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Abstract: Selecting the most miniature possible set of genes from microarray datasets for clinical
diagnosis and prediction is one of the most challenging machine learning tasks. A robust gene
selection technique is required to identify the most significant subset of genes by removing spurious
or non-predictive genes from the original dataset without sacrificing or reducing classification
accuracy. Numerous studies have attempted to address this issue by implementing either a filter
or a wrapper. Although the filter approaches are computationally efficient, they are completely
independent of the induction algorithm. On the other hand, wrapper approaches outperform filter
approaches but are computationally more expensive. Therefore, this study proposes an enhanced
gene selection method that uses a hybrid technique that combines the Symmetrical Uncertainty (SU)
filter and Reference Set Harmony Search Algorithm (RSHSA) wrapper method, known as SU-RSHSA.
The framework to develop the proposed SU-RSHSA includes numerous stages: (1) investigate a
novel gene selection method based on the HSA and will then determine appropriate values for
the HSA’s parameters, (2) enhance the construction process of the initial harmony memory while
satisfying the diversity of the solution by embedding a reference set within the HSA (RSHSA), and
(3) investigates the effect of integrating Symmetrical Uncertainty (SU) as a filter and RSHSA as a
wrapper (SU-RSHSA) to maximize classification accuracy by leveraging their respective advantages.
The results demonstrate that the SU-RSHSA outperforms the original HSA and SU-HSA in terms
of classification accuracy, a small number of selected relevant genes, and reduced computational
time. More importantly, the proposed SU-RSHSA gene selection method effectively generates a small
subset of salient genes with high classification accuracy.

Keywords: symmetrical uncertainty; reference set; harmony search algorithm; gene selection

1. Introduction

DNA microarrays and RNA sequencing (RNA-seq) are the two significant technologies
in carrying out high-throughput analysis of transcript abundance. The advancement of
these technologies has enabled scientists to accumulate massive gene expression microarray
data. ArrayExpress and Gene Expression Omnibus are two examples of an online repository
of transcriptome data with repositories size close to a million DNA microarray datasets.
The main challenge posed by microarray data is the restricted number of samples compared
to the high dimensionality of genes, which makes the classification method to select the
salient genes for the classification process difficult [1]. The main aim of the microarray
dataset is to create an effective model to discriminate the gene expression of samples, i.e.,
to differentiate between the normal or abnormal states of cancers and assign tissue samples
to various types of disease.

Selecting a subset of genes that is optimal for the purpose classification is an arduous
and crucial task because the number of genes that have a high correlation with a specific
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phenotype is very small compared to the thousands of genes in the sample. To facilitate this
task, a feature selection method was proposed in reducing the dimensionality of features
by choosing the most salient genes and eliminating the redundant and irrelevant genes
while retaining high classification accuracy.

The feature selection problem is an NP-hard problem. This is because the search space
of potential subsets of features grows exponentially along with the number of features.
Therefore, performing an exhaustive search will not lend itself to be conducted using an
exhaustive search through the entire solution search space because doing so will take
a long computing time and incur a high cost. To tackle this problem, the only features
relevant for classification tasks and highly correlated with specific phenotypes must be
chosen, and irrelevant, redundant, and unproductive features must be removed to enhance
classification accuracy and computational efficiency.

The search strategy is an essential part of any FS technique to return the given dataset’s
salient features. Many works have been performed using various strategies to treat the
searching process problem using a few methods. One of the methods is called sequential
forward strategy (SFS) [2]. SFS starts the search with a new idle set and successfully adds
the most relevant features from the original set into the new set sequentially. In contrast,
another method is the sequential backward strategy (SBS) [3]. SBS works opposites to
SFS, where it starts with a complete set and can successfully delete the most irrelevant
features from the set without degrading the performance. A third alternative strategy,
called bidirectional selection [4], is based on FSF and SBS: the algorithm starts from both
ends, where it starts to delete and add features simultaneously. In addition, the fourth
choice as a strategy is one where the search is started with a chaotic selected subset based
on SFS, SBS, or a bidirectional strategy. The complete search strategy [5] may provide better
solutions to an FS task owing to the precision in its search, but it is not practically applicable
for a large number of features.

The search strategies, as mentioned earlier, try to find a solution between near-optimal
and sub-optimal regions because the local search is used instead of meta-heuristics search
algorithms. Furthermore, these search techniques suffer from computational complexity
and employ a partial search in the feature space. Therefore, near-optimal solutions are
rather hard to obtain using the aforementioned methods. Hence, many researchers started
focusing on meta-heuristics algorithms due to their efficiency in getting better solutions
within a reasonable time. In the past few decades, many search strategies have been used
to execute and solve the feature selection problem, including genetic algorithms, hybrid
genetic algorithms [6], particle swarm optimization [7], binary particle swarm optimization
(BPSO) [8], tabu search [9], simulated annealing [10,11], and ant colony optimization [12].

Gene selection techniques for the microarray data could be grouped into three major
models: filter, wrapper, and hybrid [5]. The filter technique is often used as a pre-processing
phase and is contingent upon the data’s intrinsic properties as opposed to being biased
towards a specific classifier; it relies on ranking the genes by computing the weight values of
genes according to their correlation with the class before employing the classifier. In general,
the filter method is computationally efficient, but it does not consider the interaction
between the genes and the classifier; this method also fails to address redundancy amongst
the chosen genes. The wrapper method uses machine learning to evaluate the subsets’
relative usefulness and search for the best set of genes in the search space. Typically, the
wrapper method outperforms the filter method when it comes to classification accuracy.
Still, it is computationally more expensive than the filter method because the classifier
must be used to estimate a value for each new generating subset. The third model is the
hybrid approach [5] and cooperatively introduces two approaches: filter and wrapper.
There are many techniques in the pattern recognition field that are not designed to treat a
huge amount of redundant and irrelevant genes. Therefore, in the last few decades, the
hybridization of feature selection techniques has demonstrated great potential to address a
huge amount of data [13–15].
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Many meta-heuristic approaches to gene selection problems have been proposed due
to their effectiveness in obtaining better solutions in a reasonable time. The harmony search
algorithm (HSA) is a population-based method that is of interest to researchers because it is
more flexible and has a well-balanced mechanism to improve global and local exploration
abilities [16]. HSA continues to be of interest to researchers [17] for several reasons:

(i) Compared to the GA, the HSA can overcome the drawback of the building block
theory of GAs by considering all existing solutions instead of considering only two so-
lutions (parents) in its reproduction. Also, it does not require crossover and mutation
operators. Thus it needs less computational effort, in terms of memory and runtime;

(ii) In contrast to heuristic techniques, the HSA is more flexible and has a well-balanced
mechanism to improve global and local exploration capabilities.

Despite some progress in improving HSA approaches, researchers must still overcome
some flaws, such as slow convergence caused by the HSA’s entirely random mechanism for
generating the initial harmony memory. The HSA also has a high degree of diversification
(higher exploration), but its exploitation capabilities are limited. Aside from these disadvan-
tages of the HSA, gene selection problems pose some challenges in over-fitting and issues
caused by randomness when generating the initial harmony memory (HM). The HSA’s
entirely random mechanism that generates the initial harmony memory (HM) may have
a negative effect on the quality of the improvised solution. A solution can be discarded
because its quality is worse than the existing solutions in the HM. However, HSA can
identify the location of reasonable solutions by exploring multiple search spaces at a time.
But HSA is poor in exploiting the desired solutions in the search space because it focuses
more on exploring the search space. This means that the HSA has a strong exploration
capability but is weak in exploitation. Therefore, there is an imbalance between search
diversity and intensification.

