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Abstract: Bézier curves and surfaces with shape parameters have received more attention in the
field of engineering and technology in recent years because of their useful geometric properties as
compared to classical Bézier curves, as well as traditional Bernstein basis functions. In this study,
the generalized Bézier-like curves (gBC) are constructed based on new generalized Bernstein-like
basis functions (gBBF) with two shape parameters. The geometric properties of both gBBF and
gBC are studied, and it is found that they are similar to the classical Bernstein basis and Bézier
curve, respectively. Some free form curves can be modeled using the proposed gBC and surfaces as
the applications.

Keywords: generalized Bernstein-like basis functions; generalized Bézier-like curves; surfaces; shape
parameters; classical Bézier curves; geometric properties

1. Introduction

The construction of curves and surfaces with the help of parametric polynomials
is one of the important areas of research in CAGD. The overall purpose of every curve
representation developed for geometric modeling is implemented to create a worthwhile
and user friendly curve/surface in the form of preparing. Such features have significant
uses in many applications, particularly in industrial styles and designs for functional
and aesthetic reasons. The Bézier forms are among the more common mathematical
representations of curves and surfaces. This vector-based representation by two Frenchmen,
Paul de Casteljau and Pierre Bézier, as described in Farin [1], to create a curve of degree n
originally occurred in the auto industry between 1958 and 1962. This has been mostly used
in many applications of CAGD and CAD/CAM systems. It is prominent because it has a
amount of mathematical characteristics which enable the management and evaluation of
the curves. The Bézier design is an important method for developing free-form curves and
surfaces in CAGD. Here, the Bézier design relates directly to the Bézier curve, the Bézier
tensor product throughout the rectangular platform and the Bézier surface throughout the
triangular area.

Several of them have their own abilities, although they have one familiar scarcity.
This is, after selecting the basis functions, their design is well committed through their
control points. For the sake of resolving the scarcity of the Bézier curve, several researchers
developed the latest curves whose structures are related to the Bézier curve by inserting
parameters into the basis functions [2–4]. These are those fresh curves that enjoy several
fundamental Bézier curve characteristics and retain at that time a dynamic property for
adaptable form. In the late of 1950s, de Casteljau was the first who defined Bézier surfaces
through the triangular domain, and Boehm continued his research; the findings of Boehm
are given in [5].

Several researchers conducted more systematic work on the triangular surface of
Bézier in the 1970s and 1980s [6–10]. In addition to that, Abedallah [11] often conducted
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some work on the triangular logic surface of Bézier. The collaboration of such philosophers
refined the Bézier triangular surface theory. The triangular surface modeling approach
attracts the interest of many philosophers due to its tremendous ability to create complex
forms. However, since the Bézier surface theory matured, just a couple of previous studies
have investigated the enhancement of the triangular surface to strengthen the traditional
triangular Bézier structure [12–15]. Only the surfaces presented in [16,17] are included
into good literature due to their adjustable shape properties. There has been significant
interest in the generalization of the blending function of the Bézier curve over the last
three decades. Ali introduced the cubic Bézier curve in [18]. In [19], Yan et al. developed a
recursive approach to new kinds of basis functions. On the ground of these functions, the
Bézier curve and rectangular Bézier-like surface were described. The fresh basis functions
were then extended to the triangular region, and the Bézier-like surfaces were defined
over the triangular region. Azhar et al. implemented new generalized basis in [20], called
A-Bézier. This foundation was centered on a similar one to the Bézier curve of degree three,
which comprises of two shape parameters which provided further degrees of liberty used
to create the required spline and surfaces of the free form.

Bibi et al. explored a significant concept for tackling the question of constructing
certain engineering symmetric creative curves and symmetric spinning surfaces using
the oversimplified Bézier trigonometric blended in [21]. Qin et al. [22] introduced the
class of modern polynomial functions with shape parameters for the approach to personal
of n− 1 to enable the creation of Bézier curves with parameters for controlling the local
shape of n, which is an extension of the classical Bernstein-based degree n functions. The
characteristics of the recommended basis functions and the correlating partly polynomial
curve with a local form of n− 1 were also studied test criteria. Hu et al. [23] presented
shape-adjustable generalized Bézier rotation curves with multiple shape parameters for
some geometric modeling. Sidra et al. [24–27] constructed the generalized blended trigono-
metric Bernstein with two shape parameters and discussed their applications in geometric
modeling. Chen et al. [28] constructed a new generalization of the Bernstein operator, de-
pending upon a positive real parameter. The elementary properties of this operator are also
included, and by using this operator, they provide another proof of the Weierstrass Approx-
imation Theorem. The shape-preserving properties of this operator are also given by them.
Srivastava et al. [29] established a link between approximation theory and summability
methods by constructing bivariate Bernstein–Kantorovich type operators on an extended
domain with re-parameterized knots. They numerically analyzed the theoretical results and
gave some computer graphics to understand the importance of this study. With the help of
new Bernstein basis functions, Cai et al. [30] generalized the q-Bernstein polynomials and
gave many approximation properties of q-Bernstein polynomials with shape parameter
λ on the symmetric interval [−1, 1]. Hiemstra et al. [31] presented an idea to show how
to calculate a normalized B-spline-like basis for spline spaces with pieces derived from
extended Tchebycheff spaces in an efficient and reliable way. The size of the expanded
Tchebycheff spaces permitted variations from interval to interval. The method involves
creating a matrix that translates a generalized Bernstein-like basis to the desired B-spline-
like basis. The B-spline-like basis exhibits many of the same characteristics as conventional
univariate B-splines and may be simply integrated into current spline programs.

