to find behaviors such as〈
(r− 〈r〉)2〉 ∼ lnγ t, which are related to ultraslow diffusion [13].

Motivated by these anomalous regimes, a comb-like structure has been proposed as
the main ingredient of a mathematical diffusive model to investigate anomalous diffusion
in percolation clusters with topological bias [14,15]. In this model, according to Ref. [10], the

Mathematics 2022, 10, 389. https://doi.org/10.3390/math10030389 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030389
https://doi.org/10.3390/math10030389
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9532-5195
https://orcid.org/0000-0002-0103-9017
https://orcid.org/0000-0002-5103-1611
https://doi.org/10.3390/math10030389
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030389?type=check_update&version=1


Mathematics 2022, 10, 389 2 of 11

branches of the comb structure play the same role as the dangling ends of the percolation
cluster; the backbone of the comb is analogous to the quasilinear structure of the backbone
of the cluster. This model describes a diffusive process on a comb-like structure consisting
of a “backbone” (a single infinite line in the x-direction) and “branches” (parallel lines
in the y-direction that intersect the x-axis). Here the comb model provides a simplified
description of the fractal geometry of percolation clusters, where the backbone represents
the large bond and the branches are the remaining bonds or “dangling ends” of percolation
clusters. It retains the essential properties of diffusion on fractals, with the advantage
of providing exact results for such complicated systems such as spiny dendrites (see, for
example, the Refs. [16,17]). Moreover, random walks on comb-like structures establish the
sojourn times of walkers in the teeth as the underlying mechanism of anomalous diffusion
in the backbone.

These features can be observed in biological tissues using magnetic resonance imaging
(MRI). The MRI scanner is a device capable of forming both images and spectra from a
sample via the application of strong magnetic fields, RF pulses, and gradients, to display
the internal structure and composition of the human body [18]. MRI offers various tools
that encode water mobility in terms of the magnetic resonance signal and the decay or the
relaxation of its diffusion components [19]. Diffusion MRI is used to analyze the complexity
the complexity of the orthotropic biological tissues, such as skeletal muscle, tendons,
ligaments, and the optic nerve, at the mesoscale. In terms of diffusion, the Bloch–Torrey
equation was the first to be considered with which to analyze MRI experiments, followed
by several extensions, accomplishing different effects [20].

This approach may also be applied to fractional diffusion equations with geometric
constraints, i.e., an anisotropic backbond-like structure, such as the white-matter connec-
tions in the brain by bundles of nerve axons [21]. In this paper, we investigate the diffusion
process of a system on a backbone structure, such as the one illustrated in Figure 1, where
the particles at z = 0 may diffuse on the xy-plane, and, at z 6= 0 the particles only diffuse
along the z-direction. We consider the diffusion processes connected to the following
equation:

∂

∂t
ρ(r, t) = δ

(
z
lz

) ∫ t

0
dt′Dxy(t− t′)∇µxy

xy ρ(r, t′) +
∂

∂t

∫ t

0
dt′Dz(t− t′)

∂µz

∂|z|µz
ρ(r, t′), (1)

in which ρ(r, t) represents the distribution of particles, with Dxy(t) and Dz(t) being the ker-
nels related to memory effects, lz is a characteristic thickness, r = (x, y, z), and rxy = (x, y).
This equation extends the equations in Refs. [22–25] used to investigate the diffusion pro-
cess on a comb-like structure by incorporating fractional derivatives in space and time in
both diffusive terms. The kernels may be connected with the waiting-time distributions of
random walks and represent a coarse-grained description of the environment’s random-
ness. In particular, the kernels of the time-convoluted operator represent a density memory
and not a trajectory memory [26]. The spatial fractional operators ∇µxy

xy and ∂
µz
|z| present in

Equation (1) are defined, in terms of the Hankel and Fourier transform, as follows:

Fxy

{
∇µxy

xy ρ(r, t)
}
=
∫ ∞

0
drxyrxyψ(rxy, kxy)∇

µxy
xy ρ(r, t) ≡ −k

µxy
xy ρ(kxy, z, t), (2)

with ψ(rxy, kxy) = J0(kxyrxy) (Jν(x), the Bessel function of the first kind and order ν [27]) and

