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Abstract: In this article, we introduce a new family of symmetric-asymmetric distributions based on
skew distributions and on the family of order statistics with proportional hazards. This new family
of distributions is able to fit both unimodal and bimodal asymmetric data. Furthermore, it contains,
as special cases, the symmetric distribution and the “skew-symmetric” family, and therefore the
skew-normal distribution. Another interesting feature of the family is that the parameter controlling
the distributional shape in bimodal cases takes values in the interval (0, 1); this is an advantage for
computing maximum likelihood estimates of model parameters, which is performed by numerical
methods. The practical utility of the proposed distribution is illustrated in two real data applications.

Keywords: bimodal distribution; power normal model; skew-normal distribution; skewness; kurtosis

1. Introduction

A seminal paper by [1] revealed the main properties of the “skew-normal” distribution
whose probability density function (pdf) is given by

φSN(z; λ) = 2φ(z)Φ(λz), z ∈ R,

where Φ and φ denote the cumulative and density functions of the standard normal
distribution, respectively. Here, λ is a parameter that controls the asymmetry of the random
variable Z. Generally this is denoted by SN(λ). Since this work was published, numerous
publications have been based on this model, primarily [2–9].

An important lemma demonstrated by [1] represents a fundamental result in the
development of asymmetric and symmetric models for both unimodal and bimodal cases.
This lemma is presented below.

Lemma 1. Let f0 be a pdf symmetrical around zero and a distribution function G such that G′

exists and is a symmetric (around zero) density function; then

fZ(z; λ) = 2 f0(z)G(λz), z ∈ R

is a density function for any λ ∈ R. This will be denoted by S f0(λ).

1.1. Asymmetric Models of Fractional Order Statistics

The study of asymmetric models based on order statistics goes back to [10], who intro-
duced a model called the “Lehmann alternative”, which originated from the distribution of
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the maximum in the sample. It later became an alternative for distributions presenting a
high degree of asymmetry and/or kurtosis. This family of distributions is represented by
the distribution function

FF(z; α) = {F(z)}α, z ∈ R,

where F is a cumulative distribution function (cdf) and α is a rational number. For α ∈ N,
we have the distribution function of the maximum in the sample.

Subsequently, [11] introduced the distribution of fractional order statistics, which is
defined by the pdf

ψF(z; α) = α f (z){F(z)}α−1, z ∈ R,

where α ∈ R+ is a shape parameter and F is an absolutely continuous distribution function
with pdf f = dF. This is called the power-symmetric (PS) model. Derivations and properties
of the distributions of order statistics have been widely discussed by [12–14], among others.
One important special case follows when f = φ: this is called the power-normal (PN)
distribution (see [14]). Ref. [15] derived the expected (Fisher) information matrix for the
PN distribution and showed that it is nonsingular at the vicinity of symmetry (α = 1.0),
in contrast to the case of SN density, for which the Fisher formation matrix is singular at
λ = 1.0.

1.2. Asymmetric Bimodal Models

Several fields of science provide data that cannot be modeled or fitted with distribu-
tions such as skew-normal or fractional order statistics because the nature of these data
leads to bimodal behaviors; these distributions have good performance only for unimodal
cases. In many areas, such as health sciences, engineering, economics, among others, it is
common to find data sets that present bimodal behaviors; thus, it is required other model
alternatives that besides being able to capture a possible bimodality, do not present identifi-
ability problems of the parameters, which are often proposals that come from mixtures of
distributions. Consequently, this research is motivated with the interest of estimating, in a
simple way, the parameters of the model that we propose and that has the faculty of fitting
symmetric or asymmetric bimodal data, being thus a proposal that opens the possibility of
new researches in these areas.

Models of this type have been studied by [16], who introduced the bimodal extension
of the skew-normal model, called the “two-pieces skew-normal (TN) model”. This model
is denoted by TN(λ), whose pdf is represented by

g(z; λ) = cλφ(z)Φ(λ|z|), (1)

where λ is a real number and cλ = 2π/(π + 2arctan(λ)) is a normalizing constant. For
λ > 0, Kim demonstrates that model (1) is bimodal and symmetric around zero.