The differences/advantages/disadvantages of the proposed gBBF and gBC and their
shape parameters λ and µ are listed in Table 1.

In this work, some contributions are made, which are as follows:

1. The construction of a new gBBF with two shape parameters;
2. The construction of a new gBC with two shape parameters;
3. The construction of some geometric properties of the new gBBF and gBC and the

conclusion that they are similar to the classical one;
4. Some free form curves are modeled by the proposed gBC;
5. Some Bézier-like surfaces with shape parameters are constructed;
6. The effects of the shape parameters on Bézier-like curves and surfaces are discussed.
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The article can be outlined as follows: Some preliminaries are given in Section 2. The
new gBBF and gBC with two shape parameters are constructed in Section 3. Some geometric
properties of the new gBBF and gBC are also discussed in this section. In Section 4, free
form curves are modeled by the new gBC. At the end, the consequences of this work are
given in Section 5.

Table 1. Comparison of research work.

Sr.
No Existing Method Proposed Method

1 Qin et al. [22] presented the basis functions of
order n with n− 1 shape parameters.

The proposed basis functions are
constructed with only two shape
parameters.

2 The degeneracy of basis functions are difficult
to prove such as in [21,24].

We can easily degenerate the classical
Bernstein basis function from proposed
basis functions.

3 The linearity of GHT-Bernstein basis functions
are not easy to prove, such as in [21].

The proposed basis function are
linearly independent.

4 Azhar et al. [20] generalized the A-Bézier for
degree n > 4.

We generalized the proposed basis
function for degree s > 3.

5 In [21], they used four different shape
parameters with different intervals.

We used two parameters with the same
interval.

2. Preliminaries

In this section, some definitions of Bernstein polynomials and Bézier curves along
with their properties are given.

2.1. Bernstein Polynomials

The Bézier curve was constructed by using the Bernstein polynomials [1]. The sth
degree Bernstein polynomials are defined as:

Ul,s(ṽ) :=
(

s
l

)
ṽl(1− ṽ)s−l , (1)

for l = 0, 1, 2, ..., s, where (s
l) = s!

l!(s−l)! are binomial coefficients.
There must be s + 1 sth-degree Bernstein polynomials. Usually, we set up for mathe-

matical comfort Ul,s(ṽ) = 0, if l < 0 or l > s.

2.2. Bézier Curve

Let V
′
0, V

′
1, ..., V

′
s be (s + 1) given the control points. The Bézier curve of degree s is

defined as [1]:

p(ṽ) =
s

∑
l=0

Ul,s(ṽ)V
′
l , 0 ≤ ṽ ≤ 1, (2)

where Ul,s(ṽ) are the Bernstein polynomials given in Equation (1).

2.3. Bézier Surfaces

Definition 1. The classical Bézier tensor product surface of degree s × s1 with control points
Vl,l1(l = 0, 1, ..., s)(l1 = 0, 1, ..., s1) is described as:

p(ṽ, ṽ1) =
s

∑
l=0

s1

∑
l1=0

Vl,l1Ul,s(ṽ)Ul1,s1(ṽ1), 0 ≤ ṽ, ṽ1 ≤ 1, (3)

where Ul,s(ṽ), Ul1,s1(ṽ1) are the Bernstein basis functions with degrees s and s1, respectively.
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Definition 2. For each positive integer s, there is (s + 1)(s + 2)/2 control points Vl,l1,l2 ∈ R3, in
which l, l1, l2 ∈ N, l + l1 + l2 = s and domain triangle F = [(ṽ, ṽ1, ṽ2), ṽ, ṽ1, ṽ2 ≥ 0, ṽ + ṽ1 +
ṽ2 = 1], in which (ṽ, ṽ1, ṽ2) is the barycentric coordinate of the dots within F. The classical surface
of the Bernstein function of s degree is described in the triangular field:

p(ṽ, ṽ1, ṽ2) = ∑
l+l1+l2=n

Us
l,l1,l2(ṽ, ṽ1, ṽ2)Vl,l1,l2 , (ṽ, ṽ1, ṽ2) ∈ F, (4)

where
Us

l,l1,l2(ṽ, ṽ1, ṽ2) =
s!

l!l1!l2!
ṽl ṽ1

l
1ṽ2

l
2, (ṽ, ṽ1, ṽ2) ∈ F

are Bernstein polynomials of degree s.

3. Generalized Bézier-like Curves and Surfaces

In this section, the generalization of Bernstein-like basis functions and Bézier-like
curves with two shape parameters are defined. Several properties of gBBF and gBC
with two shape parameters are also discussed.The influence of shape parameters is also
discussed. In addition, some surfaces using Bézier-like curves are also constructed.

3.1. Construction of Generalized Bernstein-like Basis Functions

This portion includes a description of the gBBF with two shape parameters and their
geometric properties.

Definition 3. Given λ, µ ∈ [0, 3], for ṽ ∈ [0, 1], the following functions:
u0,2(ṽ) = (1− ṽ)2(1 + (2− λ)ṽ),
u1,2(ṽ) = ṽ(1− ṽ)(λ + ṽ(µ− λ)),
u2,2(ṽ) = ṽ2(3− µ + ṽ(µ− 2))

(5)

are called the quadratic Bernstein-like basis functions.