Fz

{
∂µz

∂|z|µz
ρ(r, t)

}
=
∫ ∞

−∞
dze−ikzz ∂µz

∂|z|µz
ρ(r, t) ≡ −|kz|µz ρ(rxy, kz, t). (3)

Both definitions recover the standard differential of integer order for µxy = 2 and µz = 2. It
is worth mentioning that the first definition of the spatial fractional differential operator,
Equation (2), is essentially an extension of the one-dimension spatial fractional operator
to the two-dimension case, where the radial symmetry is considered [28]. The second
one defined by Equation (3) is essentially the Riesz-Weyl fractional operator. The kernels
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Dxy(t) and Dz(t) can be connected with different integro-differential operators, such as
the Riemann–Liouville fractional derivative or the others integro-differential operators,
depending on the mathematical expression they assume.In our analysis, after performing a
general development in the Laplace space, we consider

Dxy(t) =
[
Dxy/Γ

(
ηxy
)]

tηxy−1 (4)

and

Dz(t) = [Dz/Γ(ηz)]tηz−1 (5)

to evaluate the inverse of Laplace transform and analyze the mean square displacement as
well as the experimental data obtained for the bovine optical nerve with the technique of
MRI [29]. It is worth mentioning that this choice for Dz(t) corresponds to the Riemann–
Liouville fractional time derivative with 0 < ηz < 1. In addition, the choice for the kernels
may be related to structure of the media where the diffusion proceeds with barriers, traps,
and tortuosity, among others, which may be connected to random walk with a long-tailed
distribution for the waiting time distribution. These developments are performed in the
next section, Section 2. In Section 3, we present our discussion and conclusions.

Figure 1. An illustration of the paths of the particles governed by Equation (1), diffusing on a
comb-like structure.

2. The Mathematical Problem and Experimental Data

We start our discussion with the model, represented by Equation (1), which will be
used to analyze the experimental data analyzed in Refs. [29,30] for the bovine optical nerve.
The model is an extension of the standard comb model formed by incorporating the memory
effects in space and time through the derivatives of fractional order via convolution kernels.
One of the consequences obtained by incorporating these fractional operator is the ability
to describe different scenarios related to anomalous diffusion. Equation (1) may be solved
by using the Green’s function approach [27]. Thus, the Green’s function equation to be
solved is

∂

∂t
G(r, r′, t) − δ

(
z
lz

) ∫ t

0
dt′Dxy(t− t′)∇µxy

xy G(r, r′, t′)

− ∂

∂t

∫ t

0
dt′Dz(t− t′)

∂µz

∂|z|µz
G(r, r′, t′) =

1
rxy

δ(rxy − r′xy)δ(t) (6)
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subjected to the boundary conditions limrxy→∞ G(r, r′, t) = 0, limrxy→0 ∂rxyG(r, r′, t) = 0,
limz→±∞ G(r, r′, t) = 0, and G(r, r′, t) = 0 for t ≤ 0. We consider the Green’s function
expressed in terms of a superposition of the eigenfunction ψ(rxy, kxy) as follows:

G(r, r′, t) =
∫ ∞

0
dkxykxyψ(rxy, kxy)G̃(kxy, z, r′, t), (7)

with the inverse integral transform given by

G̃(kxy, z, r′, t) =
∫ ∞

0
drxyrxyψ(rxy, kxy)G(r, r′, t). (8)

Note that the choice of the eigenfunction is related to the spatial operator present in
Equation (6) for the spatial variable rxy. By applying Equations (8) and (9) in Equation (2),
we have

̂̃G(kxy, z, r′, t) =
1

s
[
1 + D̂z(s)|kz|µz

]{ψ(rxy, kxy)e−ikzz′ − k
µxy
xy Dxy(s)lz

̂̃G(kxy, 0, r′, t)}, (9)

where the Laplace on the t variable and Fourier transform on the z variable ae also used to
simplify Equation (2). By performing some calculations, it is possible to show that

