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Abstract: Two contact models are considered, with the behavior of the materials being described by a
constitutive law governed by the subdifferential of a convex map. We deliver variational formulations
based on the theory of bipotentials. In this approach, the unknowns are pairs consisting of the
displacement field and the Cauchy stress tensor. The two-field weak solutions are sought into
product spaces involving variable convex sets. Both models lead to variational systems which can be
cast in an abstract setting. After delivering some abstract results, we apply them in order to study the
weak solvability of the mechanical models as well as the data dependence of the weak solutions.

Keywords: nonlinear constitutive law; bipotential; two-field weak solution; well-posedness

1. Introduction

The necessity of a better approximation of the solutions of physical models by using nu-
merical methods determined the consideration of additional fields in the variational setup,
leading to multifield variational formulations; see, e.g., [1–3] and the references therein for
some variational approaches based on the saddle point theory. When the constitutive laws
present in the description of the models are governed by possibly set-valued operators,
then a possible approach is the one governed by bipotentials (see, e.g., [4–7]); for other
relevant works devoted to bipotentials and their applicability in mechanics, we refer, for
instance, to [8–11].

The present paper is a new contribution to the variational formulations governed by
bipotentials in solid mechanics, addressing models whose constitutive laws are described
by means of the subdifferential of a convex map. Two contact models are under our
attention. The first model involves the Winkler condition on the contact zone, with such
a boundary condition having extensive applications in civil engineering, e.g., [12]. The
second model involves a regularized Coulomb friction law; see, e.g., [13] (pp. 107–110)
and the references therein for details. We emphasize that the second model is strongly
nonlinear—the nonlinearity arising not only from the constitutive law, but also from the
friction law.

We focus on the existence and the uniqueness of the weak solutions and also on their
dependence on the data.

Due to the separability property of the bipotential which is involved, the variational
formulations we deliver can be cast in an abstract variational system of the form below

J(v)− J(u) + ĝ j(u, v− u) ≥ ( f , v− u)X for all v ∈ X (1)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj(u; f , ĝ) ⊂ Y. (2)

The unknown is the pair (u, σ) ∈ X × Kj(u; f , ĝ) for given J : X → R, J∗ : Y → R,
j : X × X → R, f ∈ X and ĝ > 0. It is worth emphasizing that the second variational
inequality is written on a set Kj(u; f , ĝ) which depends on the first component of the pair
solution, u. In order to investigate the existence and the uniqueness of the solution of
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this abstract system, we use elements of convex analysis, a crucial role being played by
a minimization argument. On the other hand, by using the weak topology and a Mosco
convergence technique, we investigate the continuity of the solution operator

S : X×R→ X×Y, S( f , ĝ) = (u, σ), (3)

proving its demicontinuity, i.e., we prove that if ( fn, ĝn)→ ( f , ĝ) in X×R as n→ ∞ then
(un, σn) ⇀ (u, σ) in X×Y as n→ ∞. Afterward, we apply the abstract results in order to
study the mechanical models under consideration.

This work can be seen as a continuation of [7]. The model studied in [7] can be revisited
by applying the abstract results obtained in the present paper.

It is worth mentioning that the subdifferential of convex maps is present not only in
solid mechanics but also in many other fields of mathematical physics. The subdifferential
of convex maps is widely used especially in those cases in which the materials have an
extremely complex intrinsic structure, such as complex fluids and/or magnetorheological
fluids; see, e.g., [14–17].

The rest of the paper is structured as follows: In Section 2, we indicate some prelimi-
naries, including basic facts of convex analysis. In Section 3, we present two mechanical
models and their corresponding two-field weak formulations via bipotentials. Section 4 is
devoted to some abstract results which are applied in Section 5 in order to obtain existence
and uniqueness results as well as some properties of the weak solutions. Finally, Section 6
is devoted to conclusions and perspectives.

2. Preliminaries

For the convenience of the reader, we present in this section some notations, prelimi-
nary results from convex analysis and definitions of some mathematical concepts that are
used throughout the paper. Everywhere in the present work, by the abbreviation a.e., we
mean “almost everywhere”. Throughout this paper, S3 denotes the space of second-order
symmetric tensors on R3. Every field in R3 or S3 is typeset in boldface. By · and :, we
denote the inner product on R3 and S3, respectively, while by means of the notation ‖ · ‖
and ‖ · ‖S3 , we denote the Euclidean norm on R3 and S3, respectively.

Let Ω ⊂ R3 be a bounded domain with smooth enough boundary Γ. We begin with
the description of the spaces that are used in this paper:

• L2(Ω)3×3 = {µ = (µij) : µij ∈ L2(Ω) for all i, j ∈ {1, 2, 3}} is a Hilbert space en-
dowed with the inner product (·, ·)L2(Ω)3×3 , (µ, τ)L2(Ω)3×3 =

∫
Ω ∑3

i,j=1 µij(x)τij(x) dx.
• L2

s (Ω)3×3 = {µ = (µij) : µij ∈ L2(Ω), µij = µji for all i, j ∈ {1, 2, 3}} is a Hilbert
space endowed with the inner product (·, ·)L2

s (Ω)3×3 , (µ, τ)L2
s (Ω)3×3 = (µ, τ)L2(Ω)3×3 .

• V = { v ∈ H1(Ω)3 : γ v = 0 a.e. on Γ1}, with Γ1 ⊂ Γ such that meas(Γ1) > 0, is
a Hilbert space endowed with the inner product (·, ·)V : V × V → R, (u, v)V =
(ε(u), ε(v))L2

s (Ω)3×3 . In this context, it is worth recalling Korn’s inequality: there exists
cK = cK(Ω, Γ1) > 0 such that

‖ε(v)‖L2
s (Ω)3×3 ≥ cK‖v‖H1(Ω)3 for all v ∈ V; (4)

see, e.g., [18].
Recall also (see, e.g., [13] (p. 85)) that

ε : H1(Ω)3 → L2(Ω)3×3, ε(u) = (εij(u)), εij(u) =
1
2

(∂ui
∂xj

+
∂uj

∂xi

)
; i, j ∈ {1, 2, 3} (5)

is a linear and continuous operator and that γ : H1(Ω)3 → L2(Γ)3 is the linear and
continuous Sobolev trace operator for vector-valued functions;

‖γ u‖L2(Γ)3 ≤ ctr‖u‖H1(Ω)3 for all u ∈ H1(Ω)3 (ctr > 0). (6)
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As Ω ⊂ R3, then γ : H1(Ω)3 → Lr(Γ)3 is a linear and compact operator for each r
such that 1 ≤ r < 4; see, e.g., Theorem 2.21 in [19].