For any integer s(s ≥ 3), the functions ul,s(ṽ)(l = 0, 1, 2, ..., s) are recursively de-
scribed by:

ul,s(ṽ) = (1− ṽ)ul,s−1(ṽ) + ṽul−1,s−1(ṽ), ṽ ∈ [0, 1]. (6)

It is called generalized Bernstein-like basis functions of degree s. In case l < 0 or l > s,
we set ul,s(ṽ) = 0. From (6), we can calculate the Bernstein-like basis functions of any
degree as:

1. Let λ, µ ∈ [0, 3], for ṽ ∈ [0, 1], then the following functions:
u0,3(ṽ) = (1− ṽ)3(1 + (2− λ)ṽ),
u1,3(ṽ) = ṽ(1− ṽ)2(1 + λ + ṽ(2 + µ− 2λ)),
u2,3(ṽ) = ṽ2(1− ṽ)(3 + λ− µ + ṽ(−2 + 2µ− λ)),
u3,3(ṽ) = ṽ3(3− µ + ṽ(µ− 2)).

(7)

are called the Bernstein-like basis functions of degree s = 3.

Figure 1 displays the Bernstein-like basis functions graphs of degree s = 3, 5, 7, 8.
Figure 2 shows the graph of cubic and quartic Bernstein-like basis functions with partic-
ular values of shape parameters. Thick, thin, dashed and dotted graphs correspond to
λ = 0.5, 1, 1.5, 2.1 and µ = 0.6, 1.1, 1.6, 2.2 respectively.
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Figure 2. Bernstein-like basis functions with various shape parameter values.
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For the sake of conciseness, we will omit the independent variable and abbreviate
ul,s(ṽ), Ul,s(ṽ) to ul,s, Ul,s, respectively. Furthermore, we shall use the notation uls,Uls for
ul,s,Ul,s, respectively, if there is no confusion, where Ul,s, l = 1, 2, ..., s denotes the classical
Bernstein basis function of degree s.

The CPU time(s) comparison of the proposed gBBF between existing basis func-
tions [21,24,25] have been recorded in Tables 2 and 3 for numerical computations and
graphical display, respectively. It can be concluded that the proposed gBBFs are sim-
pler, more straight-forward and more computationally economical than the existing
basis functions.

Table 2. Computational comparisons of gBBF between existing Bernstein-like basis functions in terms
of CPU time (s).

Degree s Proposed gBBF Samia et al. [21] Sidra et al. [24] Sidra et al. [25]

3 0.062500 0.203125 0.312500 0.15625

7 0.000000 0.015625 0.015625 0.015625

9 0.015625 0.046875 0.015625 0.046875

11 0.031250 0.156250 0.125000 0.062500

13 0.156250 0.546875 0.546875 0.328125

15 0.781250 1.937500 2.046880 1.859380

Table 3. Comparison of graphical outcomes of gBBF between existing Bernstein-like basis functions
in terms of CPU time (s).

Degree s Proposed gBBF Samia et al. [21] Sidra et al. [24] Sidra et al. [25]

3 0.062500 0.203125 0.312500 0.15625

5 0.140625 0.265600 0.265600 0.50000

7 0.281250 0.843750 0.869375 1.04688

9 1.437500 3.347500 3.390630 3.20313

11 6.156250 14.32810 14.04690 13.1875

13 26.70130 62.15630 58.92190 49.8750

15 124.5000 269.4690 263.4380 210.578

Proposition 1. The Bernstein-like basis functions can be expressed explicitly as:

ul,s =

[ sCl − 2(s−3Cl−1 −s−3 Cl−3)
sCl

+
s−2Cl−1

sCl
λ−

s−2Cl−2
sCl

µ−
s−1Cl

sCl
λṽ

+
s−1Cl−1

sCl
µṽ + 2ṽ

(s−2Cl −s−2 Cl−2)
sCl

]
sCl ṽi(1− ṽ)s−l , (8)

where sCl =
s!

l!(s−l)! and l = 0, 1, ..., s, s ≥ 3.

Proof. By induction on s. When s = 3, it is simple to test the validity of basis functions
given in Equation (7). Now, presume that the plan is worth for integer t such as s = t. When
it is s = t + 1, by recursive expression (6) and previous assumptions, for every l = 1, 2, ..., t,
we obtain:
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ul,t+1 =

[ tCl − 2(t−3Cl−1 −t−3 Cl−3)
tCl

+
t−2Cl−1

tCl
λ−

t−2Cl−2
tCl

µ−
t−1Cl

tCl
λṽ

+
t−1Cl−1

tCl
µṽ + 2ṽ

t−2Cl −t−2 Cl−2
tCl

]
tCl ṽl(1− ṽ)t−i

+

[ tCl−1 − 2(t−3Cl−2 −t−3 Cl−4)
tCl−1

+
t−2Cl−2

tCl−1
λ−

t−2Cl−3
tCl−1

µ

−
t−1Cl−1

tCl−1
λṽ +

t−1Cl−2
tCl−1

µṽ + 2ṽ
t−2Cl−1 −t−2 Cl−3

tCl−1

]
tCl−1ṽl(1− ṽ)t−l+1

=

[
((tCl +

t Cl−1)− 2(t−3Cl−1 +
t−3 Cl−2) + 2(t−3Cl−3 +

t−3 Cl−4)) + λt−2Cl−1

+λt−2Cl−2)− µ(t−2Cl−2 +
t−2 Cl−3)− λṽ(t−1Cl +

t−1 Cl−1) + µṽ(t−1Cl−1

+µṽ(t−1Cl−2)) + 2ṽ(t−2Cl +
t−2 Cl−1)− 2ṽ(t−2Cl−2 +

t−2 Cl−3)

]
ṽl(1− ṽ)t−l+1

=

[ t+1Cl − 2(t−2Cl−1 −t−2 Cl−3)
t+1Cl

+
t−1Cl−1

t+1Cl
λ−

t−1Cl−2
t+1Cl

µ

−
tCl

t+1Cl
λṽ +

tCl−1
t+1Cl

µṽ + 2ṽ
t−1Cl −t−1 Cl−2

t+1Cl

]
t+1Cl ṽl(1− ṽ)t−l+1.