Ref. [17] developed the asymmetric bimodal model termed “the extended two-pieces
skew-normal (ETN) model”, with a pdf given by

h(z; θ) = 2cλφ(z)Φ(λ|z|)Φ(βz), (2)

where β and λ are real numbers and cλ is a normalizing constant. The model is denoted by
ETN(λ, β) and is an asymmetric extension of Kim’s model.

The proportional hazards model was introduced by [18] and is very important in
survival analysis. Although [18] used this model to introduce covariables, it can also be
used to introduce a shape parameter into the base distribution (see [19]). One example is
the Burr XII distribution (see [20]), which can be obtained as a proportional hazards model
from the base distribution function. The main object of this paper is to use this proportional
hazards methodology to propose a new family of uni-/bimodal distributions, based on the
power- symmetric family of distributions.

The paper is organized as follows. In Section 2, the extended skew model distribution
with proportional hazards is derived, and its density function, special cases and moments
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are presented. In Section 3, parameter estimation is considered using maximum likelihood
(ML). Observed and Fisher information matrices are derived, and it is shown that the Fisher
information matrix is nonsingular. In Section 4, we perform a small-scale simulation study.
In Section 5, two real data sets are analyzed using the proposed distribution and some
other competing distributions to illustrate their applicability.

2. Extended Skew Model with Proportional Hazard

Following similar guidelines as in [10,11], we define the density function of the order
statistics with proportional hazard.

Let F be a continuous cdf with pdf f , continuous and symmetric around zero, and haz-
ard function h = f /(1− F). We say that Z has a distribution with proportional hazards,
associated with the cdf F and pdf f , and parameter α > 0 if its pdf is given by the expression

ϕF(z; α) = α f (z){1− F(z)}α−1, z ∈ R, (3)

where α is a positive real number and F is a continuous distribution function with density
function f = dF, continuous and symmetrical around zero. The PS distribution with
proportional hazards is denoted by PSH(α). For f = F′, a pdf continuous and symmetric
around zero, the density (3) matches the density of the variable Z = −Y where Y ∼ PS(α).

The cdf of the PSH model is given by

F(z) = 1− {1− F(z)}α, z ∈ R.

The expression proportional hazards model must be understood in the sense that the
hazard function of this model concerning the function F(z) is

h(X, F, α) = αh(x).

When F = Φ, we get the PN distribution with proportional hazards, which is denoted
by PNH(α). This model also represents an alternative for modeling data with skewness
and kurtosis outside the permitted ranges for normal function.

Figure 1 depicts how parameter α controls the skewness and kurtosis of the PNH(α)
model.
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Figure 1. Plots of the PNH(α) distribution with α = 0.25 (dotted and dashed line), 1 (solid line),
2 (dashed line) and 3 (dotted line).

The PNH model is suitable for fitting asymmetric unimodal data. Although this model
is more flexible than the normal model, it is unsuitable for fitting a bimodal data set. A more
flexible model than the PNH is as defined below, which has the ability to fit unimodal and
well as bimodal data. This model is obtained from the PNH(α) model.
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We define the extended proportional hazard model by the pdf

ϕ(z; α) = α f (z){2(1− F(|z|))}α−1, z ∈ R, (4)

where α ∈ R+, F is an absolutely continuous cdf with pdf f = F′, which is symmetrical
around zero. We use the notation EPSH(α).

Result 1. If Z ∼ EPSH(α), then the model (4) is symmetrical.
Result 2. If Z ∼ EPSH(α), then the cdf of Z is given by:

FF(z; α) =


1
2{2F(z)}α, if z < 0,

1
2{2(1− F(z))}α, if z ≥ 0.

Result 3. Let Z ∼ EPSH(α) and U ∼ u(0, 1). Then, using the inversion method, we can
obtain a random variable with distribution Z ∼ EPSH(α). This variable can be
obtained by the expression

Z =

F−1
[

1
2 (2U)1/α

]
, with U < 1/2 and Z < 0,

F−1
[
1− 1

2 (2U)1/α
]
, with U ≥ 1/2 and Z ≥ 0,

(5)

where F−1 is the inverse function of F.