̂̃G(kxy, z, r′, t) = ψ(rxy, kxy)Ĝz,µz(z− z′, s)−Dxy(s)lzk
µxy
xy Ĝz,µz(z, s) ̂̃G(kxy, 0, r′, t) (10)

with

Ĝz,µz(z, s) =
∫ ∞

−∞
dkz

eikzz

s
[
1 + D̂z(s)|kz|µz

] (11)

and

̂̃G(kxy, 0, r′, t) =
Ĝz,µz(z, s)

1 +Dxy(s)lzk
µxy
xy Ĝz,µz(0, s)

ψ(rxy, kxy). (12)

By substituting Equation (12) in Equation (9), we obtain

̂̃G(kxy, z, r′, t) = ψ(r′xy, kxy)Ĝz,µz(kz, s)

{
e−ikzz′ −

Dxy(s)lzk
µxy
xy Ĝz,µz(z

′, s)

1 +Dxy(s)lzk
µxy
xy Ĝz,µz(0, s)

}
. (13)

By using Equation (13), it is possible to obtain the solution for Equation (1) in the Fourier
space when the initial condition ϕ(r) =

(
1/rxy

)
δ(rxy − r′xy)δ(z) is considered. The solution

for this case allows us to use the model to analyze the experimental data obtained for the
bovine optical nerve in Refs. [29,30] with the technique of MRI. It is given by

̂̃ρ(kxy, kz, s) =
1

s
[
1 + D̂z(s)|kz|µz

] 1[
1 +Dxy(s)lzk

µxy
xy Ĝz,µz(0, s)

] . (14)

Note in Equation (14) that the relaxation process on the xy-plane is connected to the
behavior of the particles in z-direction. Now, we consider the reduced distribution in each
direction in the Fourier space to perform the comparison with the experimental data. For
the z-direction, we have

̂̃ρ(0, kz, s) =
1

s
[
1 + D̂z(s)|kz|µz

] = ρ̂(kz, s), (15)
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and after performing the inverse Laplace transform with D̂z(s) = Dz/sηz , we obtain

ρ(kz, s) = Eηz(−Dz|kz|µz tηz) . (16)

Equation (16) is expressed in terms of the Mittag–Leffler function, i.e.,

Eα(x) =
∞

∑
n=0

xn

Γ(1 + αn)
, (17)

which recovers the exponential form when α = 1. The behavior of the Mittag–Leffler
function for x → −∞ is

Eα(x) ∼ −
∞

∑
n=0

1
xnΓ(1− αn)

, (18)

which implies a power–law behavior in the asymptotic limit. This feature shows that the
Equation (16) has an unconventional relaxation process directly connected to the choice
of th- kernel Dz(t). The case µz 6= 2 in Equation (16) may be linked to the Lévy like
distributions. The random walk connected to Equation (16) exhibits a mixing between two
different regimes for ηz 6= 1 and µz 6= 2. For the distribution on the plane, we have

̂̃ρ(kxy, 0, s) =
1

s
[
1 +Dxy(s)lzk

µxy
xy Ĝz,µz(0, s)

] = ̂̃ρ(kxy, s) (19)

and, consequently,

ρ(kxy, s) = Eηxy

(
−

Dxylz
(Dztηz)1/µz

Iµz k
µxy
xy t1+ηxy

)
(20)

with Iµz = [1/πΓ(1 + 1/µz)Γ(1 − 1/µz)], ηz = ηz/µz, where ηxy = 1 + ηxy − ηz.
Equation (20) has the same form as Equation (16), i.e., it is expressed in terms of the
Mittag–Leffler function. However, the indexes present in Equation (20) are different from
Equation (16) and, in particular, also depend on ηz and µz, which are connected with the
processes occurring along the z-direction. The reduced distribution related to this case, i.e.,
ρ̃xy(kxy, t), may also be connected to a fractional diffusion equation in space and time. This
feature suggests that the stochastic processes behind these distributions imply a random
walks with long-tailed distributions for the waiting time and the jumping probabilities and
mixing between the different regimes related to each case. In particular, the inverse Fourier
transform of Equations (19) and (20) yields

