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Abstract: Cancer is a common term for many diseases that can affect anybody. A worldwide
leading cause of death is cancer, according to the World Health Organization (WHO) report. In 2020,
ten million people died from cancer. This model identifies the interaction of cancer cells, viral therapy,
and immune response. In this model, the cell population has four parts, namely uninfected cells
(x), infected cells (y), virus-free cells (v), and immune cells (z). This study presents the analysis of
the stochastic cancer virotherapy model in the cell population dynamics. The model results have
restored the properties of the biological problem, such as dynamical consistency, positivity, and
boundedness, which are the considerable requirements of the models in these fields. The existing
computational methods, such as the Euler Maruyama, Stochastic Euler, and Stochastic Runge Kutta,
fail to restore the abovementioned properties. The proposed stochastic nonstandard finite difference
method is efficient, cost-effective, and accommodates all the desired feasible properties. The existing
standard stochastic methods converge conditionally or diverge in the long run. The solution by the
nonstandard finite difference method is stable and convergent over all time steps.

Keywords: cancer model; stochastic differential equations; computational methods; stability analysis

1. Introduction

Cancer is a family of diseases associated with developing abnormal cells to seize or
transmit to other parts of one’s body. Cancer is the rapid emergence of abnormal cells which
arise outside their normal limits, and it may occupy the linked parts of the body and transfer
to the tissues afterward. Virotherapy is the treatment of cancer that detects or destroys
cancer cells during the process, and healthy cells are not harmed. Tuwairqi et al. presented
the qualitative analysis of cancer cells in the cell population [1]. In 2011, Crivelli et al.
presented the cell dynamics with the recommendation of the control strategies [2]. In 2020,
Nouni et al. analyzed the tumor cells’ dynamics for the immune response of a virological
model for cancer therapy [3]. Storey et al. developed a deterministic model for treating a
tumor via oncolytic treatment [4]. Abernathy et al. investigated the dynamics of the cell
population, including interactions between infected and uninfected brain tumor cells [5].
Matos et al. studied the new approaches for treating cancer-like infections [6]. Makaryan
et al. analyzed the awareness strategies within immune cell actions and biological therapy
techniques [7]. Malinzi et al. presented the wave propagation model for dynamics of
chemo/virotherapy cancer [8]. Bajzer et al. developed a co-infection dynamic of the tumor
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with measles in the human body [9]. Timalsina et al. developed computational techniques
to model tumor virotherapy in the cell population [10]. Rommeifanger et al. developed a
melanoma tumor model in the cell dynamics and performed its qualitative analysis [11].
Wares et al. established a mathematical model for cell-cycle-specific cancer virotherapy [2].
Liu et al. launched a comparison analysis of a deterministic and stochastic model for
tumor-immune responses to chemotherapy [12]. Eftimie et al. investigated the complex
dynamics of cell populations with well-known epidemiology techniques [13]. Santiago et al.
presented the optimal control interventions [14]. Kim et al. established the hybrid analysis
of cancer in the cell population [15]. Berg et al. introduced multidimensional modeling
of oncolytic tumor virotherapy [16]. Some notable models related to cervical cancer and
many more are presented in References [17–23]. The well-known methods in the sense of
stochastic are presented in References [24,25]. This work aimed to understand the complex
interplay among tumor cells, oncolytic viruses, and immune response. Thus, a dynamical
analysis was employed to investigate the optimal therapeutic strategies for cancer remission.
Stochastic analysis of the cancer disease is more realistic, practical, accurate, and close
to nature. The stochastic differential equations have no analytic solutions, due to the
non-differentiable term of Brownian motion. Thus, there is a need for computational
methods to solve the said problems; furthermore, our focus is on those methods that restore
the model’s dynamical properties. That is why we moved to construct the nonstandard
finite difference method in the sense of stochastic. The rest of the paper is organized
based on the following sections: In Section 2, the deterministic cancer model’s formulation
has fundamental properties. Sections 3 and 4 deal with the stochastic model’s transition
probabilities, positivity, boundedness and implementation methods, convergence, and
comparative analysis. Finally, the conclusion is presented in Section 5.

