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Abstract: The problem of constructing functional optimal observers (filters) for stochastic control
systems with additive noises in discrete time are studied in this work. Under the assumption that
there is no filter of the first order, necessary and sufficient conditions for the existence of filters of
the second and third order are obtained in the canonical basis. Analytical expressions of the transfer
function matrix from the input noise to the estimation error are presented. A numerical example is
given to compare the performance of filters by the quadratic criterion in the steady state.
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1. Introduction

The reduced-order filtering problem occupies an important place in the theory of
optimal state estimation. Instead of the traditionally used Kalman filter, which forms an
estimate of the total system state vector and has an order that coincides with the order
of the system, it is proposed to construct its analogue, a functional filter with a reduced
dimension. In this case, the computational effort to implement a functional filter is reduced.
In addition, the reduced order of the filter simplifies the analysis of the dynamic system.

The problem under study is at the intersection of two classical problems of state
estimation theory: the full order filtering problem for stochastic systems and the design
functional observer problem for deterministic systems. The first problem relates to the
filtration theory and was solved for non-linear case (even for the non-stationary case) in
1959–1960 by Stratonovich [1,2], and for linear case in 1960–1961 by Kalman and Bucy [3,4],
for both continuous and discrete time. The solution to the second problem of constructing
functional observers for linear stationary fully defined systems was proposed in 1966 by
Luenberger [5]. The further development of the theory of functional observers is reflected
in detail in the books by O’Reilly [6] and Korovin and Fomichev [7]. In particular, in [7], the
conditions of existence and algorithms for the synthesis of functional observers for linear
stationary fully deterministic systems are given for various cases, namely scalar and vector
output; and scalar and vector functional. Two methods of solving the design functional
observer problem are also proposed: the pseudo-input method and the scalar observer
method. Both methods allow one to obtain necessary and sufficient conditions for the
existence of functional observers of order k (k < ν− 1, where ν is the observability index of
the system), which were first proposed in [8,9].

Much attention has been paid to the construction of the reduced-order filters for linear
systems. Minimizing the quadratic error criterion over the interval and using the solution
of the two-point boundary value problem, the reduced-order filter is designed in [10,11].
Based on the quasi-diagonal matrix decomposition and the solution of the Riccati and
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Lyapunov matrix equations, a method is proposed in [12] for determining the parameters
of continuous and digital linear filters of reduced order which ensures their asymptotic
stability provided that the estimated system is stabilizable and detectable. In [13–15], the
proof of the uniqueness of the optimal unbiased reduced-order filter and the properties
of the reduced-order innovation process in continuous and discrete time are proposed.
Developing the results obtained in [13], the necessary and sufficient conditions for existence,
stability, and convergence of the designed filter are obtained for both continuous and
discrete stochastic systems in [14], and for discrete stochastic systems with unknown inputs
in [15]. In [16], a method for the synthesis of functional optimal observers in the frequency
domain using spectral factorization in continuous and discrete time is proposed, and the
transfer function of the filter and the properties of its associated innovation sequence are
obtained. In [17], using a model reduction of the original system and solving the Lyapunov
equations involved in each iteration of the optimum search algorithm, a simple method for
reduced-orderH2 filter design is proposed. An approach to design a sliding mode control-
based functional observer for discrete-time stochastic systems, existence conditions, and
stability analysis of the proposed observer are given in [18]. In [19], a generalization of the
classical unbiasedness condition in the joint problem of stabilization and optimal filtering
is presented, and an alternative method for constructing reduced-order filters is proposed,
based on reduction to a non-linear optimization problem. Conditions for existence of
second-order and third-order filters for systems in continuous time with additive noises
are proposed in [20]. In [21,22], the frequency-weightedH2-optimal model order reduction
problem is investigated, and algorithms are proposed, that constructs a reduced-order
model, which nearly satisfies the first-order optimality conditions.

In practice, reduced-order optimal filters are used in signal processing of inertial
navigation systems, in health parameter estimation for an aircraft turbofan engine, in
induction motor state estimation, in dynamic image analysis, in restoration of progressive
and interlaced video, in separation of heart and respiratory sounds, in meteorology and
oceanography applications (see [23] and references therein).

This article proposes an approach to constructing reduced-order filters, which differs
from the methods in [13–16] in that the filter order does not necessarily coincide with
the dimension of the estimated functional. Unlike the methods in [12,17,21,22], where
Lyapunov equations are used to calculate the quality criterion, this article uses the method
of integral quadratic performance measures, which makes it possible to determine the
dependence on parameters in an explicit form.