ρz(z, t)=
1
|z|H

2,1
3,3

 |z|
(Dztηz)1/µz

∣∣∣∣∣∣
(

1, 1
µz

)
,
(

1, ηz
µz

)
,
(

1
2 , 1

2

)
(1, 1),

(
1, 1

µz

)
,
(

1
2 , 1

2

)  (21)

(see Figure 2). For the xy- plane, the distribution is given by

ρxy(rxy, t) =
1

µxyrxy

(
Dxytηxy

) 1
µxy

× H2,1
3,3

 rxy

2
(

Dxytηxy
)1/µxy

∣∣∣∣∣∣
(

1− 1
µxy

, 1
µxy

)
,
(

1−
ηxy
µxy

,
ηxy
µxy

)(
1
2 , 1

2

)
,
(

1, 1
µz

)
,
(

1
2 , 1

2

)  , (22)
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(see Figure 3). The mean-square displacement may be obtained from the previous equa-
tions by using the scaling arguments, as done in Ref. [9] for different fractional diffusion
equations. For Equations (21) and (22), it is possible to show that

ρz(z, t) =
1

(Dztηz)1/µz
Pz

[
|z|

(Dztηz)1/µz

]
(23)

and

ρxy(rxy, t) =
1(

Dxytηxy
)2/µxy

Pxy

 rxy(
Dxytηxy

)1/µxy

 . (24)

Thus, for each case represented by Equations (21) and (22), for the previous initial condition,
we have σ2

z ∝ t2ηz/µz and σ2
xy ∝ t2ηxy/µxy .

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

ρ'
z(
z,
t)

z'

Figure 2. Behavior of ρ′z(z, t) versus z′ for different values of the parameters ηz and µz, where
ρ′z(z, t) = (Dztηz )1/µz ρz(z, t) and z′ = z/(Dztηz )1/µz . The black dashed–dotted line corresponds to
the case ηz = 1 and µz = 3/2. The red solid line corresponds to the case ηz = 4/5 and µz = 2 and the
blue dotted line considers the case ηz = 4/5 and µz = 3/2.

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

r'
x
y
ρ'

x
y
(r

x
y
,t
)

r'
xy

Figure 3. Behavior of r′xyρ′xy(rxy, t) versus r′xy for different values of the parameters ηxy and µxy,

where ρ′xy(rxy, t) = (Dxytηxy )2/µxy ρxy(rxy, t) and r′xy = rxy/(Dxytηxy )1/µxy . The black solid line
corresponds to the case ηz = 1 and µz = 3/2. The red dashed–dotted line corresponds to the case
ηz = 4/5 and µz = 2 and the blue dotted line considers the case ηz = 4/5 and µz = 3/2.
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Let us apply these results, with µz = 2 and ηxy = 0, to the experimental data published
in Refs. [29,30] for the bovine optic nerve for different values of ∆ and δ = 3 ms. We may
associate the experimental scenario described in Ref. [29] with a comb-like structure by
considering that the z-direction corresponds to the parallel direction along the optic nerve
and the xy-plane with the perpendicular direction in a slice of the fiber bundle. Hence,
the reduced distributions in the Fourier space for each scenario are connected with the
attenuation functions S(b)/S(0), in terms of b and an apparent diffusion coefficient. In
addition, we also adapt the previous results to analyze the experimental data obtained with
the MRI. We consider the relation between the parameters as follows for the z-direction:
ρz ≡ Sz(bz), D′z = Dz∆ηz−1, and bz = |kz|2∆, (kz → γGδ and ∆ = ∆ − δ/3). For the

xy-plane, we have
∼
ρxy ≡ Sxy(bxy), D′xy = D

2/µxy
xy ∆2(1−ηz)/µxy−1, lz = (Dz∆)1/µz /Iµz ,

and bxy = |kxy|2∆ (where kxy → γGδ and ∆ = ∆ − δ/3). In these equations, γ is the
gyromagnetic ratio, G is the amplitude of diffusion gradient, ∆ is the observation time
between gradient pulses, and δ is the pulse length. Thus, the attenuation for each case is
given by