2.1. Skew-EPsH (SEPSH) Model

Although the EPSH model is adequate for fitting bimodal data sets, it is not suitable
when the data set presents asymmetric bimodality. However, supported by the results
given in [1], we can obtain a more general model that achieves asymmetric bimodality.

Based on models (4) and (2), we now introduce a new family of distributions with the
special feature that for certain distributions (e.g., normal), it can fit asymmetrical uni and
bimodal data sets. This new family of distributions has pdf

ϕF−G(z; α, β) = 2α f (z){2(1− F(|z|))}α−1G(βz), z ∈ R, (6)

where α ∈ R+, β ∈ R, F is a continuous distribution function with density f = F′, which is
symmetric around zero, and G is a continuous and symmetric cdf with pdf G′, symmetric
around zero. This new family of distributions is called the asymmetric extended family with
proportional hazards. Note that when α = 1, we have the “skew-symmetric” distribution,
i.e., this new model can be seen as a generalization of the “skew-symmetric” model and
the models of order statistics for the case of proportional hazards.

The proof that function (6) is a density follows from Lemma 1 by taking f0(z) =

α f (z){2(1− F(|z|))}α−1, which is symmetric around zero. Therefore, this new family
of distributions belongs to the “skew-symmetric” family, and as f0 belongs to the ex-
ponentiated family (see [13]) or family of order statistics [11], this model will be called
“skew-power-symmetric (SPS)” and we will be denoted by SPS(α, β).

Result 4. SPS(1, β) = S f0(β).

The proof of this result is immediate since f = dF = f0 is symmetric around
zero. Therefore, the “skew-symmetric” distribution of Azzalini is a special case of the
SPS(α, β) distribution.

2.2. Skew-Power-Normal Model

Taking F = G = φ in (6) leads to the model

ϕΦ(z; α, β) = 2αφ(z){2(1−Φ(|z|))}α−1Φ(βz), z ∈ R, (7)

which will be called “skew-power-normal (SPN)” model, and will be denoted by SPN(α, β).
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Properties

The following properties are obtained directly from the model (7).

Property 1. SPN(1, 0) =N(0, 1).

Property 2. SPN(1, β) =SN(β).

Property 3. SPN(α, 0) =PNH(α).

Property 4. SPN(2, β) = a× SN(β)− b× ETN(β) with a and b positive constants.

Property 5. SPN(2, 0) = a× N(0, 1)− b× TN(1) with a and b positive constants.

Result 5. If Z ∼ SPN(α, β), then for β 6= 0, its density function is unimodal asymmetric for
α ≥ 1 and asymmetric bimodal for α < 1.

Proof of Result 5. Differentiating f0(z) = αφ(z){2(1−Φ(|z|))}α−1 with respect to z and
equating to zero, we obtain that the points where the maxima and minima occur are the
solutions of the equations{

(α− 2) log[1− φ(|x|)] + log(φ(|x|)) = 0, if α ≥ 1,
(1− α)φ(|x|) = |x|(1−Φ(|x|)), if α < 1.

Then, f0 is unimodal for α ≥ 1 and bimodal for α < 1. In addition, as f0 is symmetric,
then this density will be bimodal symmetric for α < 1. Therefore, we conclude that
ϕΦ(z; α, β) is asymmetric bimodal if α < 1 and asymmetric unimodal otherwise.

This feature makes the model attractive for fitting data presenting bimodality, since the
parameter range is very short (between 0 and 1), making it advantageous for computational
procedures taking into account that the starting point of the process maximizing the log-
likelihood function is determined more accurately.

The Location-Scale Case

Consider a random variable Z ∼ SPN(α, β), with α ∈ R+ and β ∈ R. The family
of distributions with location-scale parameters for the SPN distribution is defined as the
distribution of X = ξ + ηZ for ξ ∈ R and η > 0, and its density function is given by

ϕΦ(x; ξ, η, α, β) =
2α

η
φ

(
x− ξ

η

){
2
(

1−Φ
(∣∣∣∣ x− ξ

η

∣∣∣∣))}α−1
Φ
{

β

(
x− ξ

η

)}
, x ∈ R, (8)

where ξ is the location parameter and η is the scale parameter. We use the notation
SPN(ξ, η, α, β).