The problem formulation is presented in Section 2, where the scalar linear functional
of the state vector is estimated from the measured scalar output. Perturbations are white
random processes with a priori known probabilistic characteristics, uncorrelated with each
other at different times and with the initial state of the system. The root-mean-square
error in the steady state is chosen as a criterion of optimality. In Section 3, necessary and
sufficient conditions for the existence of filters of the second and third order are obtained
using canonical forms. Analytical expressions for the transfer function matrix are given in
Section 4. The dependence of the parameters number of second-order and third-order filters
on the order of original system is presented. Section 5 contains an illustrative example of
comparing second and third order filters by quadratic criterion in steady state. Section 6
summarizes the article.

The mathematical notations used in this text are listed in Table 1.
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Table 1. Mathematical notations.

Notation Meaning

0 zero; zero vector; zero matrix
∈ belongs to
R the set of real numbers
·ᵀ transposition of a vector or matrix
i integer
j

√
−1; integer

E[·] the mathematical expectation operator
δij Kronecker delta
∆
= equal by definition

det(·) determinant of the square matrix
z z-transform variable
Ik identity matrix of dimension k× k
θ normalized angular frequency
ω angular frequency
·−1 inverse of the square matrix
| · | magnitude or absolute value of a complex scalar

2. Problem Statement

Consider an n–dimensional linear discrete system with stochastic perturbations and
with a scalar output:

xi+1 = Axi + Bui + wi,

yi = Cxi + vi,
i ≥ 0, (1)

where xi ∈ Rn is the unknown phase vector, ui ∈ Rm is the known input of the system, and
yi ∈ R is the measured output of the system; A, B, C are constant matrices of appropriate
sizes, wi, vi are discrete uncorrelated, and zero mean white noise processes of dimensions
n and 1, respectively, with given covariance matrices E[wiw

ᵀ
j ] = Qδij, E[vivj] = Rδij; the

initial state x0 is a random variable uncorrelated with noises wi, vi, and has E[x0] = x̄0,
E[(x0 − x̄0)(x0 − x̄0)

ᵀ] = P0. Here, Q, P0 are positive semidefinite matrices; and R > 0.
These assumptions can be represented as

E

wi
vi
x0

(wᵀ
j vj xᵀ0 1

) =

Qδij 0 0 0
0 Rδij 0 0
0 0 P0 + x̄0 x̄ᵀ0 x̄0

, i ≥ 0, j ≥ 0.

It is also assumed that the matrices Q, R, P0 are known a priori. The first equation in the
system (1) can be understood in the sense of the stochastic difference equation [24].

Required based on the observation of the output yi and the known input ui, define an
unbiased estimate σ̃i for scalar functional

σi = Fxi, i ≥ 0, (2)

with the known matrix F ∈ R1×n, providing the minimum of the steady state mean value

of the squared observation error ei
∆
= σi − σ̃i:

J = lim
i→∞

E[e2
i ]→ min . (3)

3. Filter Design

Let matrix F have the standard decomposition [6,7]

F = PT + VC,
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where P ∈ R1×k, T ∈ Rk×n, and V ∈ R. Then, σi = Pqi + Vyi −Vvi, where qi = Txi ∈ Rk

is an unknown vector to be estimated. To reconstruct it, we use an observer of order k

q̃i+1 = Nq̃i + TBui + Myi, q̃0 = Tx̄0,

σ̃i = Pq̃i + Vyi,
i ≥ 0, (4)

where q̃i ∈ Rk is the phase vector of the observer; N, M are constant matrices of appropriate
sizes. In the second equation of the observer, the output yi of the original system (1) appears,
which makes it possible to obtain an advantage in terms of the quadratic criterion over the
filter without it.

Without loss of generality, we make the following standard [6] assumptions regarding
the original system (1) and the desired filter (4).

Assumption 1. The pair {C, A} is observable and is given in the second canonical form of
observability [7]

A =


0 0 . . . 0 −α1
1 0 . . . 0 −α2

. . . . . . . . . . . . . . .
0 0 . . . 1 −αn

, C =
(
0 . . . 0 1

)
, (5)

where αi is the coefficients of the characteristic polynomial of the matrix A, i.e.,

α(z) = det(zIn − A) = zn + αnzn−1 + . . . + α1.

The matrix F in the canonical basis has the form:

F =
(

f1 f2 . . . fn
)
.