• W = {v ∈ V : vν = 0 a.e. on Γ3}, where vν = γv · ν and Γ3 ⊂ Γ, ν being the unit
outward normal to Γ, is a closed subspace of V; see, e.g., [13] (p. 88). Recall that
(W, (·, ·)W) is a Hilbert space, where (·, ·)W = (·, ·)V .

Afterward, we recall some tools of convex analysis which are very helpful in our study.

Theorem 1. Let (X, (·, ·)X) be a Hilbert space and let ϕ : X → R be a Gâteaux differentiable
function. Then, the following statements are equivalent:

(i) ϕ is a convex functional;

(ii) ϕ(v)− ϕ(u) ≥ (∇ϕ(u), v− u)X for all u, v ∈ X.

In the variant of strict convexity, inequality (ii) should be strict for u 6= v.

The proof can be found in [20] (pp. 180–183). The following theorem is another relevant
result, which can be found in many books, see, e.g., [21] (p. 45).

Theorem 2. Let (X, (·, ·)X) be a Hilbert space and let ϕ : X → (−∞, ∞] be a proper, convex,
lower semicontinuous functional. Then,

(i) for each u, v ∈ X, we have ϕ(u) + ϕ∗(v) ≥ (u, v)X ;

(ii) for each u, v ∈ X we have the equivalences

v ∈ ∂ϕ(u)⇔ u ∈ ∂ϕ∗(v)⇔ ϕ(u) + ϕ∗(v) = (u, v)X . (7)

Herein, ϕ∗ denotes the Fenchel conjugate of ϕ,

ϕ∗ : X → (−∞, ∞], ϕ∗(v) = sup
w∈X
{(v, w)X − ϕ(w)}. (8)

In addition, we shall need the following minimization theorem.

Theorem 3. Let X be a Hilbert space and let K be a nonempty closed convex subset of X. Let
J : K → R be a convex lower semicontinuous function. Then, J is bounded from below and attains
its infimum on K whenever one of the following two conditions hold:

(i) K is bounded;

(ii) J is coercive, i.e., J(u)→ ∞ as ‖u‖X → ∞.

Moreover, if J is a strictly convex function, then J attains its infimum on K at only one point.

The proof can be found in [13] (pp. 29–30). Minimization results can be found in many
books; see, for instance, [21–23].

Since bipotentials are the key ingredients of our approach, we state here the following
definition, which can be found in [24].

Definition 1. Let (X, (·, ·)X) be a Hilbert space. A bipotential is a function B : X × X →
(−∞, ∞] with the following three properties:

(i) B is convex and lower semicontinuous in each argument;

(ii) for each x, y ∈ X, we have B(x, y) ≥ (x, y)X ;

(iii) for each x, y ∈ X, we have the equivalences

y ∈ ∂B(·, y)(x)⇔ x ∈ ∂B(x, ·)(y)⇔ B(x, y) = (x, y)X . (9)
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Finally, we consider a concept of convergence of convex sets originating from Mosco’s
theory; see, e.g., [25] for more details on this topic.

Definition 2. Let X be a Hilbert space. Let (Kn)n ⊂ X be a sequence of nonempty subsets and
K ⊂ X, K 6= ∅.

The sequence (Kn)n converges to K in the sense of Mosco ( Kn
M−→ K) if:

(i) for each sequence (µn)n such that µn ∈ Kn for each n ∈ N and µn ⇀ µ in X, we have µ ∈ K;

(ii) for every µ ∈ K, there exists a sequence (µn)n ⊂ X such that µn ∈ Kn for each n ∈ N and
µn → µ in X.

3. The Models and Their Weak Formulations

We consider a body that occupies a bounded domain Ω ⊂ R3 with smooth boundary
Γ, partitioned in three measurable parts, Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. The body
Ω is clamped on Γ1, body forces of density f 0 act on Ω and surface tractions of density f 2
act on Γ2. The part Γ3 is the contact zone. According to this physical setting, see Figure 1,
we formulate the following boundary value problem: find u : Ω → R3 and σ : Ω → S3

such that

Div σ(x) + f 0(x) = 0 in Ω (10)

σ(x) ∈ ∂ω(ε(u)(x)) in Ω (11)

u(x) = 0 on Γ1 (12)

σ(x)ν(x) = f 2(x) on Γ2 (13)

contact condition and friction law on Γ3. (14)

Figure 1. Physical setting.

As contact condition and friction law we firstly use

− σν(x) = k0 uν(x), στ(x) = 0 (k0 > 0). (15)

Secondly we are going to set

uν(x) = 0, στ(x) = −g
uτ(x)√

‖uτ(x)‖2 + ρ2
(g > 0, ρ > 0). (16)

As usual, we denoted by u = (ui) the displacement field, by ε(u) = (εij(u)) the
infinitesimal strain tensor and by σ = (σij) the Cauchy stress tensor. The normal and the
tangential components of the Cauchy vector on the boundary are defined by the formulas
σν = (σν) · ν, στ = σν− σνν (see, e.g., [13] (p. 89)), while the normal and the tangential
components of the displacement vector on the boundary are defined by the formulas
uν = u · ν, uτ = u− uνν (see, e.g., [13] (p. 86)).