These issues prompted the investigation of the HSA, which has yet to be applied
to gene selection problems. This paper proposes a hybrid SU filter with an enhanced
HSA, dubbed the hybrid Symmetrical Uncertainty and the Reference Set Harmony Search
Algorithm (SU-RSHSA), to address the aforementioned drawbacks. The SU-RSHSA works
by obtaining the most relevant subset of genes, resulting in improved classification accuracy,
a smaller number of genes selected, and a shorter computational time. The following
summarizes the contributions made by this paper:

i. It proposed a method for selecting genes based on the HSA and enhancing the
initial harmony memory construction process through the use of a reference set
mechanism within the HSA (RSHSA);

ii. It proposed a hybrid SU filter with an RSHSA wrapper to improve gene selection
accuracy while requiring less computational time (SU-RSHSA).

The rest of the paper is organized as follows. In Section 2, the HSA is introduced briefly
before explaining how the HSA is hybridized with a filter method. An in-depth description
of our proposed SU-RSHSA is also described in Section 2. Section 3, in comparison, contains
the presentation of the experimental results and the comparison of the current algorithm
with other existing gene selection algorithms. The discussion section (Section 4) includes
the analysis with the interpretation of the experimental results and how it can be further
improved as future work. In the end, the paper is wrapped up in Section 5 with a summary
and a few remarks.

2. Materials and Methods
2.1. The Harmony Search Algorithm

The Harmony Search Algorithm (HSA) is a population-based meta-heuristic algorithm
based on the improvisation process of a skilled musician. It can be conceptualized using an
analogy with a group of musicians or music bands searching for a harmony of a perfect
state by adjusting the pitch of their musical instruments within a possible range. If all
the pitches make a pleasing harmony, the musicians will memorize the pitches. Based
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on this memorized harmony, the chances of playing a better harmony are enhanced in
their next rehearsal. The process of improvisation will improve their music, rehearsal
after rehearsal. The quality of the improvised harmony is examined using an aesthetic
standard [18]. Geem et al. [17] found this fascinating connection between optimization
methods and the music band improvisation process and proposed the HSA. Like the other
population-based algorithm, HSA starts with generating initial solutions randomly. The
quality of every solution is evaluated by incorporating the decision variables values into
the objective function. Objective function values determine the quality of decision variables
of an optimization problem. Suppose any of the generated solution quality is good, the
value the value of the decision variables will be memorized, and the chance to make a
better solution will improve, iteration after iteration.

HSA was suggested by [17] and is a population-based meta-heuristic optimization
method, which has been used in numerous optimization problems successfully, includ-
ing rostering [19], dynamic optimization problems [20], word sense disambiguation [21],
nonlinear discrete-time systems [22], and complex high-dimensional optimization prob-
lems [23]. Generally, a musician can utilize one of the three following rules when they
want to improvise their music: (1) playing a well-known or memorized pitch or music;
(2) playing a pitch that is almost similar to a pitch in their memory, and (3) playing new
composed notes or random notes. These three rules are the main elements of HAS as
formalized by [18]. The three corresponding elements are HM, randomization, and pitch
adjustment.

The HSA comprises of the following six steps: Step 1: HSA Parameter Initialization;
Step 2: Initializing Harmony Memory (HM); Step 3: Improvising new harmony (G′); Step 4:
Updating the Harmony Memory; Step 5: Repeating steps 2–3 until termination criteria are
reached; and Step 6: Cadenza.

Step 1: HSA parameter initialization

The parameters involved include the following:

(a) Harmony Memory Size (HMS): The HMS defines the number of solution vectors that
the HM can store.

(b) Harmony Memory Consideration Rate (HMCR): HMCR is employed to improvise a
new harmony vector.

(c) Pitch Adjusting Rate (PAR): HSA uses this parameter in the sub-process of improvisa-
tion process called pitch adjustment.

(d) Number of iterations (NI) as the termination criteria.

Step 2: Initialize harmony memory

The initial population of Harmony Memory (HM) contains HMS vectors generated
randomly in a structure of a two-dimensional matrix. Figure 1 shows an HM structure
where each row represents one chromosome (solution). Based on the fitness values f(G),
solutions are reversely arranged in the HM. The fitness value in this work is termed
classification accuracy (obtained through the NB classifier, which is based on selected
genes). In this work, the HSA adopts the binary-coding scheme for the gene selection
problem, where a binary string represents every decision variable.

Mathematics 2022, 10, x FOR PEER REVIEW  4  of  27 
 

 

perfect state by adjusting the pitch of their musical instruments within a possible range. 

If all the pitches make a pleasing harmony, the musicians will memorize the pitches. Based 

on this memorized harmony, the chances of playing a better harmony are enhanced  in 

their next rehearsal. The process of improvisation will improve their music, rehearsal after 

rehearsal. The quality of the improvised harmony is examined using an aesthetic standard 

[15]. Geem et al. [14] found this fascinating connection between optimization methods and 

the music band improvisation process and proposed the HSA. Like the other population‐

based algorithm, HSA starts with generating  initial solutions randomly. The quality of 

every solution is evaluated by incorporating the decision variables values into the objec‐

tive function. Objective function values determine the quality of decision variables of an 

optimization problem. Suppose any of the generated solution quality is good, the value 

the value of the decision variables will be memorized, and the chance to make a better 

solution will improve, iteration after iteration. 

HSA was suggested by [14] and is a population‐based meta‐heuristic optimization 

method, which has been used in numerous optimization problems successfully, including 

rostering [16], dynamic optimization problems [17], word sense disambiguation [18], non‐

linear discrete‐time systems [19], and complex high‐dimensional optimization problems 

[20]. Generally, a musician can utilize one of the three following rules when they want to 

improvise their music: (1) playing a well‐known or memorized pitch or music; (2) playing 

a pitch that is almost similar to a pitch in their memory, and (3) playing new composed 

notes or random notes. These three rules are the main elements of HAS as formalized by 

[15]. The three corresponding elements are HM, randomization, and pitch adjustment. 

The HSA comprises of the following six steps: Step 1: HSA Parameter Initialization; 

Step 2: Initializing Harmony Memory (HM); Step 3: Improvising new harmony (G′); Step 

4: Updating the Harmony Memory; Step 5: Repeating steps 2–3 until termination criteria 

are reached; and Step 6: Cadenza. 

Step 1: HSA parameter initialization 

The parameters involved include the following: 

(a) Harmony Memory Size (HMS): The HMS defines the number of solution vectors that 

the HM can store. 

(b) Harmony Memory Consideration Rate (HMCR): HMCR is employed to improvise a 

new harmony vector.   

(c) Pitch Adjusting Rate (PAR): HSA uses this parameter in the sub‐process of improvi‐

sation process called pitch adjustment.   

(d) Number of iterations (NI) as the termination criteria. 

Step 2: Initialize harmony memory 

The initial population of Harmony Memory (HM) contains HMS vectors generated 

randomly  in a structure of a two‐dimensional matrix. Figure 1 shows an HM structure 

where each row represents one chromosome (solution). Based on the fitness values f(G), 

solutions are reversely arranged in the HM. The fitness value in this work is termed clas‐

sification accuracy (obtained through the NB classifier, which is based on selected genes). 

In this work, the HSA adopts the binary‐coding scheme for the gene selection problem, 

where a binary string represents every decision variable.   

 

Figure 1. Harmony Memory. Figure 1. Harmony Memory.

Step 3: Improvise a new harmony



Mathematics 2022, 10, 374 5 of 26

The main aim of this step is to improvise a new harmony (solution) by utilizing the
primary HSA operator. In this step, the diversification (exploration) and intensification
(exploitation) in the search space remain, where the HMCR and PAR parameters are the
major important factors to intensify or diversify the search, respectively, for solutions
improved locally and globally [24]. In this step, a new harmony is being improvised and
involves three steps: (i) memory consideration, (ii) pitch adjustment, and (iii) random
consideration.

(i) Memory consideration By basing on HMCR, a new solution is generated. First, a
random number, R, is generated within the range [0, 1] and compared to HMCR.
Suppose R is fewer than the HMCR (R < HMCR), then the first gene (or decision
variable) is chosen from the memory consideration; the second gene, g2, is chosen
from

(
g2, . . . , gHMS

2
)
, and the process is being repeated. If the R-value is larger than

HMCR (R > HMCR), a random consideration process is used to determine the gene.
Usually, the selected HMCR value is between 0.7 and 0.95 because if the HMCR is
very low, only a few best genes are chosen and will slowly converge. However, if
the HMCR is set nearly to 1, nearly all the genes will be employed in the HM. This
incremental step ensures that good harmonies consider the new harmony elements.