Assumption 2. The pair {P, N} is observable and is given in the first canonical form of observ-
ability [7]

N =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . 1
−l1 −l2 −l3 . . . −lk

, P =
(
1 0 . . . 0

)
, (6)

where li is the coefficients of the characteristic polynomial of the matrix N, i.e.,

β(z) = det(zIk − N) = zk + lkzk−1 + . . . + l1.

Let us investigate the question of when linear filters of the second (k = 2) and third
(k = 3) order can estimate the functional (2) from the state vector. In addition, it is assumed
that there is no first-order (k = 1) filter giving an unbiased estimate for the functional (2).
Discrete-time filters of various orders starting from the first order were considered in [25].

Theorem 1. For system (1) of order higher than the third (n > 3) with stochastic perturbations
and filters (4) of the second and third order, giving an unbiased estimate of the functional (2) from
the state vector, it is true that:
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(1) the necessary and sufficient conditions for the existence of a second-order filter have the form

T =

(
f1 f2 . . . fn−1 fn −V
f2 f3 . . . fn −V t2n

)
,

M =

 −
n
∑

i=1
αi fi − t2n + αnV

−
n−1
∑

i=1
αi fi+1 − (αn − l2)t2n + l1( fn −V) + αn−1V

,

V = fn + l1 fn−2 + l2 fn−1, t2n = −l1 fn−1 − l2( fn −V), f1 f3 − f 2
2 6= 0,

l1 =
f2a− f 2

3
f1 f3 − f 2

2
, l2 =

f2 f3 − f1a
f1 f3 − f 2

2
, 1− l1 > 0, 1− l2 + l1 > 0, 1 + l1 + l2 > 0, (7)

a =

{
f4, if n > 4,
f4 −V, if n = 4;

fi = −l1 fi−2 − l2 fi−1, i = 5, . . . , n− 1, for n > 5,

where the condition f1 f3 − f 2
2 6= 0 means that the observer (4) of the first order cannot reconstruct

the unbiased estimate of the functional (2);
(2) the necessary and sufficient conditions for the existence of a third-order filter have the form

T =

 f1 f2 . . . fn−2 fn−1 fn −V
f2 f3 . . . fn−1 fn −V t2n
f3 f4 . . . fn −V t2n t3n

,

M =


−

n
∑

i=1
αi fi − t2n + αnV

−
n−1
∑

i=1
αi fi+1 − αnt2n − t3n + αn−1V

−
n−2
∑

i=1
αi fi+2 − (αn−1 − l2)t2n − (αn − l3)t3n + l1( fn −V) + αn−2V

,

V = fn + l1 fn−3 + l2 fn−2 + l3 fn−1,

t2n = −l1 fn−2 − l2 fn−1 − l3( fn −V), t3n = −l1 fn−1 − l2( fn −V)− l3t2n,

b 6=
f3( f 2

3 − f2a) + a( f1a− f2 f3)

f1 f3 − f 2
2

, (8)

l1 =
a(a2 − f3b) + b( f2b− f3a) + c( f 2

3 − f2a)
b( f1 f3 − f 2

2 )− f3( f 2
3 − f2a)− a( f1a− f2 f3)

,

l2 =
a( f2b− f3a) + b( f 2

3 − f1b) + c( f1a− f2 f3)

b( f1 f3 − f 2
2 )− f3( f 2

3 − f2a)− a( f1a− f2 f3)
,

l3 =
a( f 2

3 − f2a) + b( f1a− f2 f3) + c( f 2
2 − f1 f3)

b( f1 f3 − f 2
2 )− f3( f 2

3 − f2a)− a( f1a− f2 f3)
,

1− l2
1 > 0, l2

1 − 1 < l1l3 − l2, 1 + l3 + l2 + l1 > 0, −1 + l3 − l2 + l1 < 0, (9)

a =

{
f4, if n > 4,
f4 −V, if n = 4;

b =


f5, if n > 5,
f5 −V, if n = 5,
t24, if n = 4;

c =


f6, if n > 6,
f6 −V, if n = 6,
t25, if n = 5,
t34, if n = 4;

fi = −l1 fi−3 − l2 fi−2 − l3 fi−1, i = 7, . . . , n− 1, for n > 7,

where the condition (8) for the case n > 5 means that the observer (4) of the second order cannot
reconstruct the unbiased estimate of the functional (2).
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Proof. Using the stochastic difference equations of the original system (1) and the ob-

server (4), it is not difficult to obtain that the estimation error eq
i

∆
= qi − q̃i is described by

the equation

eq
i+1 = qi+1 − q̃i+1 = Txi+1 − Nq̃i − TBui −Myi

= TAxi − N(qi − eq
i )−MCxi + Twi −Mvi

= Neq
i + (TA−MC− NT)xi + Twi −Mvi. (10)