2. Deterministic Formulation

For any time, the states of the model are described as follows: x(t) represents the
uninfected cancer cells, y(t) denotes the infected cancer cells, v(t) gives the virus-free cells,
and z(t) shows the immune cells. Furthermore, the incoming and outgoing ratios are
defined as λ, which is the growth rate of cells; C, which is the carrying capacity; d, which
represents the death rate of cells that die due to natural causes or with infection; β, which
is the rate of the oncolytic virus on cancer cells; δ, which is the rate of infected cells; b,
which is the rate at which new version particles are released with burst size; and γ, which
is the rate of decay of free virus-cell. Other ratios are defined as follows: α is the rate of
uninfected cells due to immunity of the body, µ is the rate of infected cells due to weak
immunity, k is the rate of elimination at which cancer cells become immune, h2 is the rate
of stimulation of uninfected cells by immunity, h1 is the response rate at which infected
cells become immuned, and ρ is the rate of decay of immune cells. The systematic flow of
cancer disease is presented in Figure 1.

Figure 1. Flow map for the dynamics of the cancer epidemic model.
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The nonlinear ordinary differential equations by using the law of mass action are as follows:

x′(t) = r1 − axv− d1x, t ≥ 0, (1)

y′(t) = axv− cyz− d1y− by, t ≥ 0, (2)

v′(t) = by− h2yz− d1v−m1v, t ≥ 0 (3)

z′(t) = cyz + h2yz− d1z + m1v, t ≥ 0 (4)

with nonnegative (initial) conditions x0 = x(0) ≥ 0, y0 = y(0) ≥ 0, v0 = v(0) ≥ 0,
z0 = z(0) ≥ 0 and x + y + v + z = 1.

2.1. Analysis of Model

In this section, we define the feasible region of the system (1)–(4) as follows:
Ψ = {(x(t), y(t), v(t), z(t))ε R_+ 4̂ : N(t) ≤ r_1/d_1, x_0 ≥ 0, y_0 ≥ 0, v_0 ≥ 0, z_0 ≥ 0}.

Furthermore, we present the model’s positivity, boundedness, and characteristic equilibria
(disease-free and endemic equilibrium).

Lemma 1. The solutions ((x(t), y(t), v(t), z(t))ε R4
+) of the system (1)–(4) are positive at any

time; t ≥ 0 if the rate of change of state variables is non-negative at the trivial stage.

Proof. The following is clear from Equations (1)–(4):
dx
dt

∣∣∣
x=0

= r1 ≥ 0, dy
dt

∣∣∣
y=0

= axve−d1τ
1 ≥ 0, dv

dt

∣∣∣
v=0

= by− h2yz ≥ 0, dz
dt

∣∣∣
z=0

= m1v ≥ 0,

as required. �

Lemma 2. The solutions of (1)–(4) lie in the feasible region Ψ; N(t) is the total population of cancer
cells and lim

t→∞
Sup N(t) ≤ r1

d1
. Otherwise, the system is unbounded.

Proof. Consider the cell population function as follows:

N(t) = x(t) + y(t) + v(t) + z(t),
dN
dt
≤ r1 − d1N.

By using the Gronwall’s inequality, we obtain the following:

N(t) ≤ N(0)e−d1t +
r1

d1
, t ≥ 0, lim

t→∞
Sup N(t) ≤ r1

d1
,

as required. �

Lemma 3. The system (1)–(4) admits two equilibria states, and both are contained in Ψ.