(ii) Pitch adjustment The second step is pitch adjustment. The pitch adjustment is similar
to the genetic algorithm’s mutation procedure. Every gene obtained during the
memory consideration process is evaluated to determine if there is a need to be tuned
(‘pitch-adjusted’) with the probability PAR or leave it as it is with the probability
(1 − PAR). For example, if the value of PAR is 0.3, the probability of tuning the
decision variable value is 30%, while (1 − PAR) = (1 − 0.3) = 70% is the probability of
not introducing any change to the variable. The adjustment here mutates (flipped or
not) the gene from either 0 to 1 or 1 to 0 because only two values, i.e., ‘0’ and ‘1’, exist
in binary space. This process employs the PAR, as given in Equation (1):

Gi ←
{

mutate g1 w, p PAR
g1 w, p 1− PAR

(1)

(iii) Random consideration The third step is random consideration or randomization.
This step selects a random value from the possible value range to enhance the diver-
sity of the solution to obtain global optimization. Genes not chosen from the HM
with (1 − HMCR) probability are chosen randomly, as depicted in Equation (2) (the
possibility of range value for the problem, in this case, is either 0 or 1).

g′i ←
{

g′i ∈
{

g1
i , g2

i , . . . , gHMS
i

}
w, p HMCR

g′i ∈ Gi w, p (1− HMR)
(2)

For example, if HMCR = 0.7, the probability of choosing the decision variable value
from the HM is 70% (memory consideration), while the probability of selecting a value
randomly (random consideration) from the possible range of values of the variable is
30%, i.e., (1 − HMCR).

Step 4: Update the harmony memory

The improvised harmonies are checked based on the objective function f(G), and
should the harmony vector be better than the worst harmony, the worst harmony in the
HM will be replaced with the improvised harmony. If not, the new harmony would be
ignored.

Step 5: Check the termination criterion

The NI represents the number of iterations for which the HSA will be repeated. The
maximum NI (or classification accuracy, equal to 100%) is regarded as the termination
criterion. If the termination criterion is met, the computation will be stopped. If not, steps 3
and 4 are being repeated.
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Step 6: Cadenza

A cadenza (from Italian: ka"dEntsa) is generically known as an improvised musical
passage played by a soloist while other musicians rest or sustain a note or chord. Usually,
a cadenza will occur over the final note in a piece of musical work, and at the end of the
cadenza, other orchestra musicians re-enter. During a cadenza, the soloist plays a musical
chord sequence moving to a harmonic close, indicating that the performer should return to
the most fantastic harmony played in the improvisation process. With respect to HSA, a
cadenza could be regarded as the last step taking place at the final stage of the search for
the best harmony. The HSA returns the best harmony in this process that was found and
stored in the HM, referencing the fitness function f(G).

2.2. Hybridizing an Enhanced HSA with a Filter Method

The HSA for the gene selection problem has been discussed thoroughly in the prior
section. The major six steps of the HSA were elaborated in detail. The experiment results
tabulated in Section 3 reveal that the HSA could obtain viable solutions. Still, they were
not as impressive as the results reported in the literature, which may be due to the entirely
random mechanism of initializing the HM and the fully random selection in the HMCR
and PAR procedures. This random mechanism can lead to poor performance and slower
convergence, and the difficulty of dealing with high-dimensionality datasets thus becomes
high.

To enhance the quality of the solutions, a set of modifications to the HSA mechanism
and a filter method are proposed to be hybridized to address the HSA weaknesses. The
enhanced HSA is called the Reference Set Harmony Search Algorithm (RSHSA), while
the filter method is termed by Kannan [25] as the Symmetrical Uncertainty (SU). The
hybridized method is called the SU-RSHSA, which is designed to select the best genes in
two stages, as displayed in Figure 2. Sections 2.3 and 2.4 reveal how SU-RSHSA performs
in two stages in detail.
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2.3. First Stage: Selecting Genes Using Symmetrical Uncertainty (SU)

The first stage sees the SU filter selecting the gene having the highest SU score for
initializing the HM. The second stage sees the RSHSA wrapper (that is, a combination
of the RSHSA search strategy with an NB classifier) being employed to identify the gene
subset. This stage’s main objective is to eliminate the redundant and irrelevant genes and
thus reduce the dataset dimensionality. It is important to obtain an optimal set of genes to
eliminate non-informative association information. Moreover, reducing the dimensionality
of the dataset with the least information loss will improve the system’s efficiency. According
to the SU value, each gene is evaluated using SU and ranked in ascending order.

A SU-based correlation measure is used to measure the goodness of the genes for the
classification between the genes and the target concepts. It is employed to help eliminate
irrelevant genes. The SU value is computed for every gene, and the ranking of the values is
in the order from the highest to the lowest, based on their SU value. Generally, the genes
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with the highest SU values have a greater probability of being chosen for the next stage,
and those with lower SU values are likely to be removed.

Therefore, we choose Fast Correlation-Based Filter (FCBF) in this proposed algorithm,
which was earlier introduced by [26] to achieve the first stage objective. The FCBF is con-
tingent upon the entropy’s information-theoretical concept [25], a measure of the random
variable uncertainty. The variable X entropy is defined as in Equation (3):

H(X) = −∑i P(xi)log(P(xi)) (3)

and after observing values of another variable Y, the definition of entropy of X is as in
Equation (4):

H(X|Y) = −∑i P(xi)∑i(xi|yi)log2(P(xi|yi)) (4)

where P(xi) is the prior probability for all values of X, and P(xi|yi) is the posterior probabil-
ities of X, given the values of Y. The amounts by which the entropy of X decreases reflects
additional information about X that is provided by Y and is termed as the Information
Gain (IG), provided by Equation (5):

IG(X|Y) = H(X)− H(X|Y) (5)

Based on Equation (5), a gene Y is regarded as more correlated to gene X than to gene
Z, if IG(X|Y) > IG(Z|Y) [24].

The information obtained for the two random variables, X and Y is symmetrical [26].
Eom and Zhang [27] state that the desired property measures the correlation between
features is termed as symmetry but is biased in favor of genes with higher values. In
ensuring that the values are comparable and that they have the same effect, they must be
normalized. Therefore, the symmetrical uncertainty as depicted in Equation (6) which was
introduced by [28] and applied by [25] is also used in this work:

SU = 2.0×
[

IG(X|Y)
H(X) + H(Y)

]
(6)

The IG’s bias towards features that have more values is compensated by Symmetrical
Uncertainty. The range of possible values for SU is between 0 and 1 intervals. The value ‘1’
represents knowledge of ‘0’ predicting the value of ‘1’, or vice versa completely (i.e., the
knowledge of one feature completely predicts the other) and the value ‘0’ indicates that X
and Y are independent (i.e., X and Y are uncorrelated). Thus, a pair of features is treated
symmetrically by SU.

2.4. Stage 2: Reference Set Harmony Search Algorithm (RSHSA)

In this stage, the RSHSA explores the gene subset space (which has been filtered by
SU) with the highest gene rank score based on the SU value from the first stage. Therefore,
the complexity of the search gene space is reduced to a smaller searching space, thereby
reducing the computational effort of the induction algorithm. The highest gene in the rank
is chosen to be used in the second stage (the wrapper phase). A wrapper method that
combines RSHSA and an NB classifier is employed in the second stage in accomplishing
the gene subset selection. The goodness of gene subsets is analyzed using classification
accuracy techniques. The RSHSA consists of the seven major steps as depicted in Figure 2:

i. Step 1: Initialization of the parameters of the RSHSA, namely, the Reference Set Har-
mony Memory Size (RSHMS), Quality Harmony Memory Size (QHMS), Diversity
Harmony Memory Size (DHMS), HMCR, PAR, and NI;

ii. Step 2: Initialization of the HM;
iii. Step 3: Constructing the RSHM;
iv. Step 4: Improvisation of a new harmony (G′);
v. Step 5: Updating the RSHM;
vi. Step 6: Inspecting the stopping criterion; and
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vii. Step 7: Cadenza returns the best harmony.