The equation for the error ei = σi − σ̃i has the form

ei = σi − σ̃i = Fxi − Pq̃i −Vyi = PTxi + VCxi − Pq̃i −VCxi −Vvi = Peq
i −Vvi. (11)

Based on the known results [6], we can conclude that the estimates q̃i and σ̃i are
unbiased for qi and σi, respectively, if and only if the following conditions are satisfied:

F = PT + VC, TA−MC− NT = 0, N is a Schur matrix. (12)

Moreover, if the matrix N is a Schur matrix, then [26] the observation error eq
i in the

steady state is a stationary in the wide sense random process, in which the mathematical
expectation is constant, and the correlation function depends on one variable.

Both statements of the theorem are obtained in a similar way from the conditions (12),
Assumption 1 about the canonical representations of the original system (5) and Assump-
tion 2 about the canonical representations of the desired filter (6).

Remark 1. Inequalities in Formulas (7) and (9) are discrete stability constraints for the filter (4)
obtained using the simplified stability criterion [27] for linear discrete systems.

Remark 2. If the condition (8) is violated, then there is a set of the degenerate third-order observers
whose coefficients of the characteristic polynomial according to Vieta’s formulas have the form

l1 = z1z2(C1 + z1 + z2), l2 = z1z2 − (z1 + z2)(C1 + z1 + z2), l3 = C1

and are located at the intersection of the domain of discrete stability of the matrix N and the solution
set for the system of equations

z3
1 + l3z2

1 + l2z1 + l1 = 0, z3
2 + l3z2

2 + l2z2 + l1 = 0, (13)

where z1, z2 are the roots of the characteristic polynomial z2 + l2z + l1 with coefficients l1, l2
satisfying (7); and they are determined by the quadratic formula

z1,2 =
f1a− f2 f3 ±

√
( f2 f3 − f1a)2 − 4( f2a− f 2

3 )( f1 f3 − f 2
2 )

2( f1 f3 − f 2
2 )

.

C1 is a free unknown, which is chosen so that the stability conditions (9) are satisfied:

−1− z1 − z2 < C1 < 1− z1 − z2,

and the variable a is determined according to the second statement of Theorem 1.
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4. Transfer Function Matrix of the Estimation Error System

This section discusses a method for calculating the optimality criterion (3) by inter-
preting [28] the steady state root-mean-square error asH2 norm of the weighted transfer
matrix of the estimation error system (10) and (11)

J = lim
i→∞

E[e2
i ] =

1
2π

π∫
−π

Weū(ejθ)

(
Q 0
0 R

)
Wᵀ

eū(e
−jθ)dθ,

where the transfer function matrix Weū(z) from the vector noise ūi
∆
=
(
wᵀ

i vi
)ᵀ to the

estimation error ei must be stable and can be found using the following theorem.

Theorem 2. If the conditions of Theorem 1 are satisfied, then the transfer function matrix Weū(z)
of the estimation error system has the form

Weū(z) =
1

β(z)
(
W1

ew(z) . . . Wn
ew(z) Wev(z)

)
,

(1) in which, for the case of a second-order filter:

Wi
ew(z) = fi(z + l2) + fi+1, i = 1, . . . , n− 2,

Wn−1
ew (z) = fn−1(z + l2) + fn −V, Wn

ew(z) = ( fn −V)(z + l2) + t2n,

Wev(z) = −Vβ(z) + (
n

∑
i=1

αi fi + t2n − αnV)(z + l2)

+
n−1

∑
i=1

αi fi+1 + (αn − l2)t2n − l1( fn −V)− αn−1V,

β(z) = z2 + l2z + l1;

(2) in which, for the case of a third-order filter:

Wi
ew(z) = fi(z2 + l3z + l2) + fi+1(z + l3) + fi+2, i = 1, . . . , n− 3,

Wn−2
ew (z) = fn−2(z2 + l3z + l2) + fn−1(z + l3) + fn −V,

Wn−1
ew (z) = fn−1(z2 + l3z + l2) + ( fn −V)(z + l3) + t2n,

Wn
ew(z) = ( fn −V)(z2 + l3z + l2) + t2n(z + l3) + t3n,

Wev(z) = −Vβ(z) + (
n

∑
i=1

αi fi + t2n − αnV)(z2 + l3z + l2)

+(
n−1

∑
i=1

αi fi+1 + αnt2n + t3n − αn−1V)(z + l3)

+
n−2

∑
i=1

αi fi+2 + (αn−1 − l2)t2n + (αn − l3)t3n − l1( fn −V)− αn−2V,

β(z) = z3 + l3z2 + l2z + l1.