For l = 0 in (6), we have:

u0,t+1 = (1− ṽ)u0,t

=

[ tC0 − 2(t−3C−1 −t−3 C−3)
tC0

+
t−2C−1λ

tC0
−

T−2C−2µ
tC0

−
t−1C0λṽ

tC0
+

t−1C−1µṽ
tC0

+
2ṽ(t−2C0 −t−2 C0−2)

tC0

]
tC0ṽ0(1− ṽ)t

=

[ s+1C0 − 2(s−2C−1 −s−2 C−3)
s+1C0

+
s−1C−1λ

s+1C0
−

s−1C−2µ
s+1C0

−
sC0λṽ
s+1C0

+
sC−1µṽ
s+1C0

+
2ṽ(s−1C0 −s−1 C−2)

s+1C0

]
s+1C0ṽ0(1− ṽ)s+1.

The evidence for the l = t + 1 proves the result.

Proposition 2. The Bernstein-like basis functions can be displayed as a linear combined effect of
the classical Bernstein basis functions of degree s and s + 1, i.e.,:

ul,s(ṽ) = Ul,s(ṽ) +
2(s−2Cl −s−2 Cl−2 +

s−3 Cl−3 −s−3 Cl)
s+1Cl+1

Ul+1,s+1(ṽ)

+
2(s−3Cl−3 −s−3 Cl−1)

s+1Cl
Ul,s+1(ṽ) + λ

(s−2Cl−1 −s−1 Cl)
s+1Cl+1

Ul+1,s+1(ṽ)

+λ
s−2Cl−1

s+1Cl
Ul,s+1(ṽ) + µ

s−1Cl−1 −s−2 Cl−2
s+1Cl+1

Ul+1,s+1(ṽ) + µ−
s−2Cl−2

s+1Cl
Ul,s+1(ṽ).
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Proof. Simple algebraic manipulation of the above proposition yields:

ul,s(ṽ) =

[
1 + 2

s−3Cl−3 −s−3 Cl−1
sCl

+ 2ṽ
s−2Cl −s−2 Cl−2

sCl
+ λ(

s−2Cl−1
sCl

−
s−1Cl

sCl
ṽ)

+µ(−
s−2Cl−2

sCl
+

s−1Cl−1
sCl

ṽ)
]

sCl ṽl(1− ṽ)s−l

=

[
1 + (2

s−2Cl −s−2 Cl−2 +
s−3 Cl−3 −s−3 Cl−1

sCl
)ṽ + 2(1− ṽ)

s−3Cl−3 −s−3 Cl−1
sCl

+λ

[
(ṽ

s−2Cl−1 −s−1 Cl
sCl

) +
s−2Cl−1

sCl
(1− ṽ)

]
+ µ

[
(ṽ

s−1Cl−1 −s−2 Cl−2
sCl

)

−
s−2Cl−2

sCl
(1− ṽ)

]]
sCl ṽl(1− ṽ)s−l

= Ul,s(ṽ) + 2
s−2Cl −s−2 Cl−2 +

s−3 Cl−3 −s−3 Cl
s+1Cl+1

Ul+1,s+1(ṽ)

+
2(s−3Cl−3 −s−3 Cl−1)

s+1Cl
Ul,s+1(ṽ) + λ

s−2Cl−1 −s−1 Cl
s+1Cl+1

Ul+1,s+1(ṽ)

+λ
s−2Cl−1

s+1Cl
Ul,s+1(ṽ) + µ

s−1Cl−1 −s−2 Cl−2
s+1Cl+1

Ul+1,s+1(ṽ)− µ
s−2Cl−2

s+1Cl
Ul,s+1(ṽ).

Therefore, the proposition persists.

3.2. Properties of the Bernstein-like Basis Functions

In this section, some geometric properties of Bernstein-like basis functions are dis-
cussed as follows:

1. Degeneracy: If λ, µ = 2,ul,s(ṽ) = Ul,s(ṽ)(l = 0, 1, . . . , s; s ≥ 2). That is, the Bernstein-
like basis functions of the degree s with the parameters λ, µ = 2 are only the standard
Bernstein basis functions of the degree s.

Proof. Put λ, µ = 2 in (7) to obtain:
u0,3(ṽ) = (1− ṽ)3,
u1,3(ṽ) = 3ṽ(1− ṽ)2,
u2,3(ṽ) = 3ṽ2(1− ṽ),
u3,3(ṽ) = ṽ3,

the classical cubic Bernstein polynomials.
For s = 4 in Equation (8), yield the quartic Bernstein-like basis functions as follows:
Let λ, µ ∈ [0, 3], for ṽ ∈ [0, 1]:

u0,4(ṽ) = (1− ṽ)4(1 + (2− λ)ṽ),
u1,4(ṽ) = ṽ(1− ṽ)3(2 + λ + ṽ(4 + µ− 3λ)),
u2,4(ṽ) = ṽ2(1− ṽ)2(4 + 2λ− µ + ṽ(3µ− 3λ)),
u3,4(ṽ) = ṽ3(1− ṽ)(6 + λ− 2µ + ṽ(−4 + 3µ− λ)),
u4,4(ṽ) = ṽ4(3− µ + ṽ(µ− 2)).