These steps show that the RSHSA steps are similar to HSA, but the main difference
lies in the method used to initialize the HM; in the former, the HM is initialized randomly,
whereas the HM in the SU-RSHSA is initialized with reference to top-ranked genes from
the first stage (Figure 2). Therefore, please kindly note that this section on RSHSA only
describes the modified steps (i.e., Steps 2–4, and 6) because Steps 5 and 7 are similar to the
HSA discussed in the previous section.

The proposed RSHSA algorithm begins with similar steps in HSA, initialization.
However, in the basic HSA, the initialization step of the Harmony Memory (HM) is ran-
domly filled with candidate solutions, and the improvisation process is based on this HM.
However, in RSHSA, the proposed methods attempt to enhance HSA by introducing the
following modifications:

(i) the initialization of the HM mechanism is enhanced by using the RS mechanism in
generating a new HM called the Reference Set Harmony Memory (RSHM);

(ii) the fully random selection mechanism in the HMCR and PAR procedures is modified
and guided by referring to the quality and diversity of solutions from the RSHM; and

(iii) the update mechanism of HM is modified. However, the stopping criterion is un-
modified and is the same as that used in the HSA, as presented above. The following
subsections describe these modifications.

2.4.1. Modification 1: Construct the Reference Set Harmony Memory (RSHM)

In the basic HSA, the initialization step of the HM is randomly filled with candidate
solutions, and the improvisation process is based on this HM. However, in this paper,
instead of using a fully random mechanism of HM used in the HSA, the proposed RS is
employed to construct a new harmony called the RSHM as a first modification. Algorithm 1
illustrates the pseudo-code for the construction of the RSHM. The size of the evolving
RSHM set of elite solutions has a comparatively small or moderate size (20), whereas the
RSHM has a wide collection of elite solutions selected systematically.

Algorithm 1 Construction of the Reference Set Harmony Memory

1: begin
2: for I =( 1 to HMS) do
3: RSHM = ∅;
4: Divide the RSHM into two sets
5: Select the top 10 quality harmony memory solutions from the HM

and save it in Quality Harmony Memory (QHM)
6: Select the most diverse harmony memory solutions from the QHM and save it in

Diversity Harmony Memory (DHM)
7: Order the solutions in QHM according to their objective function
8: Order the solutions in DHM according to their dissimilarity value
9: end for
10: end

In the third step of the RSHSA, an initial reference set with the size of 20 harmonies,
called the RSHM (Figure 3), is created (only at the first iteration) based on the HM. These
are elite reference solutions chosen systematically from the HM, where the highest quality
and diversity solutions are considered. This ensures the search process is diverse while
maintaining high-quality solutions [7], whereby elite solutions are identified in this work
following Mansour et al. [29], whereby in their study, the size of the RSHM is equal to 0.4.
RSHM is divided into two subsets, QHM and DHM (RSHM = QHM + DHM), as follows:

(a) Select the top 10 quality solutions from the initial HM and store them in QHM;
(b) Measure the diversity of the remaining solutions in the HM. This is completed by

measuring the similarities to the ten best-quality solutions in the QHM. This process
is carried out by counting the similarity between the solutions;
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(c) From the HM, the best diverse solutions are chosen from the 10 solutions that are least
similar to the best-quality ones in the QHM and are stored in the DHM, as previously
described [30]. The least similar solutions have other solution structures that are
obtained from various areas in the search space.
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2.4.2. Modification 2: Improvise a New Harmony Based on the RSHM

The second modification in the RSHSA addresses methods to combine the existing
solutions in the RSHM (QHM+DHM) and thereby improvise new better-quality solutions.
The improvised solution in the basic HSA is randomly filling the HM. The HM has a
significant reliance on randomization in choosing the solutions. These solutions are selected
during the improvisation step. However, the RSHSA improvised solution is unlike that
of the basic HSA because the improvised solution is based on the RSHM, where the
solutions with better fitness values (higher-quality solutions) and the solutions with the
maximum, minimum distances from the high-quality harmonies have a higher chance
of being selected to improvise new harmonies. This is based on the fact that musicians
usually select a relatively good pitch from their most recent memory to improvise the best
harmonies. The improvisation process in the RSHSA invokes the following processes in
succession:

(a) First, a random number R is being generated in [0, 1].
(b) If the random number R that is generated is less than HMCR, then the value of the first

decision variable, g1, of the new solution, G′, is selected from QHM
(

g1, . . . , gOHM
1

)
.

The second gene is chosen from
(

g2, . . . , gOHM
2

)
, and the process is repeated. Other-

wise, the decision variable value of gj
i (that are not picked from the QHM with the

probability of (1 − HMCR)) is chosen from the DHM, as shown in Equation (7). Thus,
the algorithm preserves or even improves the good characteristics of the original
solutions from the QHM and DHM.

g′i ←
{

g′i ∈
{

g1
i , g2

i , . . . , gQHMS
i

}
w, p HMCR

g′i ∈
{

g1
i , g2

i , . . . , gDHMS
i

}
w, p (1− HMR)

(7)

(c) Next, the pitch adjusting process is carried out using the predetermined PAR value.
The role of the pitch adjusting process is making the adjustment to the decision
variable value chosen previously from the DHM into neighboring value. Every gene
obtained from the DHM will be evaluated in deciding if there is a need for it to
be tuned (pitch-adjusted) with the probability of PAR or leave it as it is with the
probability (1 − PAR) through the generation of a random number between [0, 1].
Should the number generated be lower than the PAR value, the value of the decision
variable should be adjusted. Otherwise, the decision variable value must remain
unchanged with probability (1 − PAR). The decision variable value is changed by
mutating the gene from 1 to 0 or vice versa. The improvisation process is being
repeated until a complete harmony is generated.
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As it can be observed, the RSHSA controls the balance between the quality and the
diversity of the solutions with the use of the values of HMCR and PAR. If the values
of HMCR were too high, the new harmony would be inherent to most of the decision
variables from the QHM, whereas a small value of HMCR will randomly generate most
of the decision variables from the DHM. Therefore, by taking the quality and diversity of
the solutions in the RSHM into consideration while improvising a new harmony, it may
also help in generating a better harmony. On the other hand, the diversification process
in the RSHSA is controlled by the PAR value, and it is applied only to the DHM. A high
value of PAR implies a high diversification, whereas a small value of PAR implies less
diversification in the search process (the PAR is similar to a mutation operator in a GA).
Algorithm 2 depicts the improvisation step’s pseudo-code but only shows the proposed
modifications.

Algorithm 2 Pseudo-Code of the Improvisation Process in the Reference Set Harmony Search
Algorithm

1: for i = 1 to the maximum number of iterations (NI)
2: Gi= empty
3: for j = 1 to number of decision variables
4: r1 = uniform random number between [0, 1]
5: if (r1 < HMCR)
6: g′j = randomly selected from QHM j
7: else
8: g′j = randomly generated from DHM (with probability 1 − HMCR) j
9: r2 = uniform random number between [0, 1]
10: if (r2 < PAR)
11: pitch adjusted mutate g i j
12: else
13: do not change the decision variable value
14: end if
15: end if
16: Add g′j to HM
17: end for j
18: end for i

2.4.3. Modification 3: Update Reference Set Harmony Memory

The third modification in the RSHSA addresses updating the RSHM. The RSHSA has
different update strategies for updating the RSHM when there is a better quality of solution,
or a more diverse solution obtained.

In this step, the improvised harmonies are checked by basing on the objective function
f(G′). The improvised harmony would be replacing the worst solution in the HM should the
quality of the new harmony turn out to be better (replacing solution with the worst quality
in QHM by the newly improvised solution G′; if not, replace the solution in DHM that
shows the worst diversity (more similarity)). Otherwise, the new harmony is discarded.