Thus, each of our models consists of the equilibrium Equation (10), the set-valued
constitutive law (11) governed by the constitutive function ω : S3 → R, the homoge-
neous displacement condition (12), the traction condition (13), and one of the boundary
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conditions (15) and (16). In (15), we have a frictionless contact condition involving the
Winkler contact law, a law which describes in a simplified manner the interaction between a
deformable body and the soil (see [12]). The boundary condition (16) is a frictional bilateral
contact condition involving a static version of a regularized Coulomb friction law, see,
e.g., [13] (pp. 107–110). For relevant engineering examples in contact mechanics, we refer,
for instance, to [26–28].

We study successively the problems (10)–(13) (15) and (10)–(13) (16). Let us make the
following assumptions:

Assumption 1. The constitutive function ω : S3 → R is convex and lower semicontinuous. In
addition, there exist α, β such that 1 > β ≥ α > 0 and β‖ε‖2

S3 ≥ ω(ε) ≥ α‖ε‖2
S3 for all ε ∈ S3.

Assumption 2. The densities of the volume forces and tractions verify

f 0 ∈ L2(Ω)3 and f 2 ∈ L2(Γ2)
3. (17)

Using a similar technique with that used in [7], Theorem 2 allows us to write the
following two-field weak formulation for the problem (10)–(13) (15).

Problem 1. Find u ∈ V and σ ∈ Kj1(u; f , k0) such that

b(v, σ)− b(u, σ) + k0 j1(u, v− u) ≥ ( f , v− u)V for all v ∈ V (18)

b(u, µ)− b(u, σ) ≥ 0 for all µ ∈ Kj1(u; f , k0), (19)

with b, j1, f , Kj1(u; f , k0) as follows.

• The map b(·, ·) is the bifunctional

b : V × L2
s (Ω)3×3 → R, b(v, µ) =

∫
Ω

B(ε(v)(x), µ(x)) dx, (20)

the map B being the bipotential

B : S3 × S3 → R, B(τ, µ) = ω(τ) + ω∗(µ). (21)

Herein, ω∗ denotes the Fenchel conjugate of ω,

ω∗ : S3 → (−∞, ∞], ω∗(µ) = sup
τ∈S3
{µ : τ −ω(τ)}. (22)

We emphasize that, due to Assumption 1, ω(τ(·)) ∈ L1(Ω) for all τ ∈ L2
s (Ω)3×3.

Moreover, it can be proved that its Fenchel conjugate has a similar property: if α, β are
the constants in Assumption 1, then

(1− β)‖τ‖2
S3 ≤ ω∗(τ) ≤ 1

4α
‖τ‖2

S3 for all τ ∈ S3; (23)

see, e.g., [5,6]. It follows that ω∗(τ(·)) ∈ L1(Ω) for all τ ∈ L2
s (Ω)3×3. Therefore,

B(ε(v)(·), τ(·)) ∈ L1(Ω) for all v ∈ V, τ ∈ L2
s (Ω)3×3.

• The bifunctional j1(·, ·) is defined as follows:

j1 : V ×V → R, j1(u, v) =
∫

Γ3

uν vν dΓ. (24)

• The element f ∈ V is defined as follows:

( f , v)V =
∫

Ω
f 0 · v dx +

∫
Γ2

f 2 · γ v dΓ for all v ∈ V. (25)
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• Given k0 > 0, Kj1(· ; f , k0) stands for a variable subset of L2
s (Ω)3×3 defined as follows:

for each ϕ ∈ V,

Kj1(ϕ; f , k0) ={µ ∈ L2
s (Ω)3×3 : (µ, ε(v))L2

s (Ω)3×3 + k0 j1(ϕ, v) = ( f , v)V

for all v ∈ V}. (26)

Definition 3. Any solution (u, σ) ∈ V × Kj1(u; f , k0) of Problem 1 is called two-field weak
solution for the problem (10)–(13) (15).

The problem (10)–(13) (16) has the following two-field weak formulation.

Problem 2. Find u ∈W and σ ∈ Kj2(u; f , g) such that

b(v, σ)− b(u, σ) + g j2(u, v− u) ≥ ( f , v− u)W for all v ∈W (27)

b(u, µ)− b(u, σ) ≥ 0 for all µ ∈ Kj2(u; f , g), (28)

with b, j2, f , Kj2(u; f , g) as below.

• The bifunctional b(·, ·) is given as follows:

b : W × L2
s (Ω)3×3 → R, b(v, µ) =

∫
Ω

B(ε(v)(x), µ(x)) dx (29)

with the bipotential B defined in (21).
• The bifunctional j2(·, ·) is defined as follows:

j2 : W ×W → R, j2(u, v) =
∫

Γ3

uτ√
‖uτ‖2 + ρ2

· vτ dΓ. (30)

• The element f ∈W is defined as follows:

( f , v)W =
∫

Ω
f 0 · v dx +

∫
Γ2

f 2 · γ v dΓ for all v ∈W. (31)

• Given g > 0, Kj2(· ; f , g) denotes a variable subset of L2
s (Ω)3×3 defined as follows: for

each ϕ ∈W,

Kj2(ϕ; f , g) ={µ ∈ L2
s (Ω)3×3 : (µ, ε(v))L2

s (Ω)3×3 + g j2(ϕ, v) = ( f , v)W

for all v ∈W}. (32)

Definition 4. Any solution (u, σ) ∈ W × Kj2(u; f , g) of Problem 2 is called two-field weak
solution for the problem (10)–(13) (16).

4. Abstract Results

Let (X, (·, ·)X , ‖ · ‖X) and (Y, (·, ·)Y, ‖ · ‖Y) be two real Hilbert spaces. The first part of
this section is devoted to the study of the solvability for the following variational system.

Problem 3. Find u ∈ X and σ ∈ Kj(u; f , ĝ) ⊂ Y such that

J(v)− J(u) + ĝ j(u, v− u) ≥ ( f , v− u)X for all v ∈ X (33)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj(u; f , ĝ). (34)

In order to prove the existence of at least one solution for Problem 3, we shall assume
the following hypotheses.