(9)
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Put λ, µ = 2 in (9) to obtain 

u0,4(ṽ) = (1− ṽ)4,
u1,4(ṽ) = 4ṽ(1− ṽ)3,
u2,4(ṽ) = 6ṽ2(1− ṽ)2,
u3,4(ṽ) = 4ṽ3(1− ṽ),
u4,4(ṽ) = ṽ4,

the classical quartic Bernstein polynomials.
This proof is also valid for higher degrees upto s.

2. Non-negativity: When λ, µ ∈ [0, 3], ul,s(ṽ) ≥ 0(l = 0, 1, ..., s; s ≥ 2).

Proof. By induction for s. If s = 2, we will rewrite the Bernstein-like basis func-
tions as: 

u0,2(ṽ) = U0,3(ṽ) + ( 3−λ
3 )U1,3(ṽ),

u1,2(ṽ) = λ
3 U1,3(ṽ) + ( µ

3 )U2,3(ṽ),
u2,2(ṽ) = U3,3(ṽ) + ( µ−3

3 )U2,3(ṽ).

(10)

Obviously, when λ, µ ∈ [0, 3], we have 3− λ, 3− µ ≥ 0, λ, µ ≥ 0. In fact, let us
recognize that the cubic Bernstein-like basis functions Ul,3(l = 0, 1, 2, 3) are non-
negative. The Bernstein-like basis functions of degree 2 are therefore non-negative.
Now, suppose that the Bernstein-like basis functions of degree t are non-negative. We
obtain s = t + 1 from Equation (6):

ul,t+1(ṽ) = (1− ṽ)ul,t(ṽ) + ṽul−1,t(ṽ), (l = 0, 1, ..., t + 1). (11)

By our inductive hypothesis and the fact that 1− ṽ ≥ 0, ṽ ≥ 0, we can conclude that
the Bernstein-like basis functions of degree s = t + 1 are non-negative.

3. Normalization: For s ≥ 2, ∑s
l=0 ul,s(ṽ) = 1.

Proof. Through induction to s, as we obtain s = 2, from (10)

2

∑
l=0

ul,2(ṽ) =
3

∑
i=0

Ui,3(ṽ) = 1.

Now, assume that the equality holds for s = t. Then, when s = t + 1, according to the
recursive Formula (6) and the inductive hypothesis, we have:

t+1

∑
l=0

ul,t+1(ṽ) =
t+1

∑
l=0

[(1− ṽ)ul,t(ṽ) + ṽul−1,t(ṽ)],

= (1− ṽ)
t

∑
l=0

ul,t(ṽ) + ṽ
t

∑
l−1=0

ul−1,t(ṽ),

= (1− ṽ)(1) + ṽ(1),

= 1.

4. Symmetry:
ul,s(1− ṽ) = us−i,s(ṽ), l = 0, 1, ...n, ṽ ∈ [0, 1].

Proof. By induction on s, when s = 3 from (7) and the symmetry of cubic Bernstein-
like basis functions

ul,3(1− ṽ) = u3−l,s(ṽ), l = 0, 1, 2, 3, ṽ ∈ [0, 1].
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We assume that Bernstein-like basis functions of degree 3 are symmetrical.
Now, assume that the Bernstein-like basis functions of order t are symmetrical. Then,
from the inductive hypothesis and recursive Formula (6), we have:

ul,t+1(1− ṽ) = (1− ṽ)ul−1,t(1− ṽ) + ṽul,t(1− ṽ)

= (1− ṽ)ut+1−l,r(ṽ) + ṽut+1−l−1,t(ṽ)

= (1− ṽ)ut+1−l,t(ṽ) + ṽut−l,t(ṽ)

= ut+1−l,t+1(ṽ).

5. Property at the end points: For l = 0, 1, ..., s, (s ≥ 2):

ul,s(0) =

{
1, l = 0,
0, l 6= 0.

(12)

ul,s(1) =

{
1, l = s,
0, l 6= s.

(13)

Proof. By induction on s, if s = 2, the expression (5) can be obtained by simple
calculation. Now, assume the above condition holds for s = t. When s = t + 1 from
recursive Formula (6) and the inductive hypothesis, we obtain:{

ul,t+1(0) = ul,t(0) = 1, l = 0,
ul,t+1(0) = ul,t(0) = 0, l 6= 0,

(14)

and {
ul,t+1(1) = ul−1,t(1) = 1, l = t + 1,
ul,t+1(0) = ul,t(0) = 0, l 6= t + 1.

(15)

These show that the conclusion listed in (12) and (13) also holds for s = t + 1.

6. Derivative at the corner points: For l = 0, 1, ..., s; (s ≥ 3):

u′l,s(0) =


−(s− 2 + λ), l = 0,
(s− 2 + λ), l = 1,
0, other,

(16)

and

u′l,s(1) =


−(s− 2 + µ), l = s− 1,
(s− 2 + µ), l = s,
0, other.

(17)

Proof. By induction on s, when s = 3, differentiating (7):
u′0,3(ṽ) = (1− ṽ)2(−1 + 4v(−2 + λ)− λ),
u′1,3(ṽ) = (ṽ− 1)(1 + λ + ṽ(1− 7λ + 2µ + ṽ(8λ− 4(2 + µ)))),
u′2,3(ṽ) = ṽ(2(3 + λ− µ) + ṽ(−15− 6λ + 4ṽ(2 + λ− 2µ) + 9µ)),
u′3,3(ṽ) = ṽ2(9 + 4ṽ(−2 + µ)− 3µ).