Proof. The estimation error system (10) and (11) can be written as follows:

eq
i+1 = Neq

i + B̄ūi, ei = Peq
i + D̄ūi, i ≥ 0,

B̄ =
(
T −M

)
, D̄ =

(
0 −V

)
.

For this system, the transfer function matrix from the input ūi to the output ei is equal to

Weū(z) = P(zIk − N)−1B̄ + D̄. (14)
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Using Formula (14), the necessary and sufficient existence conditions of a filter of the
appropriate order from Theorem 1, and Assumption 2 on the canonical representation of
the filter, we obtain both statements of Theorem 2. Moreover, the pair {P, N} is observable
by Assumption 2, and the pair {N, B̄} is controllable by the condition f1 f3 − f 2

2 6= 0 for the
second-order filter and by the condition (8) for the third-order filter. Consequently, using
the properties [29,30] of the concept of controllability and observability, we obtain that the
specified transfer function matrix is irreducible.

Remark 3. Depending on the order n of the original system (1) and the order k of the desired
filter (4), the transfer function matrix Weū(z) has unknown parameters indicated in Table 2.

Table 2. Transfer function matrix parameters.

The Order of the Original System The Order of the Desired Filter
k = 2 k = 3

n = 4 V V, t24, t34

n = 5
no parameters

V, t25

n = 6 V

n > 6 no parameters

Remark 4. If the condition (8) of Theorem 1 is violated for a third-order filter, then the transfer
matrix of the error system can be calculated according to the first statement of Theorem 2.

There are various ways to find the optimality criterion without calculating the poles
of the transfer function. Firstly, calculation J can be reduced to the calculation of integrals

1
2π

π∫
−π

∣∣∣∣ b0ejθk + b1ejθ(k−1) + . . . + bk

a0ejθk + a1ejθ(k−1) + . . . + ak

∣∣∣∣2dθ, (15)

where the coefficients ai, bi depend on unknown parameters of the filter (4) according to
Theorem 2 and Remark 3. There are special formulas and tables [31–35] for calculating
integrals (15).

Secondly, by bilinear transformation [36], calculation J can be reduced to the calcula-
tion of integrals

1
2π

∞∫
−∞

∣∣∣∣ b̃0(jω)k + b̃1(jω)k−1 + . . . + b̃k

ã0(jω)k+1 + ã1(jω)k + . . . + ãk+1

∣∣∣∣2dω. (16)

There are also special formulas and tables [35,37–39] for calculating integrals (16).
Thirdly, a discrete Lyapunov matrix equation can be used [40] to calculate J.

5. Numerical Example

This section presents a numerical example of comparing second and third order filters
in terms of the asymptotic quadratic mean observation error.

We consider the system (1) and (2) of the fourth order, in which the matrices A, C are
given in the canonical form (5) with α1 = 1/16, α2 = 1/2, α3 = 3/2, α4 = 2; the matrix B is
zero matrix; the elements of the matrix F are equal to f1 = 1, f2 = 1/2, f3 = 1/3, f4 = 1/4;
the probabilistic characteristics are Q = P0 = I4, R = 1, x̄0 =

[
1 0 0 0

]ᵀ.
There is no first-order filter reconstructing the unbiased estimate of the scalar func-

tional (2). To find the unknown parameter (V) of the second-order filter (4), we solve the
problem of minimizing the optimality criterion (3), which, according to Section 4, is

J(V) =
492, 687, 360V4 + 143, 928, 576V3 + 55, 244, 160V2 − 6, 303, 956V − 396, 985

768(36V + 1)(36V + 5)(108V − 13)
, (17)
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where the parameter V must be such that the characteristic polynomial of the observer
is stable, i.e., V ∈ (−1/36, 13/108). The function (17) defined over the open interval
(−1/36, 13/108) has a global minimum at V ≈ 0.1148. Figure 1 shows the graph of the
function J(V).

Figure 1. Graph of the function (17). The global minimum of the function J(V) over the open interval
(−1/36, 13/108) is the red point (V ≈ 0.1148, J(V) ≈ 4.1223). The two blue dashed lines are the
asymptotes V = −1/36 and V = 13/108.