Figure 2 illustrates the behavior of the pdf (8) for different values of ξ, η, α and β. As
can be seen from the figure, the shape of the bimodality depends on the parameters α and β.

2.3. Moments

The following expressions allow the calculation of the moments of a random variable
with SPN(α, β) distribution

E(Zr) =

{
2αµr(α), if r is even,
2α[2µr(α, β)− µr(α)], if r is odd,

where

µr(α) = α
∫ 0

−∞
zrφ(z){Φ(z)}α−1dz and µr(α, β) = α

∫ 0

−∞
zrφ(z){Φ(z)}α−1Φ(βz)dz.
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Figure 2. Plots of the distributions: (a) SPN(0.25, 0.15, 0.25,−1) (solid line), SPN(0.5, 0.25, 0.5,−1)
(dashed line) and SPN(0.25, 0.25, 1.25,−1) (dotted line) (b) SPN(0.25, 0.15, 0.25, 1) (solid line),
SPN(0.5, 0.25, 0.5, 1) (dashed line) and SPN(0.25, 0.25, 1.25, 1) (dotted line).

The central moments µ́r = E(Z − E(Z))r for r = 2, 3, 4 can be calculated from the
expressions:

µ́2 = µ2 − µ2
1, µ́3 = µ3 − 3µ2µ1 + 2µ3

1 and µ́4 = µ4 − 4µ3µ1 + 6µ2µ2
1 − 3µ4

1.

Consequently, the variance and the coefficients of asymmetry and kurtosis are given
by σ2 = Var(Z) = µ́2,

√
β1 = µ́3/[µ́2]

3/2 and β2 = µ́4/[µ́2]
2.

3. Inference

We study next the ML estimators and the observed and expected information matrices
for the parameters of the SPN model.

3.1. The Standard Case

For a random sample Z = (Z1, Z2, . . . , Zn) of the SPN(α, β) distribution, we have the
log-likelihood function

`(θ; Z) = n log(α) + nα log(2) +
n

∑
i=1

log(φ((zi))) + (α− 1)
n

∑
i=1

log(1−Φ(|zi|))

+
n

∑
i=1

log(Φ(βzi)).

Therefore, the score function, defined as the derivatives with respect to the parameters
α and β of the log-likelihood function, is given by

U(α) =
n
α
+

n

∑
i=1

log[2(1−Φ(|zi|))] and U(β) =
n

∑
i=1

zi
φ(βzi)

Φ(βzi)
.

Equating the score function to zero leads to score equations

α̂ = − n
∑n

i=1 log[2(1−Φ(|zi|))]
and

n

∑
i=1

zi
φ(βzi)

Φ(βzi)
= 0

whose solution is obtained using iterative numerical methods.
Therefore, the elements of the observed information matrix, denoted by jαα, jβα, jββ,

are given by

jαα =
n
α2 , jβα = 0, jββ = n[βz3w + z2w2

1],
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where wi =
φ(|zi |)
Φ(|zi |)

and w1i = φ(βzi)/Φ(βzi); then, the parameters α and β are orthogonal,

so the expected information matrix defined as n−1 times the expectation of the observed
information matrix will be diagonal with elements

I(α, β) =

(
1/α2 0

0 βa31 + a122

)
,

where ajk = E(zjwk) and a1jk = E(zjwk
1). Then for βa31 + a122 6= 0 we have

(α̂, β̂)′
A−→ N2((α, β), I(α, β)−1),

which ensures the asymptotic convergence of the ML estimators for the parameters of
the model.