(18)

It is simple to infer from the above that the findings seen in (16) and (17) are s = 3.
Now, presume that the consequence given in (16) and (17) is s = t while s = t + 1.
From recursive Formula (6), we have:

ul,t+1(ṽ) = (1− ṽ)ul,t(ṽ) + ṽul−1,t(ṽ), l = 0, 1, ..., t + 1, ṽ ∈ [0, 1].
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We obtain the following through differentiating one time:

u′i,t+1(ṽ) = (1− ṽ)u′l,t(ṽ)− ul,t(ṽ) + ṽu′l−1,t(ṽ) + ul−1,t(ṽ). (19)

Taking ṽ = 0 in (19):

u′i,t+1(0) = u′l,t(0)− ul,t(0) + ul−1,t(0). (20)

By induction and the findings suggested in (12) and (13), we have the following
inference:
If l = 0 in (20), then:

u′0,t+1(ṽ) = −(t− 1 + λ).

If l = 1 in (20), then:
u′1,t+1(ṽ) = (t + λ− 1).

If l 6= 0 and l 6= 1 in (20), then:
u′L,t+1(ṽ) = 0.

This conclusion shows that (16) holds for n = t + 1. Similarly, we can prove the (17)
for (s = t + 1).

7. Linear Independence: ∑s
l=0 clul,s(ṽ) = 0 iff ci = 0, l = 0, 1, ..., s; s ≥ 2.

Proof. Sufficient condition is clear, and we shall show the requirement by induction
as follows:
First of all, we find the linear combination to be trivial:

2

∑
l=0

ciul,2 = 0

c0u0,2 + c1u1,2 + c2u2,2 = 0.

Substituting (10) into above equation, we obtain:

c0(U0,3(ṽ) + (
3− λ

3
)U1,3(ṽ)) + c1(

λ

3
U1,3(ṽ) + (

µ

3
)U2,3(ṽ))

+c2(U3,3(ṽ) + (
µ− 3

3
)U2,3(ṽ)) = 0

c0U0,3(ṽ) + U1,3(ṽ)(c0
3− λ

3
+ c1

λ

3
) + U2,3(ṽ)(c1

µ

3
+ c2

µ− 3
3

) + c3U3,3(ṽ) = 0. (21)

By comparing coefficients, we obtain:
c0 = 0,
c0

3−λ
3 + c1

λ
3 = 0,

c1
µ
3 + c2

µ−3
3 = 0,

c3 = 0.

Upon any simplification, we receive from the linear freedom of the cubic Bernstein
basis function: cl = 0, l = 0, 1, 2.
It ensures that the Bernstein-like basis functions of the degree 2 is linearly independent.
Assume the Bernstein-like basis functions of degree t are linearly independent. After
that, we are going to prove that Bernstein-like basis functions are linearly independent
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of degree t + 1.
Let us consider the linear combination:

t+1

∑
l=0

aiul,t+1 = 0, (22)

where cl ∈ R, l = 0, 1, ..., t+ 1. Substituting recursive Formula (6) in the above equation
and rearranging it, we obtain:

(1− ṽ)
t+1

∑
l=0

ciul,t(ṽ) + ṽ
t+1

∑
l=0

clul−1,t(ṽ) = 0. (23)

Because ṽ is an arbitrary value in the interval [0, 1], from the above equation, we
obtain:

t+1

∑
l=0

ciul,t(ṽ) = 0, (24)

and
t+1

∑
l=0

ciul−1,t(ṽ). (25)

Notice that ua,b = 0 if a = −1 or a > b. We obtain our inductive hypothesis along with
(24), cl = 0, l = 0, 1, ..., t. Together with (25), we obtain cl = 0, l = 1, 2, ..., t + 1. Synthe-
sizing the above conclusion, we deduce that cl = 0, l = 0, 1, ..., t + 1. This indicates
that the Bernstein-like basis functions of degree t + 1 are linearly independent.

3.3. Construction and Properties of the Bézier-like Curve

Definition 4. Given control points Vl ∈ Re(e = 2, 3; l = 0, 1, ..., s; s ≥ 2), the expression:

P(ṽ) =
s

∑
l=0

ul,s(ṽ)Vl , ṽ ∈ [0, 1] (26)

is called the Bézier-like curve of degree s, where ul,s(ṽ)(l = 0, 1, ..., s) are the Bernstein-like basis
functions.

Proposition 3. The Bézier-like curve can be represented by linearly combining the classical Bézier
curve with the degree s and s + 1, as follows:

ps(ṽ) = us(ṽ) + us+1(ṽ) + λṽs+1(ṽ) + µv̂s+1(ṽ), (27)

where,

us(ṽ) =
s

∑
l=0

Ul,s(ṽ)Vl .