(H1) f ∈ X, ĝ > 0.
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(H2) j : X× X → R is a bifunctional such that

j(u, v) = (∇ψ(u), v)X for all v ∈ X, (35)

where ψ : X → R+ is a convex, lower semicontinuous and Gâteaux differentiable
functional, ∇ψ(u) denoting the Gâteaux gradient in u ∈ X.

(H3) J : X → R is a convex and lower semicontinuous map. In addition, there exists α1 > 0
such that J(v) ≥ α1 ‖v‖2

X for all v ∈ X.

(H4) J∗ : Y → R is a convex and lower semicontinuous map. In addition, there exists
α2 > 0 such that J∗(µ) ≥ α2 ‖µ‖2

Y for all µ ∈ Y.

(H5) For each ϕ ∈ X, Kj(ϕ; f , ĝ) is a nonempty closed convex subset of Y.

The first abstract result is given by the following theorem.

Theorem 4. If (H1)–(H5) hold true, then Problem 3 admits at least one solution. If, in addition,
J and J∗ are strictly convex, then Problem 3 admits a unique solution.

Proof. We claim that Problem 3 is equivalent to the following problem:
(P) : find u ∈ X and σ ∈ Kj(u; f , ĝ) such that

J(v)− J(u) + ĝ ψ(v)− ĝ ψ(u) ≥ ( f , v− u)X for all v ∈ X (36)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj(u; f , ĝ). (37)

Indeed, according to Theorem 1, due to the convexity and the Gâteaux differentiability
of the functional ψ considered in (H2), we have

ψ(v)− ψ(u) ≥ (∇ψ(u), v− u)X . (38)

Note that using (35) the above relation yields

ψ(v)− ψ(u) ≥ j(u, v− u). (39)

As a result, if (u, σ) is a solution of Problem 3, then (u, σ) verifies (P).
Conversely, let (u, σ) ∈ X× Kj(u; f , ĝ) be a solution of (P).
Setting in (36) v = u + t(w− u) with w ∈ X arbitrarily fixed and t 6= 0 a real number,

then for all t > 0, we can write

J(u + t(w− u))− J(u)
t

+
ĝ ψ(u + t(w− u))− ĝ ψ(u)

t
≥ ( f , t(w− u))X

t
. (40)

We now use the convexity of J from (H3) to obtain

J(w)− J(u) +
ĝ ψ(u + t(w− u))− ĝ ψ(u)

t
≥ ( f , w− u)X , (41)

for all t ∈ (0, 1). Passing to the limit when t↘ 0, as ψ is Gâteaux differentiable, we obtain

J(w)− J(u) + ĝ (∇ψ(u), w− u)X ≥ ( f , w− u)X for all w ∈ X. (42)

Therefore, if (u, σ) ∈ X× Kj(u; f , ĝ) is a solution of (P), then (u, σ) verifies Problem 3.
Let us define now the functional

J̃ f ,ĝ : X → R, J̃ f ,ĝ(v) = J(v) + ĝ ψ(v)− ( f , v)X . (43)

Note that (P) can be written as follows: find u ∈ X and σ ∈ Kj(u; f , ĝ) such that
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J̃ f ,ĝ(v)− J̃ f ,ĝ(u) ≥ 0 for all v ∈ X (44)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj(u; f , ĝ). (45)

It is easy to observe that J̃ f ,ĝ is convex, lower semicontinuous and coercive, due to
the properties of J and ψ from (H2) and (H3). Therefore, using Theorem 3, we deduce
that J̃ f ,ĝ has at least one minimum on X. Let u∗ ∈ X be such an element. Consider
now the subset Kj(u∗; f , ĝ). Keeping in mind (H5) with ϕ = u∗, we note that Kj(u∗; f , ĝ)
is a nonempty closed convex set. Since J∗ fulfills (H4), we apply again Theorem 3 to
obtain that J∗ has at least one minimum σ∗ ∈ Kj(u∗; f , ĝ) on Kj(u∗; f , ĝ). We conclude that
(u∗, σ∗) ∈ X× Kj(u∗; f , ĝ) is a solution of Problem 3.

In order to study the uniqueness, we admit in addition that the functionals J and J∗

are strictly convex. Then, J̃ f ,ĝ has a unique minimum u on X, and J∗ has a unique minimum
σ on Kj(u; f , ĝ). Therefore, the pair (u, σ) is the unique solution of Problem 3.

We are now interested in finding some properties of the solution. Precisely, we are
interested to study the dependence of the solution (u, σ) on the data f and ĝ.

For the next result, we need additional hypotheses.

(H6) J and ψ vanish in 0X ;

(H7) There exists β2 > 0 such that J∗(µ) ≤ β2‖µ‖2
Y for all µ ∈ Y;

(H8) There exists C > 0 such that |j(u, v)| ≤ C‖u‖X ‖v‖X for all u, v ∈ X;

(H9) There exists a linear and continuous operator T : X → Y such that, for each u ∈ X,
T( f − ĝ∇ψ(u)) ∈ Kj(u; f , ĝ).

The next proposition delivers useful information that is exploited for the later results.

Proposition 1. Consider (H1)–(H9). Let (u, σ) be a solution of Problem 3. Then,

‖u‖X ≤ 1
α1
‖ f ‖X ; (46)

‖∇ψ(u)‖X ≤ C
α1
‖ f ‖X ; (47)

‖σ‖Y ≤
‖T‖L(X,Y)

α1

√
2β2 max{1, ĝ2} (α2

1 + C2)

α2
‖ f ‖X . (48)

Proof. To prove (46), we take v = 0X in (36), and due to (H6), we obtain

J(u) + ĝ ψ(u) ≤ ( f , u)X . (49)

As ψ(u) ≥ 0 (see (H2)) and ĝ > 0 (see (H1)), by using (H3), we obtain

α1‖u‖2
X ≤ ‖ f ‖X ‖u‖X , (50)

which implies (46).
In order to obtain (47), we firstly write

‖∇ψ(u)‖X = sup
v∈X,v 6=0X

(∇ψ(u), v)X
‖v‖X

. (51)