3.2. The Location-Scale Case

For a random sample X1, X2, . . . , Xn, with Xi ∼ SPN(ξ, η, α, β), the log-likelihood
function of θ = (ξ, η, α, β)′, given X, is given by:

`(θ; X) = n log(α) + nα log(2)− n log(η) +
n

∑
i=1

log(φ(zi))

+(α− 1)
n

∑
i=1

log(1−Φ(|zi|)) +
n

∑
i=1

log(Φ(βzi)),

where zi =
xi−ξ

η . Thus, the score function is given by:

U(ξ) =
1
η

n

∑
i=1

zi −
α− 1

η

n

∑
i=1

sgn(zi)
φ(|zi|)

1−Φ(|zi|)
− β

η

n

∑
i=1

φ(βzi)

Φ(βzi)
,

U(η) = −n
η
+

1
η

n

∑
i=1

z2
i +

α− 1
η

n

∑
i=1
|zi|

φ(|zi|)
1−Φ(|zi|)

− β

η

n

∑
i=1

zi
φ(βzi)

Φ(βzi)
,

U(α) =
n
α
+ n log(2) +

n

∑
i=1

log[1−Φ(|zi|)],

U(β) =
n

∑
i=1

zi
φ(βzi)

Φ(βzi)
,

where “sgn” is the sign function. Equating these equations to zero, we obtain the corre-
sponding score equations, the solution of which by iterative numerical methods leads to
ML estimators.

3.3. Observed Information Matrix

The elements of the information matrix are defined similarly to the standard case and
denoted by jξξ , jξη , . . . , jαα, jβα, jββ; they are given by:

jξξ =
n
η2 − n

α− 1
η2

[
w2 + sgn(z)zw

]
+ n

β2

η2

[
βzw1 + w2

1

]
,

jξη =
2n
η2 z + n

α− 1
η2

[
−sgn(z)|z|w2 + sgn(z)z2w− sgn(z)w

]
+ n

β

η2

[
β2z2w1 + βzw2

1 − w1

]
,



Mathematics 2022, 10, 378 8 of 14

jηη = − n
η2 +

3n
η2 z2 + n

α− 1
η2

[
−2|z|w− z2w2 + |z|3w

]
− β

η
zw1

+ n
β

η2

[
β2z3w1 + βz2w2

1 − 2zw1

]
,

jξα =
n
η

sgn(z)w, jηα = −n
η
|z|w, jαα =

n
α

, jββ = n[βz3w + z2w2
1],

jαβ = 0, jβη =
n
η
[zw1 − β2z3w1 − βz2w2

1], jβξ =
n
η

w1 − n
β

η2

[
βz2w1 + zw2

1

]
,

where wi = φ(zi)
1−Φ(|zi |)

, w = 1
n ∑n

i=1 wi, w2 = 1
n ∑n

i=1 w2
i , zw = 1

n ∑n
i=1 ziwi, sgn(z)zw =

1
n ∑n

i=1 sgn(zi)ziwi, . . . , z2w2 = 1
n ∑n

i=1 z2
i w2

i , w1i = φ(βzi)/Φ(βzi), w1 = 1
n ∑n

i=1 w1i and
w2

1 = 1
n ∑n

i=1 w2
1i.

3.4. Expected Information Matrix

Similar to the standard case, the elements of the expected information matrix are n−1

times the expected value of the elements of the observed information matrix, namely:

Iθrθp = n−1E
{
−∂2`(θ; x)

∂θr∂θp

}
, r, p = 1, 2, 3, 4,

with θ1 = ξ, θ2 = η, θ3 = α and θ4 = β. Taking akj = E{zkwj}, a∗kj = E{|z|kwj},
a∗∗kj = E{sgn(z)zkwj} and a1kj = E{Zk(φ(βZ)/Φ(βZ))j}, the elements of the expected
information matrix can be expressed as follows:

Iξξ =
1
η2 [1− (α− 1)(a02 + a∗∗11 )] +

β2

η2 [βa111 + a102],

Iηξ =
2
η2 a10 +

α− 1
η2 [−a∗∗01 + a∗∗21 − a12] +

β

η2 [β
2a121 + βa112 − a101],

Iηη = − 1
η2 +

3
η2 a20 +

α− 1
η2 [a∗31 − a∗22 − 2a∗11] +

β

η2 [β
2a131 + βa122 − 2a111],

Iβξ =
1
η

a101 −
β

η2 [βa121 + a112], Iβη =
1
η

a111 −
β

η2 [βa131 + βa122], Iαξ =
1
η

a∗∗01 ,

Iαη = − 1
η

a∗11, Iαα =
1
α2 , Iβα = 0, iββ = βa131 + a122.