It is the Bézier curve of degree s, which has the same control points as the Bézier curve. The
following expression:

ps(ṽ) =
s

∑
l=0

ul,s(ṽ)Vl ,

is the Bézier-like curve of degree s. The expression:

us+1(ṽ) =
s+1

∑
l=0

Ul,s+1(ṽ)Rl ,
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is a Bézier curve of degree s + 1, the control points of which are calculated according to the afore-
mentioned:

Rl = 2[
s−2Cl−1 −s−2 Cl−3 +

s−3 Cl−4 −s−3 Cl−1
s+1Cl

Vl−1 +
s−3Cl−3 −s−3 Cl−1

s+1Cl
Vl ] (28)

The expression:

f̃s+1(ṽ) =
s+1

∑
l=0

Ul,s+1(ṽ)Ql ,

is a Bézier curve of degree s + 1, the control points of which are calculated according to the
aforementioned:

Ql =
s−2Cl−2 −s−1 Cl−1

s+1Cl
Vl−1 +

s−2Cl−1
s+1Cl

Vl (29)

and the expression:

f̂s+1(ṽ) =
s+1

∑
l=0

Ul,s+1(ṽ)Pl

is also thre Bézier curve of degree s + 1, the control points of which are calculated according to the
aforementioned:

Pl =
s−1Cl−2 −s−2 Cl−3

s+1Cl
Vl−1 +

s−2Cl−2
s+1Cl

Vl . (30)

Proof. From Proposition (2), we obtain:

ul,s(ṽ) = [1 + 2
s−3Cl−3 −s−3 Cl−1

sCl
+ 2ṽ

s−2Cl −s−2 Cl−2
sCl

+ λ(
s−2Cl−1

sCl
−

s−1Cl
sCl

ṽ)

+µ(−
s−2Cl−2

sCl
+

s−1Cl−1
sCl

ṽ)]sCl ṽl(1− ṽ)s−l . (31)

Applying the definition of Bézier-like curve on (31), we obtain:

ps(ṽ) =
s

∑
l=0

Ul,s(ṽ)Vl +
s

∑
l=0

2
s−2Cl −s−2 Cl−2 +

s−3 Cl−3 −s−3 Cl
s+1Cl+1

Ul+1,s+1(ṽ)Vl

+
s

∑
l=0

2
s−3Cl−3 −s−3 Cl−1

s+1Cl
Ul,s+1(ṽ)Vl +

s

∑
l=0

λ
s−2Cl−1 −s−1 Cl

s+1Cl+1
Ul+1,s+1(ṽ)Vl

+
s

∑
l=0

λ(
s−2Cl−1

s+1Cl
)Ul,s+1(ṽ)Vl +

s

∑
l=0

µ
s−1Cl−1 −s−2 Cl−2

s+1Cl+1
Ul+1,s+1(ṽ)Vl

+
s

∑
l=0

µ(−
s−2Cl−2

s+1Cl
)Ul,s+1(ṽ)Vl

=
s

∑
l=0

Ul,s(ṽ)Vl +
s+1

∑
l=1

2
s−2Cl−1 −s−2 Cl−3 +

s−3 Cl−4 −s−3 Cl−1
s+1Cl

Ul,s+1(ṽ)Vl−1

+
s

∑
l=0

2
s−3Cl−3 −s−3 Cl−1

s+1Cl
Ul,s+1(ṽ)Vl +

s+1

∑
l=1

λ
s−2Cl−2 −s−1 Cl−1

s+1Cl
Ul,s+1(ṽ)Vl−1

+
s

∑
l=0

λ(
s−2Cl−1

s+1Cl
)Ul,s+1(ṽ)Vl +

s+1

∑
l=1

µ
s−1Cl−2 −s−2 Cl−3

s+1Cl
Ul,s+1(ṽ)Vl−1

+
s

∑
l=0

µ(−
s−2Cl−2

s+1Cl
)Ul,s+1(ṽ)Vl .
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Taking into consideration the idea that aCb = 0 if a > b or b ≥ 0 or a < 0, after any
simplification, we obtain:

ps(ṽ) =
s

∑
l=0

Ul,s(ṽ)Vl +
s+1

∑
l=0

2[
s−2Cl−1 −s−2 Cl−3 +

s−3 Cl−4 −s−3 Cl−1
s+1Cl

Vl−1

+
s−3Cl−3 −s−3 Cl−1

s+1Cl
Vl ]Ul,s+1(ṽ) + λ

s+1

∑
l=0

s−2Cl−2 −s−1 Cl−1
s+1Cl

Vl−1

+
s−2Cl−1

s+1Cl
VlUl,s+1(ṽ) + µ

s+1

∑
l=0

s−1Cl−2 −s−2 Cl−3
s+1Cl

Vl−1 +
s−2Cl−2

s+1Cl
VlUl,s+1(ṽ)

=
s

∑
l=0

Ul,s(ṽ)Vl +
s+1

∑
l=0

Ul,s+1(ṽ)Rl + λ
s+1

∑
l=0

Ul,s+1(ṽ)Ql + µ
s+1

∑
l=0

Ul,s+1(ṽ)Pl ,

where Rl , Ql and Pl are given in (28), (29) and (30), respectively.

Along with the properties of the Bernstein-like basis functions and the concept of the
classical Bézier curve, the following properties of the Bézier-like curve are easy to access:

1. Convex hull property: The whole Bézier-like curve has to lie within the convex hull
of its control polygon. This is implemented as the Bernstein-like basis functions being
greater than zero and having a sum towards one.

2. Geometric invariance: However, since p(ṽ) is an affine mixture of the control points,
the Bézier-like curve geometry is distinct of coordinate system selection.

3. Symmetry: Control points of the Bézier curve can be marked as V0, V1, ..., Vs or
Vs, Vs−1, ..., V0 without altering the structure of the curve. They are changed just
in that they are reversed. When we do not understand the path of the curve, we have
a curve:
P(ṽ; V0, V1, ..., Vs) = ∑s

l=0 ul,s(ṽ)Vl = ∑s
l=0 us−l,s(1 − ṽ)Vl = ∑n

l1=0 ul1,n(ṽ)Vn−l1 =
P(1− ṽ; Vs, Vs−1, ..., V0).