Let v ∈ X, v 6= 0X . Then, by (H8), we have

(∇ψ(u), v)X
‖v‖X

≤ |j(u, v)|
‖v‖X

≤ C ‖u‖X . (52)

Hence, by using (46), we immediately obtain (47).
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Finally, let us prove (48). Since (u, σ) is a solution of Problem 3, then

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj(u; f , ĝ). (53)

The above inequality and the hypotheses (H4) and (H7) lead us to

α2‖σ‖2
Y ≤ β2‖µ‖2

Y for all µ ∈ Kj(u; f , ĝ). (54)

Since (H9) holds, let us take µ = T( f − ĝ∇ψ(u)) in (54). From the linearity and
continuity of T, we know that ‖T( f − ĝ∇ψ(u))‖Y ≤ ‖T‖L(X,Y) ‖ f − ĝ∇ψ(u)‖X. Hence,
we obtain

α2‖σ‖2
Y ≤ β2 ‖T‖2

L(X,Y) ‖ f − ĝ∇ψ(u)‖2
X , (55)

which leads to

‖σ‖2
Y ≤

2β2 ‖T‖2
L(X,Y) max{1, ĝ2}

α2

(
‖ f ‖2

X + ‖∇ψ(u)‖2
X

)
. (56)

Using (47), we can write

‖σ‖2
Y ≤

2β2 ‖T‖2
L(X,Y) max{1, ĝ2}

(
1 + C2

α2
1

)
α2

‖ f ‖2
X , (57)

and from this, we easily obtain (48).

For the next result, we need new hypotheses.

(H10) J∗ is upper semicontinuous.

(H11) If (ϕn)n, ( fn)n ⊂ X, and (ĝn)n ⊂ (0, ∞) are three sequences and ϕ, f ∈ X, ĝ ∈
(0, ∞) are three elements such that

ϕn ⇀ ϕ in X, fn → f in X and ĝn → ĝ in R (58)

then Kj(ϕn; fn, ĝn)
M−→ Kj(ϕ; f , ĝ).

We are now in the position to prove our next abstract result, which shows how the
solution depends on the data.

Theorem 5. We admit (H1)–(H11), and in addition, we assume that J and J∗ are strictly convex.
The operator

S : X×R→ X×Y, S( f , ĝ) = (u, σ) (59)

associated with Problem 3 is demicontinuous.

Proof. Let ( fn)n ⊂ X be a convergent sequence to f , and let (ĝn)n ⊂ (0, ∞) be a convergent
sequence to ĝ > 0. Let n be a positive integer, and let (un, σn) be the unique solution of
Problem 3 corresponding to ( fn, ĝn). We denote by (u, σ) the unique solution of Problem 3
corresponding to ( f , ĝ).

Since ( fn)n ⊂ X is a convergent sequence, then there exists M > 0 such that

‖ fn‖X ≤ M for all n ∈ N. (60)

Keeping in mind Proposition 1, by (60) we obtain

‖un‖X ≤
M
α1

for all n ∈ N, (61)

which means that the sequence (un)n ⊂ X is bounded. Therefore, there exists a subsequence
(unk )nk and an element ũ ∈ X such that
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unk ⇀ ũ in X. (62)

On the other hand, keeping in mind Proposition 1, for each nk,

‖σnk‖Y ≤
‖T‖L(X,Y)

α1

√
2β2 max{1, ĝ2

nk
} (α2

1 + C2)

α2
‖ fnk‖X . (63)

As ( fnk )nk ⊂ X and (ĝnk )nk ⊂ (0, ∞) are bounded sequences, then there exists M̃ > 0
such that

‖σnk‖Y ≤ M̃, (64)

which implies that there exists a subsequence (σn′)n′ of (σnk )nk such that

σn′ ⇀ σ̃ in Y as n′ → ∞. (65)

As a result, there exist (un′)n′ ⊂ X and (σn′)n′ ⊂ Y such that

(un′ , σn′) ⇀ (ũ, σ̃) in X×Y as n′ → ∞, (66)

(un′ , σn′) being the unique solution of Problem 3 corresponding to the data ( fn′ , ĝn′)
for a fixed n′.

We know that the following inequality holds:

J(v)− J(un′) + ĝn′ ψ(v)− ĝn′ ψ(un′) ≥ ( fn′ , v− un′)X for all v ∈ X. (67)

Taking the limsup as n′ → ∞ in (67), since J and ψ are convex and lower semicontinu-
ous, we obtain

J(v)− J(ũ) + ĝ ψ(v)− ĝ ψ(ũ) ≥ ( f , v− ũ)X for all v ∈ X. (68)

We also know that the following inequality holds:

J∗(µn′)− J∗(σn′) ≥ 0 for all µn′ ∈ Kj(un′ ; fn′ , ĝn′). (69)

We want to prove that for all µ ∈ Kj(ũ; f , ĝ), we have

J∗(µ)− J∗(σ̃) ≥ 0. (70)

For this purpose, let µ ∈ Kj(ũ; f , ĝ). Notice that (H10) implies

Kj(un′ ; fn′ , ĝn′)
M−→ Kj(ũ; f , ĝ). (71)

Therefore, there exists (µ̃n′)n′ ⊂ Y such that µ̃n′ ∈ Kj(un′ ; fn′ , ĝn′) for each n′ ∈ N and
µ̃n′ → µ in Y as n′ → ∞.

Hence, we can write
J∗(µ̃n′) ≥ J∗(σn′), (72)

and passing to the limsup as n′ → ∞ in the above inequality, using (H9) and the fact that
J∗ is convex and lower semicontinuous, we obtain

J∗(µ) ≥ J∗(σ̃). (73)

In addition, as σn′ ⇀ σ̃ as n′ → ∞ and σn′ ∈ Kj(un′ ; fn′ , ĝn′) for each n′, then we
have from (71) that σ̃ ∈ Kj(ũ; f , ĝ). Therefore, keeping in mind (68) and (73), we deduce
that (ũ, σ̃) is a solution of Problem 3 corresponding to f and ĝ. Since (u, σ) is the unique
solution of Problem 3 corresponding to ( f , ĝ), we deduce that ũ = u, σ̃ = σ and
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un′ ⇀ u as n′ → ∞, (74)

σn′ ⇀ σ as n′ → ∞. (75)

Thus, the weak limits are independent of the subsequences. Consequently, the entire
sequences (un)n and (σn)n are weakly convergent to u and σ, respectively. Then,

(un, σn) ⇀ (u, σ). (76)

Therefore, S( fn, ĝn) ⇀ S( f , ĝ), which concludes that S is demicontinuous.