Proof. Assume that the state variables of Equations (1)–(4) are constants.
Consider the x 6= 0, y = 0, v = 0, and z = 0 in the given system, and then

we obtain the disease-free equilibrium (DFE-D1) =
(

r1
d1

, 0, 0, 0
)

. Then, by entering the
x 6= 0, y 6= 0, v 6= 0, and z 6= 0 into the system and solving them simultaneously, the en-
demic equilibrium is obtained as follows: (EE-E1) = (x1, y1, v1, z1), where x1 = r1

av1+d1
,

y1 = ar1v1
(av1+d1)(cz1+d1+b) , v∗ = h2βz1−bβ

d1+m1
, z1 = m1γ

cβ+h2β−d1
. �
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2.2. Reproduction Number

To determine the reproduction number, let us apply the next-generation matrix method
to find the transmission and transition matrices of the system (1)–(4) after substituting the
disease-free equilibrium as follows: y′

v′

z′

 =

 0 ar1
d1

0
0 0 0
0 0 0

 y
v
z

−
 d1 + b 0 0
−b d1 + m1 0
0 −m1 d1

 y
v
z

,

A =

 0 ar1
d1

0
0 0 0
0 0 0

,B =

 d1 + b 0 0
−b d1 + m1 0
0 −m1 d1

,

AB−1 =

 abr1
d1(d1+b)(d1+m1)

ar1
d1(d1+m1)

0
0 0 0
0 0 0

,

∣∣∣AB−1 − λ
∣∣∣ =

∣∣∣∣∣∣∣
abr1

d1(d1+b)(d1+m1)
− λ ar1

d1(d1+m1)
0

0 0− λ 0
0 0 0− λ

∣∣∣∣∣∣∣.
Hence, the dominant eigenvalue of the AB−1 is called the reproduction number and

denoted as R0 = abr1
d1(d1+b)(d1+m1)

.

2.3. Local Stability

In this section, we present two well-known theorems to determine the local stability
of the model. Again, consider Equations (1)–(4) as a function of F, G, H, and K as follows:

F = r1 − axv− d1x, (5)

G = axv− cyz− d1y− by, (6)

H = by− h2yz− d1v−m1v, (7)

K = cyz + h2yz− d1z + m1v. (8)

The Jacobian matrix for the system (5)–(8) becomes the following:

J(x, y, v, z) =


−av− d1 0 −ax 0

av −cz− d1 − b ax −cy
0 b− h2z −d1 −m1 −h2y
0 cz + h2z m1 cy + h2y− d1

 (9)

Theorem 1. If the reproduction number R0 < 1, then the disease-free equilibrium (DFE),
D1 =

(
r1
d1

, 0, 0, 0
)

, is locally and asymptotically stable. Otherwise, the system is unstable.

Proof. The Jacobian matrix (9) at the disease-free equilibrium, D1 =
(

r1
d1

, 0, 0, 0
)

, is evalu-
ated as follows:

J
(

r1

d1
, 0, 0, 0

)
=


−d1 0 −a

(
r1
d1

)
0

0 −d1 − b a
(

r1
d1

)
0

0 b −d1 −m1 0
0 0 m1 −d1

,
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|J(D1)− λI| =

∣∣∣∣∣∣∣∣∣∣
−d1 − λ 0 −a

(
r1
d1

)
0

0 −d1 − b− λ a
(

r1
d1

)
0

0 b −d1 −m1 − λ 0
0 0 m1 −d1 − λ

∣∣∣∣∣∣∣∣∣∣
= 0,

λ1 = −d1 < 0, λ2 = −d1 < 0,

|J(D1)− λI| =
∣∣∣∣∣ −d1 − b− λ ar1

d1
b −d1 −m1 − λ

∣∣∣∣∣ = 0,

λ2 + A1λ + A2 = 0,

where A1 = 2d1 + b and A2 = d2
1 + m1d1 + bm1 + bd1 +

abr1
d1

, if R0 < 1. �

All coefficients of the polynomial are positive. Therefore, the Routh–Hurwitz stability
criterion for a 2nd-degree polynomial is satisfied. Therefore, the disease-free equilibrium
is stable.