Sz(bz) = Eηz

(
−D′zbz

)
(25)

and

Sxy(bxy) = E1−ηz

[
−
(

D′xybxy

)µxy/2
]

. (26)

Equations (25) and (26) extend the standard scenario characterized by an exponential relax-
ation, by incorporating different aspects related to anomalous diffusion and the geometric
constraint imposed by the comb model.

To proceed, we first apply this model to the experimental data of the bovine optic
nerve with ∆ = 8 ms. Figure 4 shows the curve fits, represented by Equations (25) and (26),
and the experimental data.

They are in a good agreement for this case, which demonstrates an anomalous re-
laxation for the attenuation functions different from the exponential behavior obtained
with the standard approach. Next, we analyzed the experimental data for the case in
which ∆ = 30 ms. The experimental data and the model are shown in Figure 5 and, as
in the case of Figure 4, a good agreement between the experimental data and the model
is observed. We also consider the standard form of the attenuation function to illustrate
that the experimental data have aspects that are suitable described in terms of the usual
diffusion. This feature implies that the system has characteristics in addition to normal
diffusion and, consequently, opens the possibility of considering different approaches. In
Tables 1 and 2, we show the results for the parameters in the vertical and parallel directions
and the estimate variance (equivalent to the squared sum of fit residuals divided by the
degrees of freedom n − p where n is the length of the data set and p is the number of
parameters), when different values of ∆ are considered.
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0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.8

S
xy

S
z,S

xy

b
z
,b

xy
(10

4
 s/mm

2
)

S
z

∆ = 8 ms

Figure 4. Behavior of the model (lines, green, and red) and the experimental data (symbols, square
and circles), when ∆ = 8 ms and δ = 3 ms. We observe that the model captures the experimental
behavior for both. The parameters values obtained in the fitting process by using the Mathemat-
ica function NonlinearModelFit for each case are µxy/2 = 0.96, ηxy = 0.60, lz = 6.2× 10−2 mm;

D′xy = 2.90× 10−4 mm2/s, error = 0.61 × 10−4 (estimated variance) for Sxy and ηz = 0.76; and
D′z = 7.30× 10−4 mm2/s, error = 1.7× 10−4 (estimated variance) for Sz. For each case, by using the
scaling argument as discussed above, the mean square displacement for each case is σ2

xy ∝ t0.28 and
σ2

z ∝ t0.76. We also consider the standard form to the attenuation function given by in terms of an
exponential, i.e., Sz(xy)(b) = e−D′z(xy)b. It corresponds to the dashed–dotted–dotted cyan lines. For Sz,
we have that D′z = 6.32× 10−4 mm2/s and error = 2.22× 10−3 (estimated variance). For the other
direction, Sxy, we have that D′xy = 7.30× 10−4 mm2/s and error = 3.79× 10−3 (estimated variance).

Table 1. Parameters used to fit the experimental data analyzed in Refs. [29,30] for different values
of ∆.

∆ (×10−3s) µxy/2 D′xy (×10−4 mm2/s) Error (×10−4)

30 0.69 1.38 4.52
20 0.71 1.52 2.76
10 0.86 2.07 2.32
8 0.96 2.90 0.61

Table 2. Parameters used to fit the experimental data analyzed in Refs. [29,30] for different values
of ∆.