5. Well-Posedness

In this section, we use the abstract results from Section 4 in order to study the existence,
the uniqueness and the dependence on the data of the weak solutions of the models
described in Section 3. At the beginning of this study, our aim is to prove that Problem 1
and Problem 2 admit at least one solution, and also to discuss on the uniqueness.

Before we delve into this analysis, we prove a useful lemma.

Lemma 1. The subsets Kj1(· ; f , k0) and Kj2(· ; f , g) defined in (26) and (32) satisfy (H5).

Proof. Let ϕ ∈ V be arbitrarily fixed. Since V 3 v → j1(ϕ, v) is a linear and continuous
mapping, then there exists ϕ̄ ∈ V such that

j1(ϕ, v) = (ϕ̄, v)V . (77)

It is easy to observe that ε( f − k0 ϕ̄) is an element of Kj1(ϕ; f , k0); therefore, the set
is nonempty.

Analogously, let ϕ ∈ W be arbitrarily fixed. As W 3 v → j2(ϕ, v) is a linear and
continuous mapping, then there exists ϕ̃ ∈W such that

j2(ϕ, v) = (ϕ̃, v)W . (78)

As a result, ε( f − g ϕ̃) is an element of Kj2(ϕ; f , g). Hence, the set Kj2(ϕ; f , g) is
nonempty. Moreover, by using standard arguments, we deduce that Kj1(ϕ; f , k0) and
Kj2(ϕ; f , g) are closed and convex sets.

The solvability of Problem 1 can be established with the help of Theorem 4 as the
following result shows.

Theorem 6. Under Assumptions 1 and 2, Problem 1 has at least one solution. If, in addition, ω
and ω∗ are strictly convex, then Problem 1 has a unique solution.

Proof. Since the bifunctional b(·, ·) given by (20) can be written as

b(v, µ) = J(v) + J∗(µ), (79)

where
J : V → R, J(v) =

∫
Ω

ω(ε(v)(x)) dx (80)

and
J∗ : L2

s (Ω)3×3 → R, J∗(µ) =
∫

Ω
ω∗(µ(x)) dx, (81)

then we easily observe that

b(v, σ)− b(u, σ) = J(v)− J(u) (82)

b(u, µ)− b(u, σ) = J∗(µ)− J∗(σ). (83)
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In consequence, Problem 1 can be equivalently written as follows: find u ∈ V and
σ ∈ Kj1(u; f , k0) such that

J(v)− J(u) + k0 j1(u, v− u) ≥ ( f , v− u)V for all v ∈ V (84)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj1(u; f , k0). (85)

In the sequel, we will apply Theorem 4 with X = V, Y = L2
s (Ω)3×3, J, J∗ given

by (80) and (81), j = j1 given by (24), f = f given by (25) and ĝ = k0. With this end in view,
we have to verify (H1)–(H5).

As f ∈ V and k0 > 0, (H1) is fulfilled. To proceed, we introduce the functional

ψ1 : V → R+, ψ1(v) =
1
2

∫
Γ3

|vν|2 dΓ for all v ∈ V. (86)

Obviously, ψ1 is convex, lower semicontinuous and Gâteaux differentiable, the Gâteaux
gradient in u ∈ V denoted by ∇ψ1(u) verifying

(∇ψ1(u), v)V = j1(u, v) for all v ∈ V. (87)

Therefore, (H2) is fulfilled. Next, by considering Assumption 1, we deduce that the
functionals J and J∗ given by (80) and (81) satisfy (H3) and (H4). Finally, Lemma 1 ensures
that Kj1(· ; f , k0) fulfills (H5). Consequently, we can apply Theorem 4 in order to obtain the
existence of at least one solution for Problem 1.

If, in addition, ω and ω∗ are strictly convex, then the functionals J and J∗ are strictly
convex. As a result, Theorem 4 ensures also the uniqueness.

Below, we focus on Problem 2.

Theorem 7. Under Assumptions 1 and 2, Problem 2 has at least one solution. If, in addition, ω
and ω∗ are strictly convex, then Problem 2 has a unique solution.

Proof. We observe that the bifunctional b(·, ·) given by (29) can be written as

b(v, µ) = J(v) + J∗(µ), (88)

where
J : W → R, J(v) =

∫
Ω

ω(ε(v)(x)) dx (89)

and J∗ is given by (81), and then

b(v, σ)− b(u, σ) = J(v)− J(u) (90)

b(u, µ)− b(u, σ) = J∗(µ)− J∗(σ). (91)

Thus, Problem 2 can be equivalently written as follows: find u ∈W and σ ∈ Kj2(u; f , g)
such that

J(v)− J(u) + g j2(u, v− u) ≥ ( f , v− u)W for all v ∈W (92)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj2(u; f , g). (93)

Therefore, we are going to apply Theorem 4 with X = W, Y = L2
s (Ω)3×3, J, J∗ given

by (89) and (81), j = j2 given by (30), f = f given by (31) and ĝ = g. Thus, we have to
verify (H1)–(H5).