As it can be observed, the update process relies on memory usage, which is limited,
to sustain a good balance between the search’s diversification and intensification and can
cover various promising areas in the solution space, which enables it to eliminate solution
duplications. In contrast, in the HSA, the update process of the search relies only on the
relative fitness function value.

2.5. Datasets

The experiments were carried out on a collection of 10 machine learning datasets from
the University of California at Irvine repository that could be freely accessed from http:
//csse.szu.edu.cn/staff/zhuzx/Datasets.html (accessed on 30 November 2021). Table 1
describes the datasets used in this paper. These datasets were chosen to test the proposed
algorithm’s effectiveness in handling varying dimensionalities. As shown in Table 1, the

http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Datasets.html
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datasets used for this research suffer samples imbalance. There is huge discrimination
between the dataset regarding the number of genes across the selected datasets.

Table 1. Description of the datasets.

Data Set Genes Samples Classes Description

ALL-AML 7129 72 2

Leukemia dataset consisting of 72
samples whereby all are acute
leukemia patients either Acute
Myelogenous Leukemia (AML)
and Acute Lymphoblastic
Leukemia (ALL)

ALL-AML-3C 7129 72 3 AML, ALL B-cell, and ALL T-Cell

ALL-AML-4C 7129 72 4
AML-Bone Marrow,
AML-Peripheral Blood, ALL
B-cell, and T-Cell

Colon 2000 62 2

40 tumor biopsies are from
tumors (labeled as “negative”)
and 22 normal biopsies (labeled
as “positive”)

CNS 7129 60 2
Contain gene expression that can
be used to predict central
nervous embryonal tumors

Lymphoma 4026 62 3 Three most widespread adult
lymphoid tumors

MLL 12,582 72 3 AML, ALL, and mixed-lineage
leukemia (MLL)

Breast 24,481 97 2

Dataset of expression profiles that
were obtained from a cohort of 78
lymph node-negative patients
who were having sporadic
disease, whose tissues profiled
with the use of microarrays
containing 24,481 probes

Ovarian 15,154 253 2 Dataset with 162 cases of ovarian
cancer from 91 normal persons

SRBCT 2308 83 4 Small, round blue cell tumors
(SRBCT) from the childhood

2.6. Parameter Settings

Table 2 reveals the parameter settings for the algorithm proposed. In the SU stage of
this approach, the SU filter is terminated after the top 100 genes have been selected, as per
the recommendation of [28].

Table 2. Parameter settings for the SU-RSHSA.

Parameter Value

Reference Set Harmony Memory Size (RSHMS) 20
Quality Harmony Memory Size (QHMS) 10
Diversity Harmony Memory Size (DHMS) 10
Harmony Memory Consideration Rate (HMCR) 0.7
Pitch Adjustment Rate (PAR)
Number of Iterations (NI)

0.3
50

Maximum number of selected features 50
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The comparisons in this paper are performed in relation to the accuracy of classification,
the minimal number of genes selected, and computational time. In addition, a statistical
test (Wilcoxon sum rank test) is carried out to identify if significant disparities between the
proposed methods present with regards to the minimal chosen genes and the classification
accuracy. The overall purpose of this comparison is to evaluate the effectiveness of using
an RS mechanism and a SU filter in an HSA to gain high classification accuracy based on
the obtained minimal number of genes.

3. Results

The algorithms proposed were being implemented in the Java programming language
and are based on the WEKA environment [32]. The experiments were run on an Intel
Core i5-2450M–2.5 GHz CPU with 4 GB of RAM. The NB classifier with 10-fold cross-
validation as per the recommendation of [33] is used in validating and assessing the
solutions generated. Four comparisons are carried out: (i) a comparison of HSA with
RSHSA; (ii) a comparison of HSA with SU-RSHSA; (iii) a comparison of RSHSA with
SU-RSHSA; and (iv) a comparison of our proposed methods with state-of-the-art methods.

In this experiment, we evaluated and compared our results with HSA and evaluated
using 10-fold cross-validation on each dataset. Naïve Bayes classifier was used in this
experiment to collect the classification accuracy. The datasets were divided into two
segments: the first segment with 90% of the dataset was employed to train or learn a model,
and the other 10% that formed the second segment was used to validate the model. The
procedure is repeated 31 times.

3.1. Results of Using the Reference Set Harmony Search Algorithm
3.1.1. Classification Accuracy

The results that Table 3 presents below show a comparison of the performance of
the RSHSA and HSA. For each dataset, Table 3 illustrates two pieces of information: the
average accuracy and the average computing time over 31 independent runs. The best
results for every dataset are highlighted in bold.

From Table 3, it is evident that the RSHSA achieves higher classification accuracy as
compared to the HSA in six of the 10 datasets. Moreover, it can be noted from Table 3 that
the RSHSA performed faster than the HSA in all datasets. This may be due to the lower
number of solutions in the RSHM compared with the number of solutions in the original
HM. The RSHSA performed faster than the HSA in all datasets. This may be due to the
lower number of solutions in the RSHM when compared to the number of solutions in the
original HM. The average running time for the HSA and the RSHSA was about 183 and
142 s, respectively. Thus, the HSA is around 25.23% faster on average than the RSHSA.
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Table 3. Average classification accuracy rate and average computing time were obtained by the HSA
and RSHSA.

Datasets HSA RSHSA

ALL-AML
ACC 93.09 94.13

T 1:10 0:57

ALL-AML-3C
ACC 86.25 95.06

T 2:28 1:37

ALL-AML-4C
ACC 83.56 91.05

T 1:44 1:24

Colon
ACC 73.36 81.22

T 1:19 1:02

CNS
ACC 73.08 84.08

T 1:02 0:51

Lymphoma ACC 97.57 97.81
T 1:03 0:35

MLL
ACC 91.59 91.67

T 1:32 1:09

Breast
ACC 58.18 69.53

T 5:23 4:19

Ovarian
ACC 94.50 95.30

T 11:49 8:45

SRBCT
ACC 91.40 96.51

T 2:55 2:21
Note: ACC: average classification accuracy in %; T: average time in minutes.

3.1.2. Selected Genes

Table 4 shows the average number of genes selected by RSHSA and HSA. A lower
average number of selected genes is indicative of better performance. These outcomes
show the RSHSA’s ability to obtain fewer genes in most datasets (seven out of 10, except for
ALL-AML-3C, Colon, and Breast). The reduction in the size of the gene subsets also implies
a lower level of search space complexity; the subsets with a smaller number of genes have
a smaller search space, which in turn implies that less computational processing time is
required.

Table 4. The average number of selected genes obtained by the HSA and RSHSA.

Datasets HSA RSHSA

ALL-AML 17.39 13.60
ALL-AML-3C 26.61 31.00
ALL-AML-4C 27.88 23.30

Colon 16.05 21.80
CNS 10.70 9.90

Lymphoma 19.94 16.70
MLL 28.80 16.40

Breast 13.01 24.00
Ovarian 21.31 10.10
SRBCT 22.93 17.00

From Table 4, it can be seen that the RSHSA outperforms the HSA because the RSHSA
finds fewer genes for seven out of 10 datasets in comparison with the HSA method. By
referring to the outcomes in Tables 3 and 4, the RSHSA overcomes the shortcomings of the
HSA and outperforms the HSA in most datasets and that it can obtain high accuracy of
classification with a minimal number of selected genes, which is because of the reasons laid
out below:

(a) The proposed changes that use the RS mechanism appear to enhance the initialization
of the initial HM because this mechanism gives a deterministic selection of a reference
set of elite solutions with regards to the quality and diversity, which aids the algorithm
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to better exploit and explore the search space, which in turn improves the algorithm’s
ability to improvise better solutions. In addition, the RS mechanism has provided a
chance for the high-quality solution to survive during the improvisation process.