Theorem 2. If R0 > 1, then the endemic equilibrium (EE), E1 = (x1, y1, v1, z1), is locally and
asymptotically stable.

Proof. The Jacobian matrix (9) at the endemic equilibrium, E1 = (x1, y1, v1, z1), is as follows:

J(x1, y1, v1, z1,) =


av1 − d1 0 ax1 0

av1 −cz1 − d1 − b ax1 −cy1
0 b− h2z1 −d1 −m1 −h2y1
0 cz1 + h2z1 m1 cy1 + h2y1 − d1

,

|J(E1)− λI| =

∣∣∣∣∣∣∣∣
av1 − d1 0 ax1 0

av1 −cz1 − d1 − b ax1 −cy1
0 b− h2z1 −d1 −m1 −h2y1
0 cz1 + h2z1 m1 cy1 + h2y1 − d1

∣∣∣∣∣∣∣∣ = 0,

λ4 + (A + d1 + F− I − B)λ3 + (AF− AB− AI − d1F− DF + BI − FI−
CF− DH)λ2 − (ABI − ABF− AFI − ACE− ADH + d1BI − d1BF− d1FI−

d1 I − d1CE− d1DH + BFI + m1G + CEI − CGH − CEm1 − DHF+
ACE)λ + (ABFI + AGm1 + ACEI − ACGH − ADEm1 − ADHF + BFTd1+

Gd1m1 + d1CEI − CGHd1 − DEm1d1 − DHFd1 − ACEI + ACHG) = 0,

where A = av1, B = −d1 − b− cy1, C = ax1, D = −cy1, E = b− h2z1, F = d1 + m1

G = −h2y1, H = cz + h2z1, and I = cy1 − d1 + h2y1.

By considering the coefficients of the characteristic equation above as a 4th-order
polynomial, we have the following:

m0, m1 > 0, m1m2 −m0m3 > 0, (m1m2 −m0m3)(m3)−m1
2m4 > 0, m4 > 0, if RO > 1.

where m0 = 1, m1 = A + d1 + F − I − B, m2 = AF − AB − AI − d1F − DF + BI −
FI − CF − DH, m3 = ABI − ABF − AFI − ACE− ADH + d1BI − d1BF − d1FI − d1 I −
d1CE− d1DH + BFI +m1G +CEI−CGH−CEm1−DHF + ACE, m4 = ABFI + AGm1 +
ACEI − ACGH − ADEm1 − ADHF + BFTd1 + Gd1m1 + d1CEI − CGHd1 − DEm1d1 −
DHFd1 − ACEI + ACHG. �

It satisfies the Routh–Hurwitz stability criterion for a 4th-degree polynomial. There-
fore, the endemic equilibrium is also stable.
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3. Stochastic Cancer Virotherapy Model

Let us consider the vector M = [x, y, v, z]T for the system (1)–(4). Transition probabili-
ties are presented in Table 1 for the expectations and variance.

Table 1. Transition probabilities of cancer epidemic model.

Ti=Transition Pi=Probabilities

T1 = [1, 0, 0, 0]T P1 = r1∆t

T2 = [−1, 1, 0, 0]T P2 = axv.∆t

T3 = [−1, 0, 0, 0]T P3 = d1x∆t

T4 = [0,−1, 0, 1]T P4 = cyz∆t

T5 = [0,−1, 0, 0]T P5 = d1y∆t

T6 = [0,−1, 1, 0]T P6 = by∆t

T7 = [0, 0,−1, 1]T P7 = h2yz∆t

T8 = [0, 0,−1, 0]T P8 = d1v∆t

T9 = [0, 0,−1, 1]T P9 = m1v∆t

T10 = [0, 0, 0,−1]T P10 = d1z∆t

Expectation = E∗[∆Mi] = ∑10
i=1 PiTi

=


P1 − P2 − P3

P2 − P4 − P5 − P6
P6 + P7 − P8 − P9
P4 − P7 − P9 − P10

=


r1 − axv− d1x
axv− cyz− d1y− by

by + h2yz− d1v−m1v
cyz− h2yz−m1v− d1z

∆t,

Variance = ∑10
i=1(Ti)(Ti)