As f ∈W and g > 0, (H1) is fulfilled. In order to verify (H2), we define the following
functional inspired by [13] (pp. 150–152):

ψ2 : W → R+, ψ2(v) =
∫

Γ3

(
√
‖vτ‖2 + ρ2 − ρ) dΓ for all v ∈W; (94)
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the functional ψ2 is convex, lower semicontinuous and Gâteaux differentiable, the Gâteaux
gradient in u ∈W denoted by ∇ψ2(u) verifying

(∇ψ2(u), v)W = j2(u, v) for all v ∈W. (95)

Therefore, (H2) is fulfilled. By considering the functional J defined in (89) and the
functional J∗ defined in (81), then (H3) and (H4) are also fulfilled. Finally, from Lemma 1,
we have (H5). The claim follows straightforwardly from Theorem 4.

Next, we turn our attention to the question of how the weak solutions of the
problems (10)–(13) (15) and (10)–(13) (16) depend on the data. With this end in view, we
firstly prove the following lemma.

Lemma 2. The subsets Kj1(· ; f , k0) and Kj2(· ; f , g) defined in (26) and (32) satisfy (H11).

Proof. We consider the case corresponding to j2 because the case corresponding to j1 is
easier. Let (ϕn)n, ( f n)n ⊂ W and (gn)n ⊂ (0, ∞) be three sequences, and let ϕ, f ∈ W,
g ∈ (0, ∞) be three elements such that

ϕn ⇀ ϕ in W, (96)

f n → f in W, (97)

gn → g in R. (98)

In order to prove that Kj2(ϕn; f n, gn)
M−→ Kj2(ϕ; f , g), we have to check the conditions in

Definition 2. To start, we prove that for every sequence (µn)n such that µn ∈ Kj2(ϕn; f n, gn)

for each n ∈ N and µn ⇀ µ in L2
s (Ω)3×3, we have µ ∈ Kj2(ϕ; f , g).

Let (µn)n ⊂
(

Kj2(ϕn; f n, gn)
)

n
be such that µn ⇀ µ in L2

s (Ω)3×3 as n→ ∞.

It holds

(µn, ε(v))L2
s (Ω)3×3 + gn j2(ϕn, v) = ( f n, v)W for all v ∈W. (99)

Let v ∈W. It is worth emphasizing that

|j2(ϕn, v)− j2(ϕ, v)| ≤
∫

Γ3

∥∥∥ (ϕn)τ√
‖(ϕn)τ‖2 + ρ2

− ϕτ√
‖ϕτ‖2 + ρ2

∥∥∥ ‖vτ‖ dΓ. (100)

We now use the fact that∥∥∥ (ϕn)τ(x)√
‖(ϕn)τ(x)‖2 + ρ2

− ϕτ(x)√
‖ϕτ(x)‖2 + ρ2

∥∥∥ ≤ 2
ρ
‖(ϕn)τ(x)−ϕτ(x)‖ a.e. on Γ3 (101)

(for a justification of the above inequality, see [13] (pp. 153–154)).
Hence,

|j2(ϕn, v)− j2(ϕ, v)| ≤ 2
ρ
‖γϕn − γϕ‖L2(Γ)3 ‖γ v‖L2(Γ)3 . (102)

Since (96) holds and γ : H1(Ω)3 → L2(Γ)3 is a linear and continuous map, then
j2(ϕn, v)→ j2(ϕ, v) as n→ ∞.

Therefore, by passing to the limit for n→ ∞ in (99), we obtain

(µ, ε(v))L2
s (Ω)3×3 + g j2(ϕ, v) = ( f , v)W for all v ∈W, (103)

which concludes that µ ∈ Kj2(ϕ; f , g).

We prove now that for every µ ∈ Kj2(ϕ; f , g), there exists a sequence (µn)n such that
µn ∈ Kj2(ϕn; f n, gn) for each n ∈ N and µn → µ in L2

s (Ω)3×3.
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Let µ ∈ Kj2(ϕ; f , g) be arbitrarily fixed. Let us construct a sequence (µn)n as follows:
for each positive integer n,

µn = µ− ε( f ) + ε( f n) + g ε(ϕ̃)− gn ε(ϕ̃n), (104)

where ϕ̃ is defined in (78) and ϕ̃n ∈W is also obtained from Riesz’s representation theorem,
j2(ϕn, v) = (ϕ̃n, v)W .

We claim that µn ∈ Kj2(ϕn; f n, gn) for each positive integer n. Indeed, it is easy to
observe that

(µn, ε(v))L2
s (Ω)3×3 + gn j2(ϕn, v) = ( f n, v)W for all v ∈W. (105)

On the other hand, by (102), we have

‖ϕ̃n − ϕ̃‖W = sup
v∈W,v 6=0W

(ϕ̃n − ϕ̃, v)W

‖v‖W
= sup

v∈W,v 6=0W

j2(ϕn, v)− j2(ϕ, v)
‖v‖W

≤ sup
v∈W,v 6=0W

2
ρ ‖γϕn − γϕ‖L2(Γ)3 ‖γ v‖L2(Γ)3

‖v‖W
≤ 2ctr

ρ cK
‖γϕn − γϕ‖L2(Γ)3 . (106)

Here and everywhere below in this paper, ctr > 0 and cK > 0 stand for the constants
appearing in (4) and (6). Using (96) and the fact that γ : H1(Ω)3 → L2(Γ)3 is a linear and
continuous map, we can see that ‖γϕn − γϕ‖L2(Γ)3 → 0 and therefore, ϕ̃n → ϕ̃ in W as
n→ ∞. As ε is a linear and continuous operator, see (5), then ε(ϕ̃n)→ ε(ϕ̃) as n→ ∞. This
convergence, together with (97), (98), and (104), lead to µn → µ in L2

s (Ω)3×3.
Analogously, it can be proved that the two conditions in Definition 2 also hold for the

subset Kj1(ϕ; f , k0) for each ϕ ∈ V.

In the sequel, we consider a new assumption.

Assumption 3. ω∗ is upper semicontinuous.

Theorem 8. We admit Assumptions 1–3, and in addition, we assume that ω and ω∗ are strictly
convex. The operator

S : V ×R→ V × L2
s (Ω)3×3, S( f , k0) = (u, σ) (107)

associated to Problem 1 is demicontinuous.