The numerical values of the second-order filter matrices are

P =
(
1 0

)
, N ≈

(
0 1

0.5224 −0.378

)
,

T ≈
(

1 0.5 0.3333 0.1352
0.5 0.3333 0.1352 0.123

)
, M ≈

(
−1.2058
−0.6708

)
, V ≈ 0.1148.

The steady state mean value of the squared observation error in this case is

J ≈ 4.1223.

If the condition (8) is violated (t24 = 12V2− 2V + 7/36), then, by Remark 2, degenerate
third-order observers have the form (4), in which

P =
(
1 0 0

)
, N ≈

 0 1 0
0 0 1

−0.1975 + 0.5224C1 0.6653− 0.378C1 −C1

,

T ≈

 1 0.5 0.3333 0.1352
0.5 0.3333 0.1352 0.123

0.3333 0.1352 0.123 0.0241

, M ≈

−1.2058
−0.6708
−0.3763

, V ≈ 0.1148,

where the unknown C1 is chosen so that the stability conditions (9) are satisfied, i.e.,
C1 ∈ (C1, C1), C1 ≈ −0.622, C1 ≈ 1.378. According to Remark 4, the transfer function
matrix and the optimality criterion in this case are found in the same way as for the
second-order filter.
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Therefore, if the condition (8) is violated, then there is a set of degenerate observers
whose coefficients of the characteristic polynomial β(z) are at the intersection of the linear
manifold of solutions of the system (13) in which

z1 =
3− 36V +

√
3
√

1 + 432V2

6
≈ 0.558,

z2 =
3− 36V −

√
3
√

1 + 432V2

6
≈ −0.9361;

and the domain of discrete stability of the matrix N.
If the condition (8) is satisfied (t24 6= 12V2 − 2V + 7/36) that there exists a functional

optimal observer (4) of the third order solving the optimal filtering problem. In this case,
to find unknown variables (V, t24, t34), the problem of minimizing the optimality criterion
is solved with a restriction on the parameters that must be such that the characteristic
polynomial of the observer is stable. Figure 2 illustrates solution of this problem in discrete
stability regions given by the inequalities (9) in coordinates (l1, l2, l3) on Figure 2a and
in coordinates (V, t24, t34) on Figure 2b. As one can see, solution paths of the sequential
quadratic programming method [41] from different starting points converge to the common
minimum of the optimality criterion (4), which has the following coordinates

l1 ≈ −0.0119, l2 ≈ 0.2303, l3 ≈ 0.0591;

V ≈ 0.373, t24 ≈ −0.0636, t34 ≈ 0.0361.

(a) (b)

Figure 2. Three convergence paths (blue, green and orange arrows) to the common minimum (red
star) of the optimality criterion J from various starting points in the discrete stability regions in
coordinates (a) l1, l2, l3; (b) V, t24, t34.

The numerical values of the third-order filter matrices are

P =
(
1 0 0

)
, N ≈

 0 1 0
0 0 1

0.0119 −0.2303 −0.0591

,

T ≈

 1 0.5 0.3333 −0.123
0.5 0.3333 −0.123 −0.0636

0.3333 −0.123 −0.0636 0.0361

, M ≈

−0.503
0.0776
0.0528

, V ≈ 0.373.
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The optimality criterion in this case is

J ≈ 2.3179.

Thus, the optimality criterion (3) for the third-order filter turned out to be less than for
the second-order filter. Previously, second and third order filters were compared from both
practical and theoretical points of view. In the context of satellite signal processing, it has
been shown [42] that increasing the order of the filters led to an improvement in dynamic
stress performance. In [17], a smaller value of the H2 norm for a third-order filter over a
second-order filter was obtained on a numerical experiments. Moreover, it has recently
been theoretically explained [22] that, as the order of the reduced model was increased, the
deviation in the satisfaction of the optimality conditions further reduced.

6. Conclusions

Necessary and sufficient conditions for the existence of discrete unbiased filters of
the second and third order are proposed. In the canonical basis, analytical expressions are
obtained both for the transfer function matrix of the estimation error system and for the
coefficients of the characteristic polynomial of functional filters. In a numerical experiment,
filters of the second and third order are constructed for a linear stochastic discrete system
of the fourth order. The comparison was carried out according to the root-mean-square
optimality criterion. It is shown that, in comparison with the second-order filter, the
third-order filter is more optimal in terms of the quadratic criterion in the steady state.
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