(b) The improvisation process is based on structured solution combinations that are
contingent upon the quality and diversity of the solutions based on the QHM and
DHM, respectively, where they are not simply relying on randomization.

(c) The search has evolved as a strategic update to preserve the diversity and quality of
the solutions and avoid the duplication of solutions.

3.1.3. Statistical Test

In this section, a statistical test (Wilcoxon sum rank test) is carried out to identify if
a significant difference between the proposed RSHSA and HSA methods is present with
regards to determining the accuracy of the classification and the minimal selected genes.
The purpose of this comparison is to evaluate the RSHSA effectiveness in obtaining high
classification accuracy based on the obtained minimal genes.

The results are listed in Table 5 with a 95% significance interval (α = 0.05). p-values
that do not show significant differences are shown in bold. The tabulated p-values reveal
that there is a significant difference between the RSHSA and HSA. Tables 3 and 4 present
the same pattern where RSHSA produces different quality of solutions compared to HSA.
Therefore, it can be concluded that the use of an RS in the HSA (RSHSA) leads to superior
performance over the HSA due to the ability of the RSHSA to improvise good-quality
solutions that are better than the solutions in the HM where it keeps updating the HM at
each iteration, which leads to diverse solutions in the HM, i.e., the diversity is maintained
throughout the search process.

Table 5. p-values of the accuracy (acc) and the number of genes selected (|#G|) for the RSHSA AND
HSA.

Datasets
RSHSA vs. HSA

ACC |#G|

ALL-AML 0.000 0.012
ALL-AML-3C 0.000 0.000
ALL-AML-4C 0.000 0.000

Colon 0.000 0.000
CNS 0.000 0.002

Lymphoma 0.696 0.000
MLL 0.131 0.000

Breast 0.000 0.000
Ovarian 0.000 0.000
SRBCT 0.000 0.000

3.2. Results of Using the HSU and the RSHSA

To measure the merits of incorporating SU into the RSHSA, the SU-RSHSA results
are compared with the ones gained by using the HSA (without a filter). The importance
of the combination of an SU filter and an RSHSA in a single process is the focus of this
comparison process.

3.2.1. Classification Accuracy

Table 6 reveals the comparison outcome of the HSA and the SU-RSHSA on the
10 datasets. Table 6 reveals two pieces of information for every dataset: the average
accuracy and the computing time over 31 independent runs. The best outcomes for every
dataset are highlighted in bold.
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Table 6. Average classification accuracy rate and computing time obtained using the HSA and
SU-RSHA.

Datasets HSA SU-RSHSA

ALL-AML
ACC 93.09 100

T 1:10 00:32

ALL-AML-3C
ACC 86.25 100

T 2:28 00:42

ALL-AML-4C
ACC 83.56 97.11

T 1:44 00:47

Colon
ACC 73.36 93.17

T 1:19 00:24

CNS
ACC 73.08 89.36

T 1:02 00:33

Lymphoma ACC 97.57 100
T 1:03 00:27

MLL
ACC 91.59 99.94

T 1:32 00:42

Breast
ACC 58.18 80.40

T 5:23 1:53

Ovarian
ACC 94.50 99.61

T 11:49 2:47

SRBCT
ACC 91.40 97.98

T 2:55 1:43
Note: ACC: average classification accuracy in %; T: average time in minutes.

Table 6 shows that the SU-RSHSA outperforms its competitor (HSA) on all 10 datasets
in terms of accuracy. Moreover, it can be noted that the SU-RSHSA performed faster than
the HSA on all datasets. This may be due to the algorithm in the wrapper stage because it
explores only a reduced number of genes that are generated by the filter stage. Hence, the
feature space’s complexity is being reduced to a smaller search space, thus reducing the
computational effort in the classification algorithm.

3.2.2. Selected Genes

Table 7 reveals the average number of the genes selected of the SU-RSHSA and the
average number of the chosen genes of the HSA. A lower average number of chosen genes
indicates better performance, while best outcomes are given in bold. The results show that
the SU-RSHSA can select fewer genes in 6 out of 10 datasets. The tabulated result shows
the redundant and irrelevant genes have been eliminated effectively by the SU-RSHSA.

Table 7. The average number of the genes selected by the harmony search algorithm and the hybrid
symmetrical uncertainty, and the reference set harmony search algorithm.

Datasets HSA SU-RSHSA

ALL-AML 17.39 21.64
ALL-AML-3C 26.61 10.72
ALL-AML-4C 27.88 12.02

Colon 16.05 7.59
CNS 10.70 13.15

Lymphoma 19.94 9.10
MLL 28.80 7.83

Breast 13.01 18.31
Ovarian 21.31 20.47
SRBCT 22.93 8.37

Based on the results in Tables 6 and 7, it can be observed that all solutions provided
by the SU-RSHSA have a classification rate of over 80%. With regards to the number of
selected genes, the SU-RSHSA was able to obtain fewer than 20 selected genes on average
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for eight of the datasets. This result suggests that the significant improvement that is
achieved by the SU-RSHSA compared with the HSA, i.e., finding small subsets of genes
with high accuracy of classification, occurs because it uses SU in selecting genes with the
highest effectiveness (based on the SU evaluation) when initializing the HM of the RSHSA.
This finding agrees with prior research on the combination of a filter with the wrapper in
one method, which normally has achieved very good results compared to the wrapper
alone [34].

Figures 4–13 represent the distribution of the solutions for the 10 datasets based on the
RSHSA and the HSA. The x-axis represents the number of harmonies (1–50), and the y-axis
represents the classification accuracy. The quality of the solutions in the initial HM of the
HSA is represented by the triangle symbol, while the quality of the RSHM of the RSHSA is
represented by the rhombus symbol.
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Reference Set Harmony Search Algorithm.

From the above figures, it can be observed that the generated initial HMs (as repre-
sented by the triangle symbol) are scattered apart from each other, which represents the
diversification of the solutions. This occurs because the initial harmonies are randomly
generated. It can be observed that the distribution of the solutions (represented by the
rhombus symbol) is less scattered compared to the fully random HM. This means that
the RS mechanism has managed to improve the quality of the improvised solutions better
than the fully random initialization for the initial HM. In addition, the RS mechanism
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has provided a chance for the high-quality solution to survive during the improvisation
process.

3.2.3. Statistical Test

A statistical analysis (Wilcoxon rank test) that has a 95% confidence level is conducted
to further validate if there are significant disparities between the SU-RSHSA and the HSA.
The p-values gained are illustrated in Table 8 for the accuracy of the classification and the
number of genes.

Table 8. p-values of the accuracy and the number of selected genes of the hybrid symmetrical
uncertainty and the reference set harmony search algorithm and the harmony search algorithm.

Datasets
Accuracy Number of Genes

SU-RSHSA
vs. HSA

SU-RSHSA
vs. HSA

ALL-AML 0.000 0.000
ALL-AML-3C 0.000 0.000
ALL-AML-4C 0.000 0.000

Colon 0.000 0.000
CNS 0.000 0.000

Lymphoma 0.000 0.000
MLL 0.000 0.000

Breast 0.000 0.000
Ovarian 0.000 0.005
SRBCT 0.000 0.000

Table 8 reveals the outcome as follows:

(a) The SU-RSHSA is found to be significantly better as compared to HSA on all tested
datasets with regards to the accuracy of classification.

(b) The number of genes for the SU-RSHSA is significantly higher as compared to the
HSA on all datasets.

Table 8 shows significant disparities between the algorithms compared, which con-
cludes that the hybridization of SU filter with HSA wrapper (SU-RSHSA) yields a superior
performance as compared to the use of the HSA wrapper method alone.

3.3. Comparison between RSHSA and SU-RSHSA

The purpose of this comparison is to evaluate the effectiveness of initializing the HM
before the improvisation process and to investigate the impact of using an RS mechanism
and SU filter with an HSA wrapper to obtain high accuracy of classification with a minimum
number of genes. In this section, the discussion is divided into three parts: accuracy of the
classification and computational time, number of genes chosen, and statistical test. The
best outcomes are presented in bold in all tables in this section.