Proof. We are going to apply Theorem 5 with X = V, Y = L2
s (Ω)3×3, J, J∗ given by

(80) and (81), j = j1 given by (24), f = f given by (25) and ĝ = k0. Recall that (H1)–(H5)
are fulfilled (see the proof of Theorem 6). By considering Assumption 1, it follows that
J(0V) = 0. Moreover, from (86), it follows that ψ1(0V) = 0; hence, (H6) is fulfilled too.
Assumption 1 also guarantees that (23) holds, and therefore, (H7) is fulfilled. For (H8),
note that

|j1(u, v)| ≤ ‖γ u‖L2(Γ)3 ‖γ v‖L2(Γ)3 ≤
c2

tr
c2

K
‖u‖V ‖v‖V for all u, v ∈ V. (108)

We can take C =
c2

tr
c2

K
.

Next, we prove that µ = ε( f − k0∇ψ1(u)) ∈ Kj1(u; f , k0) for each u ∈ V. We empha-
size that, due to (87), we have
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(ε( f − k0∇ψ1(u)), ε(v))L2
s (Ω)3×3 + k0 j1(u, v)

= ( f − k0∇ψ1(u), v)V + k0 j1(u, v) = ( f , v)V − k0 j1(u, v) + k0 j1(u, v)

= ( f , v)V . (109)

Thus, we can consider the linear and continuous operator T : V → L2
s (Ω)3×3,

T(v) = ε(v); hence, (H9) is also fulfilled. Finally, Assumption 3 and Lemma 2 ensure that
(H10) and (H11) hold. Therefore, we can apply Theorem 5 to conclude that the operator S
associated with Problem 1 is demicontinuous.

A similar result concerning the solution of Problem 2 can be delivered.

Theorem 9. We admit Assumptions 1–3, and in addition, we assume that ω and ω∗ are strictly
convex. The operator

S : W ×R→W × L2
s (Ω)3×3, S( f , g) = (u, σ) (110)

associated with Problem 2 is demicontinuous.

Proof. We apply Theorem 5 with X = W, Y = L2
s (Ω)3×3, J, J∗ given by (89), (81), j = j2

given by (30), f = f given by (31) and ĝ = g. As (H1)–(H5) are fulfilled (see the proof of
Theorem 7), it remains to check (H6)–(H11). From the definition of ψ2 in (94), it is easy to
observe that it vanishes in 0W . Actually, we easily observe that (H6) and (H7) hold. Next,
we examine if (H8) holds:

|j2(u, v)| ≤ 1
ρ
‖γ u‖L2(Γ)3 ‖γ v‖L2(Γ)3 ≤

1
ρ

c2
tr

c2
K
‖u‖W ‖v‖W for all u, v ∈W. (111)

We can take C = 1
ρ

c2
tr

c2
K

.

Keeping in mind (95), we observe that

µ = ε( f − g∇ψ2(u)) ∈ Kj2(u; f , g) for all u ∈W. (112)

Thus, (H9) is fulfilled with T : W → L2
s (Ω)3×3, T(v) = ε(v). Finally, Assumption 3

and Lemma 2 ensure that (H10) and (H11) hold. Therefore, we can apply Theorem 5 to
conclude that the operator S associated with Problem 2 is demicontinuous.

6. Conclusions

The present work is a contribution to the theory of multi-field weak solvability in
continuum mechanics by means of an approach based on the theory of bipotentials.

Two contact models were addressed. For each of them, we obtained existence and
uniqueness results, and we studied the dependence of the weak solution on the data. Firstly,
we made an investigation in an abstract setting covering both models. Then, we applied
the abstract results in order to study the well-posedness of each of the two models under
consideration.

The weak formulation of the first model consists of the following variational problem:
find u ∈ V and σ ∈ Kj1(u; f , k0) such that

b(v, σ)− b(u, σ) + k0 j1(u, v− u) ≥ ( f , v− u)V for all v ∈ V (113)

b(u, µ)− b(u, σ) ≥ 0 for all µ ∈ Kj1(u; f , k0). (114)
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This variational formulation is an alternative to the primal variational formulation:
find u ∈ V such that

J(v)− J(u) + k0 j1(u, v− u) ≥ ( f , v− u)V for all v ∈ V. (115)

In the classical approach, the stress tensor σ has to verify σ(x) ∈ ∂ω(ε(u)(x)) a.e. in
Ω, where u ∈ V is the solution of the variational inequality (115).

Similarly, the weak formulation of the second model consists of the following varia-
tional problem: find u ∈W and σ ∈ Kj2(u; f , g) such that

b(v, σ)− b(u, σ) + g j2(u, v− u) ≥ ( f , v− u)W for all v ∈W (116)

b(u, µ)− b(u, σ) ≥ 0 for all µ ∈ Kj2(u; f , g). (117)

This variational system is an alternative to the primal variational formulation: find
u ∈W such that

J(v)− J(u) + g j2(u, v− u) ≥ ( f , v− u)W for all v ∈W. (118)

Thus, in the classical approach, the stress tensor σ has to verify σ(x) ∈ ∂ω(ε(u)(x))
a.e. in Ω, where u ∈W is the solution of the variational inequality (118).

Notice that, due to the separability property of the form b, both variational problems
governed by bipotentials can be equivalently expressed in an abstract setting as follows:
find (u, σ) ∈ X× Kj(u; f , ĝ) such that

J(v)− J(u) + ĝψ(v)− ĝψ(u) ≥ ( f , v− u)X for all v ∈ X (119)

J∗(µ)− J∗(σ) ≥ 0 for all µ ∈ Kj(u; f , ĝ). (120)

The unique solution (u, σ) can be computed by means of a minimization technique as
follows: u is the unique minimizer of the functional J̃ f ,ĝ(·) = J(·) + ĝψ(·)− ( f , ·)X on X
and σ is the unique minimizer of J∗(·) on Kj(u; f , ĝ). At this stage, it would be interesting
to propose efficient algorithms in order to approximate the weak solutions. In addition, it
would be of high interest to examine if the abstract theory from this paper can be applied
in order to study other models.
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