These expectations are calculated using numerical integration. When α = 1 and
β = 0, then ϕ(x; ξ, η, 1, 0) = 1

η φ
(

x−ξ
η

)
, which is the location-scale density of the normal

distribution. Thus, the information matrix is reduced to

I(θ) =


1/η2 0 a∗∗01 /η

√
2
π /η

0 2/η2 −a∗11/η 0
a∗∗01 /η −a∗11/η 1 0√

2
π /η 0 0 2/π


whose determinant is |I(θ)| = − 4

πη4 a∗∗201 = − 0.30
η4 6= 0; hence, we conclude for the special

case of the normal distribution that the expected information matrix for the model is
nonsingular. The upper 2× 2 submatrix is the information matrix of the normal distribution,
and hence, for large n, we have that

θ̂
A−→ N4(θ, I(θ)−1),
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so that θ̂ is consistent and asymptotically normally distributed, where I(θ)−1 is the covari-
ance matrix for large samples.

4. Simulation

We now carry out a simulation study to analyze the behavior of the ML estimator
of the shape parameter α. The samples were generated using the algorithm described in
this document for different sample sizes n = 50, 100, 150, 300 and 1000. In each scenario,
we performed 10,000 iterations and studied the mean and the root of the mean squared
error (RMSE). The results are presented in Table 1, from which it is observed that for each
scenario, the estimates were good for large and small sample sizes, and that when the
sample size increases, the mean converges to the true value of the parameter α and the
RMSE decreases, which indicates that the estimator α̂ is consistent for α.

Table 1. ML estimator (mean) and RMSE for parameter α, SPN model.

n = 50 n = 100 n = 150 n = 300 n = 1000

α Mean
√

MSE Mean RMSE Mean RMSE Mean RMSE Mean RMSE

0.25 0.2549 0.0365 0.2534 0.0254 0.2520 0.0205 0.2508 0.0143 0.2505 0.0075
0.75 0.7641 0.1105 0.7589 0.0771 0.7542 0.0624 0.7528 0.0439 0.7509 0.0235
1.25 1.2759 0.1853 1.2601 0.1274 1.2603 0.1045 1.2539 0.0727 1.2509 0.0395
1.75 1.7866 0.2603 1.7716 0.1786 1.7582 0.1435 1.7579 0.1013 1.7515 0.0559
2.25 2.2954 0.3311 2.2721 0.2311 2.2679 0.1853 2.2603 0.1327 2.2527 0.0714
2.75 2.8068 0.406 2.7815 0.2837 2.767 0.2286 2.7595 0.1579 2.753 0.0878
3.25 3.3156 0.4762 3.2845 0.3345 3.2713 0.266 3.26 0.1866 3.2521 0.1033
3.75 3.8206 0.5594 3.7875 0.3841 3.7735 0.311 3.7671 0.2187 3.7536 0.1185
4.25 4.3256 0.6287 4.2894 0.4328 4.2769 0.3533 4.2656 0.2472 4.2563 0.1359
4.75 4.8565 0.7205 4.7962 0.4843 4.7839 0.3931 4.7658 0.2728 4.7552 0.1502
5.25 5.3483 0.7617 5.2975 0.5345 5.2802 0.4359 5.2721 0.3104 5.2553 0.1662
5.75 5.8737 0.8458 5.8084 0.5881 5.7918 0.4802 5.781 0.3361 5.7576 0.1825
6.25 6.3938 0.9288 6.3145 0.6354 6.2821 0.5125 6.2683 0.3635 6.2532 0.1975
6.75 6.8795 0.9961 6.8155 0.6885 6.7948 0.5609 6.7714 0.393 6.7581 0.2139

5. Applications

In this section we present two real data illustrations, the first associated with a bimodal
data set and the second to a unimodal one.

5.1. Application 1

The first application includes 3848 observations of the variable nub, which measures
a geometric feature of pollen grains. These data come from Pollen Data, available at
http://lib.stat.cmu.edu/datasets/pollen.data (assessed on 12 August 2021). Table 2 shows
the descriptive statistics of the variable nub.The quantities

√
b1 and b2 indicate, respectively,

the sample skewness and kurtosis coefficients.