Classification Accuracy and Computational Time

The outcomes presented in Table 9 reveal that the SU-RSHSA yields a performance
that is better than the RSHSA in terms of accuracy of classification in all datasets, whereas
RSHSA is unable to obtain better computational time (as shown in Table 9) than SU-RSHSA
in any dataset.



Mathematics 2022, 10, 374 21 of 26

Table 9. Classification accuracy rate and computing time obtained using the reference set harmony
search algorithm and the hybrid symmetrical uncertainty and the reference set harmony search
algorithm methods on 10 datasets.

Datasets RSHSA SU-RSHSA

ALL-AML
ACC 94.13 100

T 0:57 00:32

ALL-AML-3C
ACC 95.06 100

T 1:37 00:42

ALL-AML-4C
ACC 91.05 97.11

T 1:24 00:47

Colon
ACC 81.22 93.17

T 1:02 00:24

CNS
ACC 84.08 89.36

T 0:51 00:33

Lymphoma ACC 97.81 100
T 0:35 00:27

MLL
ACC 91.67 99.94

T 1:09 00:42

Breast
ACC 69.53 80.40

T 4:19 1:53

Ovarian
ACC 95.30 99.61

T 8:45 2:47

SRBCT
ACC 96.51 97.98

T 2:21 1:43
Note: ACC: average classification accuracy in %; T: average time in minutes.

With reference to the outcome in Table 10, it is evident that the SU-RSHSA outperforms
the RSHSA in terms of accuracy of classification in all datasets. The SU-RSHSA also
outperforms the RSHSA on seven datasets with regards to the number of selected genes.
It again appears that the significant improvement achieved by the SU-RSHSA compared
with the RSHSA, i.e., finding small subsets of genes with high accuracy of classification, is
due to the utilization of SU for choosing the most effective gene (based on the evaluation
of SU) when initializing the HM. This finding shows that the method that combines the
filter with the wrapper in one method can achieve very good outcomes compared to the
wrapper approach alone.

Table 10. Number of selected genes gained by the reference set harmony search algorithm and the
hybrid symmetrical uncertainty and the reference set harmony search algorithm.

Datasets RSHSA SU-RSHSA

ALL-AML 13.60 21.64
ALL-AML-3C 31.00 10.72
ALL-AML-4C 23.30 12.02

Colon 21.80 7.59
CNS 9.90 13.15

Lymphoma 16.70 9.10
MLL 16.40 7.83

Breast 24.00 18.31
Ovarian 10.10 20.47
SRBCT 17.00 8.37

Table 10 depicts the number of genes chosen using the RSHSA and SU-RSHSA meth-
ods. The results show that the SU-RSHSA outperforms RSHSA on seven datasets, whereas
the RSHSA performs better than SU-RSHSA on three datasets (i.e., ALL-AML, CNS, and
Ovarian).
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3.4. Limitation of the Study

The enhanced HSA-based approach called SU-RSHSA has been proposed in this
paper for the gene selection problem in microarray datasets. This research is focused on
improving the HSA algorithm by enhancing its mechanisms with a new reference set
harmony memory and a filter. This study has made promising progress in relation to
understanding and solving the gene selection problem in microarray datasets. However,
there remain limitations in this study but leaves open research questions for future research
work. This study is accomplished by developing the algorithm and evaluated using
10 microarray datasets. The main research limitation that influences the interpretation of
the findings in this research is the dataset used in this work. The proposed approaches
have been tested on 10 microarray datasets. Therefore, the algorithm’s nature, behavior
and performance are limited to the 10 microarray datasets. To generalize the performance
of the proposed algorithm, the performance of the algorithm could be further studied if
it is tested and validated with respect to different domains such as web and text mining,
speech recognition, and UCI datasets to study its behavior under a different type of data,
format, and conditions. Therefore, the results and conclusion of this study could not be
generalized across different domains and other real-world problems.

One of the most important aspects of this study on the HAS-based algorithm is
how efficient it can be compared to the basic HSA and other states of the art methods.
The runtime is relative to the size of the input (dataset). However, the execution time
of the algorithms can vary due to factors other than the size of the microarray dataset.
For example, the speed of the proposed algorithm depends on where (i.e., machine) the
algorithm is run, how it was programmed (implementation), and how the data is processed.
The algorithm may run much faster when given a set of pre-processed (e.g., sorted real
numbers/integers, discretized dataset, etc.) than it would when given the same dataset
with the original format or random order.

4. Discussion

This study proposed SU-RSHSA, a gene selection method that combined an SU filter
and an RSHSA wrapper. The SU filter selects gene subsets with the highest SU score for
initializing the HM in the first stage of this method. The findings, however, show that
while the HSA can produce good results, they are not as impressive as those reported in
the literature. As a result, in the second experiment, an RSHSA is proposed to select the
gene subset and to improve the HSA’s performance in solving the gene selection problem.
Furthermore, an SU filter is hybridized with the RSHSA as a wrapper (SU-RSHSA) to
capitalize on potential synergies between the filter and wrapper approaches. In terms
of classification accuracy, the number of selected genes, and computational time, the
SU-RSHSA outperformed the HSA on most datasets. This is due to the HM’s random
initialization flaw, which has been addressed by the improvisation process in the HSA.
Furthermore, the experiments revealed that the RS mechanism can allow high-quality
and diverse solutions in the HM to converge together. Besides that, SU was able to use
fewer genes because only genes with a high top score are chosen to initialize the HM of
the HSA without compromising classification accuracy. However, because the HSA is a
population-based algorithm that focuses on diversification rather than intensification, the
performance of the SU-RSHSA could be improved further [31]. Many researchers such as
Talbi [35] and Blum et al. [36] strongly recommend that the hybridization of population-
based and local search-based algorithms be investigated. A research question arises at this
point: “How can the intensification in HSA be improved?” As a result, in future work, we
hope to combine the SU-RSHSA with a Markov Blanket filter (MB) filter as a local search
algorithm to improve the quality of the improvised harmonies by utilizing the MB local
search’s exploitation capability.

The results in Table 11 show that the proposed approaches outperform and are com-
parable with other available approaches in the literature review because they obtained
better results with regards to the accuracy of the classification and minimal genes selected.



Mathematics 2022, 10, 374 23 of 26

Moreover, the SU-RSHSA outperforms most of the other available approaches in terms of
computational time because it requires less computational time as compared with the other
methods described in the literature review.

Table 11. Comparison of the proposed approaches and state-of-the-art methods.

Datasets HSA RSHSA SU-
RSHSA

HSA-
MB MBEGA MRMR-

GA MA-C BPSO-
CGA GPSO BIRSW LDA-

GA

ALL_AML
|#G| 17.39 13.6 21.64 5.00 12.8 15 387 300 3 2.5 3
ACC 93.09 94.13 100 99.34 95.89 100 99.56 100 97.38 93.04 99.5

T 1:10 0:57 0:32 1:42 1:52 - - - - - 30–35

ALL-
AML-3C

|#G| 26.61 31 10.72 5.84 18.1 - 394 - - - -
ACC 86.25 95.06 100 99.18 96.64 - 99.53 - - - -

T 2:28 1:37 0:42 3:53 2:56 - - - - -

All-
AML-4C

|#G| 27.88 23.3 12.02 6.37 26.2 - 386 - - - -
ACC 83.56 91.05 97.11 96.79 91.93 - 98.61 - - - -

T 1:44 1:24 0:47 2:21 3:54 - - - - -

Colon
|#G| 16.05 21.8 7.59 4.16 24.5 15 - 214 2 3.5 7
ACC 73.36 81.22 93.17 90.27 85.66 98.39 - 96.7 100 85.48 98.83