4. Geometric property at the endpoints From the property and the derivative at the
endpoints of the Bernstein-like basis functions, we obtain:
P(0) = V0, P(1) = Vs, P′(0) = (s− 2 + λ)(V1 −V0), P′(1) = (s− 2 + µ)(Vs −Vs−1)
These imply that the Bézier-like curve interpolates at the endpoints and tangents at
the end edges.

5. Shape adjustable property: With the control polygon, the form of the famous Bézier
curve can be fully decided. Yet, this is not the case for the Bézier curve. Promising
to fix the control polygon, the form of the Bézier-like curve can also be changed by
adjusting the shape parameters.
Figure 3 displays four Bézier-like curve of degree 3 with similar control polygons with
different shape parameters. From the figure, we can see that the Bézier-like curve
introduces the control polygon by increasing the shape parameter. Besides that, since
the Bézier-like curve seems to be just the classical Bézier curve when λ, µ = 2.
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V0

V1
V2

V3

1 2 3 4 5
x - axis

1

2

3

4

y - axis

Figure 3. Cubic Bézier curve for different values of shape parameters.

4. Open and Closed Curves

In this section, some free form open and closed curves are constructed with different
value of shape parameters.

Here, we construct some free form curves by different degree of Bézier-like curves
with different value of shape parameters. A curve is said to be closed curve if its first and
last control points are equal otherwise it is open curve. Figure 4a shows a closed cubic
Bézier-like curve with different value of shape parameters. In this figure, the blue curve is
for λ, µ = 0.5, the green curve is for λ, µ = 1, the red curve is for λ, µ = 1.5 and the black
curve is for λ, µ = 2.5. Figure 4b,c,e show open cubic Bézier-like curves with the same
shape parameters as mentioned above. Figure 4d shows an open quintic Bézier-like curve
with with the same shape parameters as mentioned above. Figure 4f,g show open quartic
Bézier-like curves with the same shape parameters as mentioned above. In Figure 4g, the
leaf shows a closed cubic Bézier-like curve with different value of shape parameters.

(a) Closed curves when s = 3 (b) Open curves when s = 3

Figure 4. Cont.
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(c) Open curves when s = 3 (d) Open curves when s = 4

(e) Open curves when s = 3 (f) Open quartic Bézier-like curves

(g) Open curves when s = 4

Figure 4. Free form open and closed curves.

5. Development of Bézier-like Surfaces with Shape Parameters

Definition 5. For the control point array Vl,l1 ∈ R3, where (l = 0, 1, 2, . . . , s),(l1 = 0, 1, 2, . . . , s1)
and s, s1 ≥ 3, the tensor product Bézier-like surfaces can be defined as:

p(ṽ, ṽ1; µ, λ, µ1, λ1) =
s

∑
l=0

s1

∑
l1=0

Pl,l1 ul,s(ṽ)ul1,s1(ṽ1) 0 ≤ ṽ, ṽ1 ≤ 1, (32)

with control points Vl,l1 , where ul,s(ṽ) and ul1,s−1(ṽ1) are Bernstein-like basis functions and λ, µ,
and λ1, µ1 are the shape parameters for the basis functions ul,s(ṽ) and ul1,s1(ṽ1), respectively.

Remark 1. The tensor product of Bézier-like surfaces has properties identical to the tensor product of
the standard Bézier surfaces. By holding the control polygon unchanged, the structure of the Bézier-
like surfaces may also be changed by adjusting the form parameters. This also has other properties
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close to the classic Bézier surface, such as the angular point interpolation nature, symmetry, form
flexible property, convex hull asset, boundary property and affine invariance property.

Impact of Shape Parameters on Bézier-like Surfaces

Surfaces are simply the generalization of structures, the joint motion of two separate
curves with the mesh points surfaces. However, much like curves, surfaces do display
differences in their actions by changing various form parameters.

Example 1. Assume a bi-cubic Bézier-like surface:

p(ṽ, ṽ1; λ, µ, λ1, µ1)

=
3

∑
l=0

3

∑
l1=0

Ql,l1 ul,3(ṽ)ul1,3(ṽ1) 0 ≤ ṽ, ṽ1 ≤ 1
(33)

Figure 5 demonstrates three Bézier-like 3× 3 degree surfaces with the same control
points but different shape parameters. In Figure 5, the shape parameters λ = 0.5, 1.8, 3, µ =
0.6, 1.9, 3, λ1 = 0.5, 1.8, 3 and µ1 = 0.6, 1.9, 3, presents the three different Bézier-like surfaces.

0

1

2

30

1

2

3

0.0

0.5

1.0

1.5

2.0

(a) Bézier-like surfaces of degree s = 3

0

1

2

30

1

2

3

0.0

0.5

1.0

1.5

2.0

(b) Cubic Bézier-like surfaces

0

1

2

30

1

2

3

0.0

0.5

1.0

1.5

2.0

(c) Bézier-like surfaces when λ = µ =
λ1 = µ1 = 3

Figure 5. Three rectangular surfaces with the same control net but different shape parameters.
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6. Conclusions

In this paper, the generalized Bézier-like curves along with generalized Bernstein-like
basis functions with two shape parameters have been constructed. Some properties of gen-
eralized Bernstein-like basis functions and Bézier-like curves have been proved. Free form
curves have been constructed by Bézier-like curves. In addition, some surfaces have been
constructed by the Bézier-like curve. The effect of shape parameters on curves and surfaces
have also been discussed. In contrast with other Bézier curves and surfaces techniques
having multiple shape parameters, our interpretation of basis functions determined in this
research is simple and extra sufficient.
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