Table 2. Descriptive statistics for the variable nub (X).

Variable n Mean Variance
√

b1 b2

X 3848 0.000 26.898 0.072 2.689

Note that the skewness and kurtosis coefficients are different from the values expected
for the normal distribution, which leads to considering the use of a more flexible model
such as the SPN model discussed in this article.

Therefore, the hypothesis to be tested is

H0 : (α, β) = (1, 0) versus H1 : (α, β) 6= (1, 0);

http://lib.stat.cmu.edu/datasets/pollen.data
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using the

Λ =
`N(θ̂)

`SPN(θ̂)
,

statistic, this leads to

−2 log(Λ) = −2(−11793.47 + 11774.54) = 37.86,

which is greater than the critical 5% chi-squared value, namely, χ2
1,95% = 3.8414. Therefore,

the SPN model seems to be a useful alternative for modeling the nub data. Table 3 shows
the estimated standard errors ML estimates (in parentheses) for the SN, TN, ETN and SPN
models. In Figure 3, we can see that the ETN and SPN models fit quite well.

It is evident that the fitting of the normal and SN models in this example is inadequate
due to the asymmetric behavior and bimodality of the data. Thus, the TN, ETN and SPN
models are adequate for fitting the variable nub, so it is more reasonable to contrast the
SPN model with models by [16,17]. To compare the models, which are not nested, we use
the AIC criterion [21], namely

AIC = −2ˆ̀(·) + 2k,

where k is the number of parameters of the model to consider. Furthermore, we consider
the consistent AIC (CAIC) criterion, namely

CAIC = −2ˆ̀(·) + (1 + log(n))k,

where k is the number of parameters.
According to the AIC and CAIC criteria, the ETN and SPN models fit the variable nub

well, and much better than the TN model. Moreover, no significant differences are noted
between the ETN and SPN models. Figure 3a shows clearly that the ETN and SPN models
have the same degree of fit; note that the graph of the SPN model is superimposed on the
ETN model. This shows the SPN model as a second alternative for modeling bimodal data.
Figure 3b shows the qq-plot of the variable nub for the SPN model.

Table 3. Parameter estimates and standard errors for the SN, TN, ETN and SPN models.

Parameter SN TN ETN SPN

ξ 0.034 (0.032) 0.064 (0.074) 1.848 (0.123) 1.7951 (0.1290)
η 5.186 (0.067) 4.777 (0.069) 5.000 (0.062) 3.4988 (0.2395)
α −0.008 (1.216) 0.409 (0.102) 0.638 (0.131) 0.5112 (0.0540)
β – – −0.417 (0.035) −0.2839 (0.0316)

Log-likelihood −11,793.47 −11,783.98 −11,774.47 −11,774.50
AIC 23,590.94 23,573.96 23,556.94 23,557.00

CAIC 23,605.45 23,595.73 23,567.45 23,567.51

Now we compare the SPN model with the mixture of the two normals model, which
can be written as

f (x; µ1, σ1, µ2, σ2, p) =
p
σ1

φ(x, µ1, σ1) +
1− p

σ2
φ(x; µ2, σ2),

where φ is the density of the standard normal distribution with parameters µj, σj, j = 1, 2
and 0 < p < 1. We denote the two-normals mixture model as MN(µ1, σ1, µ2, σ2, p).

The estimated model is

MN(−2.389, 4.106, 4.649, 3.698, 0.6605)

with AIC = 23561.16 and CAIC = 23569.67. This model presents BIC and CAIC greater
than those for the SPN model, so the SPN model fits the nub data set better than the MN
model. Figure 3c shows the estimated densities for the SPN and MN models.
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Figure 3. (a) Histogram for the variable nub. Densities adjusted by ML: TN (dotted line), SN (dotted
and dashed line), ETN (dashed line) and SPN (solid line). (b) qq-plot for the variable nub. (c) SPN
(solid line) and MN (dashed line)

5.2. Application 2

In this second application, we use the data available at http://lib.stat.cmu.edu/
jasadata/laslett (accessed on 19 August 2021), which, according to their summary statistics
(see Table 4), have appropriate characteristics to be modeled with distributions such as
the one proposed in this research. A detailed description of these data can be found in
the link above, where the roller surface roughness height is measured. In total, there are
1150 observations measured at 1-micron intervals along the roller drum.