∆ (×10−3 s) D′z (×10−4 mm2/s) ηz Error (×10−4)

30 7.68 0.55 4.47
20 7.04 0.59 4.35
10 7.46 0.64 3.32
8 7.30 0.76 1.70
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

S
z,S

xy

b
z
,b

xy
 (10

4
 s/mm

2
)

S
z

S
xy

∆ = 30 ms

Figure 5. Behavior of the model (lines, green, and red) and the experimental data (symbols, square,
and circles), when ∆ = 30 ms and δ = 3 ms. The parameters values obtained in the fitting process
by using the Mathematica function NonlinearModelFit for each case are µxy/2 = 0.74, ηxy = 0.17;

D′xy = 1.38× 10−4 mm2/s, lz = 10.6× 10−2 mm, error = 4.52× 10−4 (estimated variance) for Sxy

and ηz = 0.55; and D′z = 7.68× 10−4 mm2/s, error = 4.47× 10−4 (estimated variance) for Sz.By
using the scaling argument, it is possible to obtain that the behavior of the mean-square displacement
for each case is σ2

xy ∝ t0.65 and σ2
z ∝ t0.55. We also consider the standard form to the attenuation

function given by in terms of an exponential, i.e., Sz(xy)(b) = e−D′z(xy)b. It corresponds to the dashed–
dotted–dotted cyan lines. For Sz, we have that D′z = 6.06× 10−4 mm2/s and error = 3.31× 10−3

(estimated variance). For the other direction, Sxy, we have that D′xy = 1.04× 10−4 mm2/s and
error = 1.71× 10−3 (estimated variance).

3. Discussion and Conclusions

We have analyzed fractional anisotropic diffusion subject to the comb-like structure
defined in Figure 1. The particles were restricted to move in the xy−plane for z = 0. Above
and below this plane, the particles move in the z-direction. These conditions have a direct
influence on the diffusion of the particles by coupling particle displacement in the z−
direction with the movement in the xy−-lane. Another aspect of this model is the presence
of fractional order convolution kernels in the diffusive terms. These introduce memory
effects associated with the long-tailed behavior in the waiting time distribution and the
spatial correlations connected to the long tailed behavior of the jumping distributions.
These features yield fractional order relaxation and diffusion processes that are different
from the standard case.

The models can be applied to the attenuation of the function S(b)/S(0), used to model
the experimental data obtained with the technique of MRI [31]. Thus, we first connect
the experimental scenario presented in [29] for the optical nerve with structure defined in
Figure 1. In this case, the z direction represents the direction along the optic nerve and
the xy plane with the vertical direction or the perpendicular direction. The attenuation
function for each direction may be obtained by considering the reduced distributions. We
have used them to fit the experimental data as shown in Figures 2 and 3. Tables 1 and 2
show the parameter values for different experimental data obtained for the bovine optical
nerve [29]. In this case, we observe a subdiffusive behavior for all scenarios, which may be
related to the structural organization of the optic nerve. We underline that different models
have been used to model the experimental data obtained from the MRI technique. For
example, in Refs. [29,32] the authors consider attenuation of the function S(b)/S(0) in terms
of the Kilbas–Sago function, which is the solution of the anomalous diffusion equation
expressed in terms of fractional derivatives in time and space. In this case, however,
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proceed independently in along and across the bundles of axons in the optic nerve. On
the other hand, the spatial structure presented in the comb model couples the different
directions, which influences the diffusion of the particles. It is also possible to consider a
varying diffusion coefficient, D(b), or to consider a bi-exponential model to fit S(b)/S(0).
Application of these models [33,34] to optic nerve data (see Supplemental Material) have
also provided good fits to this data.

The main purpose of these models is to capture the experimental behavior observed
with the MRI technique and to use these results to explain the behavior of the particles
in the intra- and extracellular space. Thus, the comb model uses the known structure of
the optic nerve and establishes a dynamic connection between a preferential direction,
which is coupled to the other directions. This structure permits us to model scenarios
in which the diffusion in one direction influences diffusion in another direction. For the
experimental scenario described here, the fiber orientation may be identified with the z
direction and the fiber cross sections with the xy plane, where the reduced distribution
for each case was identified with the attenuation function S(b)/S(0). The agreement
between the theory and the experimental data was satisfactory when the comb model was
considered. These features suggest that the comb model (or extension in this direction)
brings us the possibility of investigating how the structural aspects of the system influence
the appearance of anomalous diffusion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/math10030389/s1.
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