T 1:19 1:02 0:24 2:22 1:10 - - - - - 30–35

CNS
|#G| 10.70 9.9 13.15 7.43 20.5 - 374 - - - 4
ACC 73.08 84.08 89.36 84.17 72.21 - 97.78 - - - 99.3

T 1:02 0:51 0:33 1:41 1:21 - - - - - 30–35

Lymphoma
|#G| 19.94 16.7 9.10 3.75 34.3 15 - 196 - 10.3 -
ACC 97.57 97.81 100 99.99 97.68 98.96 - 100 - 82.14 -

T 1:03 0:35 0:27 1:32 2:22 - - - - -

MLL
|#G| 28.80 16.4 7.83 6.60 32.1 - 108 - - - -
ACC 91.59 91.67 99.94 99.55 94.33 - 100 - - - -

T 1:32 1:09 0:42 2:32 3:02 - - - - -

Breast
|#G| 13.01 24 18.31 5.06 14.5 - 183 - 4 - -
ACC 58.18 69.53 80.4 80.06 80.74 - 95.26 - 86.35 - -

T 5:23 4:19 1:53 12:15 4:16 - - - - -

Ovarian
|#G| 21.31 10.1 20.47 5.73 9 - 247 - 4 - 6
ACC 94.50 95.30 99.61 99.81 99.71 - 100 - 99.4 - 97.4

T 11:49 8:45 2:47 50:00 44.49 - - - - - 1:10

SRBCT
|#G| 22.93 17 8.37 8.9 60.7 - 526 880 - - -
ACC 91.40 96.51 97.98 99.57 99.23 - 100 100 - - -

T 2:55 2:21 3:28 4:06 - - - - -

The outcomes in Table 11 demonstrate that the HSA and RSHSA outperform the
MBEGA, MA-C, BPSO-CGA, on six, eight, and four datasets, respectively, with respect to
the number of selected genes. In terms of classification accuracy, the HSA outperforms
the MBEGA on one dataset (CNS) and has a competitive result in the case of the Lym-
phoma dataset, whereas the RSHSA outperforms the MBEGA on two datasets (CNS and
Lymphoma). Overall, the HSA and RSHSA produce competitive, if not better (on a few
datasets), results compared to the state-of-the-art approaches. Additionally, it is noteworthy
that the methods compared are designed specifically to yield the best outcomes for one or a
few instances only.

The SU-RSHSA obtains better results on one, seven, and eight datasets with regards to
the number of chosen genes compared to the HSA-MB, MBEGA, and the MA-C algorithm,
respectively. When compared to the MA-C, the SU-RSHSA yields better accuracy of
classification on two of the eight datasets (and tied for ALL-AML-4C, MLL, and Ovarian).
Moreover, when compared with the HSA-MB, the SU-RSHSA yields better classification
accuracy on all datasets except Ovarian and SRBCT, and the SU-RSHSA obtain better
results with respect to computational time on all the datasets.

Theoretically, it is believed that the higher number of genes employed for classification,
the higher the classification accuracy that could be achieved. However, in our observations,
the usage of a higher number of genes would only make the learning process slower.
Furthermore, the chances of having irrelevant genes might produce incorrect results. This
finding can be observed from the SU-RSHSA results. The results show that the SU-RSHSA
does not perform better than the MA-C on all the datasets because the MA-C uses a greater
number of genes compared to SU-RSHSA. However, the classification accuracy achieved by
both algorithms is comparable due to the small differences. The difference (in %) between
SU-RSHSA and MA-C with regards to a chosen number of genes is 91.75%, but in terms
of the accuracy of classification, it is only 3.29%. Therefore, we can conclude that the
performance of the SU-RSHSA is better than that of the MA-C algorithm by basing on the
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eight datasets employed in the comparison in terms of computing cost as SU-RSHSA uses
smaller genes number for classification. Again, it is believed that this result arises because
of the filter and wrapper approach combination.

The results presented in Table 11 show that the SU-RSHSA performs better than the
MRMR-GA, BPSO-CG, and BIRSW in two, four, and one datasets, respectively, with regards
to the number of genes, selected. In terms of accuracy of classification, the SU-RSHSA
obtains equal classification accuracy with the MRMR-GA in one dataset (ALL-AML with
100% accuracy), and the SU-RSHSA outperforms the MRMR-GA and the GPSO in one
and two datasets, respectively. Moreover, the SU-RSHSA outperforms the BIRSW in three
datasets (ALL-AML, Colon, and Lymphoma). Furthermore, the SU-RSHSA obtains the
same accuracy of classification on two of the four datasets (ALL-AML and Lymphoma)
when compared to the BPSO-CGA. The SU-RSHSA does not perform better than the GPSO
in terms of the number of generated genes. However, it achieves a greater classification
rate for two datasets (ALL-AML and Ovarian).

5. Conclusions

This study proposed SU-RSHSA, a combination of an SU filter and an RSHSA wrap-
per for gene selection. This study has two primary objectives (i) to propose a gene selection
method based on the HSA and to improve the initial harmony memory construction
process by incorporating a reference set mechanism within the HSA (RSHSA); and (ii) to
propose a hybrid SU filter with RSHSA wrapper (SU-RSHSA) approach to improve gene
selection accuracy while consuming less computational time. This first objective was
accomplished by developing an HSA for the gene selection problem and determining
the optimal HSA parameter values. This included configuring the Harmony Memory
Size (HMS), the Harmony Memory Consideration Rate (HMCR), the Pitch Adjustment
Rate (PAR), and the Iteration Count (NI). To improve the quality of the HSA’s improvised
har-monies, the Reference Set Harmony Search Algorithm (RSHSA) was proposed as a
method to boost the HSA’s performance in solving the gene selection problem. In the
RSHSA, the Harmony Memory (HM) mechanism’s initialization was improved by using
the RS mechanism to construct a new HM, dubbed the Reference Set Harmony Memory
(RSHM), rather than the fully random HM. Additionally, the HMCR and PAR procedures’
fully random selection mechanisms were modified and guided based on the quality and
diversity of RSHM solutions. The RSHM’s update strategy was modified and found
to be more effective in updating the RSHM whenever a higher-quality or more diverse
solution is obtained. The obtained results indicated that the RSHSA outperformed the
HAS. Moreover, the second objective was accomplished through the hybridization of SU
and RSHSA (SU-RSHSA) to leverage the complementary benefits of both gene selection
approaches (filter and wrapper). On most datasets, the SU-RSHSA outperformed the
HSA in terms of classification accuracy, the number of selected genes, and computational
time. This is due to the HM’s flaw in random initialization, which was addressed by the
HSA’s improvisation process. Additionally, the experiments demonstrated that the RS
mechanism can allow for the convergence of high-quality and diverse solutions in the HM.
Additionally, SU was able to use fewer genes because only genes with a high top score are
used to initialize the HSA’s HM without sacrificing classification accuracy.

The SU-RSHSA has made significant progress toward understanding and resolving
the problem of gene selection in microarray datasets. However, there is still considerable
room for future research. The following are some intriguing extensions to this work:
(i) ten microarray datasets were used to validate the proposed approaches. The proposed
approach could be evaluated and validated on a variety of domains, including web and text
mining, speech recognition, and UCI datasets, to understand their behavior under various
conditions better; (ii) the performance of the proposed approaches could be improved by
dynamically changing the HSA parameters based on the objective function value during the
search, which could yield interesting results; (iii) a novel approach based on HSA could be
proposed to simultaneously address the gene selection problem and manage the classifier’s
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parameters. The goal is to evolve classifier parameter values in conjunction with a subset
of genes. This eliminates the need for the user to pre-set classifier parameter values, as they
are not dependent on the characteristics of the tested datasets; and (iv) because the HSA is
a population-based algorithm that prioritizes diversification over intensification [35], the
SU-RSHSA performance could be improved further. Many researchers such as Talbi [35]
and Blum & Roli [36] strongly recommend that the hybridization of population-based and
local search-based algorithms be investigated. A research question arises at this point:
“How can the intensification in HSA be improved?” As a result, in future work, we hope to
combine the SU-RSHSA with a Markov Blanket filter (MB) filter as a local search algorithm
to improve the quality of the improvised harmonies by utilizing the MB local search’s
exploitation capability.
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