Table 4. Summary statistics for the variable roller.

n Mean Variance
√

β1 β2

1150 3.535 0.650 −0.986 4.855

Hence, the PN, SN, and SPN models are fitted to the present data, and the MLE
and standard errors (in parentheses) are calculated for each model studied (see Table 5).
The results show the goodness of fit of the SPN model, which, compared to the other
models, presents the best fit to the data. In addition, the plots of the fitted models are
shown in Figure 4a, and the qq-plot for the SPN model is shown in Figure 4b.

In addition, a hypothesis test is performed to compare the normal model against the
SPN model. Formally, we have the hypothesis

H01 : (α, β) = (1, 0) versus H11 : (α, β) 6= (1, 0),

which can be tested using the statistic

Λ1 =
`N(θ̂)

`SPN(θ̂)
.

After numerical evaluations, we obtain

−2 log(Λ1) = 142.274,

which is greater than the 5% critical value of the Chi-squared distribution with one degree
of freedom, namely χ2

1,95% = 3.8414.

http://lib.stat.cmu.edu/jasadata/laslett
http://lib.stat.cmu.edu/jasadata/laslett
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Table 5. Parameter estimates (standard error) for the PN, SN and PSN distributions.

Parameter PN SN SPN

ξ 4.5495 (0.0572) 4.2503 (0.0284) 3.9920 (0.0220)
η 0.1982 (0.0279) 0.9694 (0.0304) 3.4615 (0.9914)
α 0.0479 (0.0156) −2.7864 (0.2529) 6.5217 (2.1390)
β – – −5.8626 (1.6601)

Log-likelihood −1085.241 −1071.362 −1064.729
AIC 2176.482 2148.724 2137.458

According to the AIC criterion, the SPN model fits the roller data set better than
the SN and PN models; i.e., the SPN model achieves satisfactory fitting of skewness and
kurtosis, which are not adequately fitted by the previous models. A reason for the above
situation can be explained because the skewness and kurtosis of the data analyzed are
outside the permitted ranges for the SN ((−0.9953, 0.9953) and (3, 3.8692), respectively) and
PN ((−0.6115, 0.9007) and (1.7170, 4.3556), respectively) models. This may be an indication
that the SPN model has range of skewness and kurtosis greater than that of the SN and
PN models.

 

x

d
e

n
s
it
y

1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

(a)

1 2 3 4 5

1
2

3
4

5

 

(b)

Figure 4. (a) Histogram for the variable roller. Densities adjusted: PN(4.5495, 0.1982, 0.0479) (dashed
line), SN(4.2503, 0.9694,−2.7864) (dotted line) and SPN(3.9920, 3.4615, 6.5217,−5.8626) (solid line).
(b) qqplot for the variable roller.

6. Discussion

In this paper, we introduce a new family of continuous uni-/bimodal distributions.
This family was generated based on power-symmetric and proportional hazards distribu-
tions. The SPN distribution, which is a particular case of this family, is studied in greater
detail. The new family presented is a viable alternative for modeling asymmetric unimodal
and bimodal data sets. Further specific conclusions are as follows, listed in order:

• The family of distributions presents flexibility in the modes of the base model, in both
unimodal and bimodal cases;

• The parameters are estimated using the ML method; a simulation study for the
maximum likelihood estimators indicates good parameter recovery;

• We show that the Fisher information matrix for the SPN distribution is nonsingular
for the particular case of the normal distribution;

• In the first example, we contrasted the normal, SN and TN models. It is obvious that
these models fail to capture the asymmetric bimodality of the data. In contrast, the ETN
and SPN models are more suitable for fitting the distribution of the variable nub. In the
second example we see that the normal, SN and PN models fail to adequately capture
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the high kurtosis of the variable roller. However, the SPN model appears to have more
flexibility to fit this special feature.
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