t

=


P1 + P2 + P3 P2 0 0
−P2 P2 + P4 + P5 + P6 −P6 −P4

0 −P6 P6 + P7 + P8 + P9 −P7 + P9
0 −P4 −P7 + P9 P4 + P7 + P9 + P10



=


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44


a11 = P1 + P2 + P3 = r1 − axv− d1x, a13 = a14 = a31 = a41 = 0, a12 = P2 = axv,

a21 = −P2 = −avx, a22 = P2 + P4 + P5 + P6 = axv + cyz + d1y + by, a23 =−P6 =
−by, a24 = −P4 = −cyz, a32 = −P6 = −by, a33 = P6 + P7 + P8 + P9 = by + h2yz+

d1v + m1v, a42 = −P4 = −cyz, a43 = −P7 + P9 = −h2 yz + m1v, a44 = P4 + P7+
P9 + P10 = cyz + h2yz + m1v + d1z,

Drift = G1(M, t)= expectation
∆t =


r1 − axv− d1x

axv− cyz− d1y− by
by + h2yz− d1v−m1v
cyz− h2yz−m1v− d1z

∆t,

Diffusion = G2(M, t)=
√

Variance
∆t =

√
A, where A =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

.
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The stochastic differential equations (SDEs) of the cancer virotherapy model for the
system (1)–(4) are presented as follows:

dM = G1(M, t)dt + G2(M, t)dB, (10)

d


x
y
v
z

 =


r1 − axv− d1x

axv− cyz− d1y− by
by + h2yz− d1v−m1v
cyz− h2yz−m1v− d1z

dt+
√

A dB (11)

with initial conditions M(0) = M0 = [0.5, 0.3, 0.2, 0.1]T, 0 ≤ t ≤M, and B is Brownian motion.

3.1. Euler Maruyama Method

In this section, we utilize the Euler Maruyama scheme to determine the numerical so-
lution of differential Equation (11), and the scientific parameters of the model are presented
in Table 2 as follows:

Mn+1 = Mn + G1(Mn, t)∆t + G2(Mn, t)∆Bn,
xn+1

yn+1

vn+1

zn+1

 =


xn

yn

vn

zn

+


r1 − axv− d1x

axv− cyz− d1y− by
by + h2yz− d1v−m1v
cyz− h2yz−m1v− d1z

∆t+
√

A ∆Bn,
(12)

where ∆t is the time-step size, and ∆Bn is the discretization parameter independent paths.
By using the values of the parameters presented in Table 2, we plotted the graphs of the
Euler Maruyama scheme for disease-free equilibrium (DFE) and endemic equilibrium (EE)
(see Figures 2 and 3) with MATLAB software.

Table 2. Parameter estimation (fitted data).

Parameters Values

r1 0.5

a 5.1 (EE)
3.1 (DFE)

h1 0.63

d1 0.5

C 5.048 (EE)
3.048(DFE)

b 0.22

h2 0.016

m1 0.6

σi 0 ≤ i ≤ 1

3.2. Data Curation

In 2020, the total population of both sexes was approximately 220,892,332, which
includes the male sex (113,672,007) and the female sex (107,220,324) [20]. The number of
new cases of both sexes and all ages is shown in Figure 4. Using the least-square-curve
method technique, the desired fitting is presented in Figure 5. The estimated values from
the data are presented in Table 2, and the value of the reproduction number is R0 = 1.4167.
Furthermore, Figure 6 depicts the residual of the actual data. Hence, the desired values of
the transmission rates are helpful to study the system (1)–(4) graphically.
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Figure 2. Combined graphical behavior of subpopulations at DFE for h = 0.01.

Figure 3. Combined graphical behavior of subpopulations at EE for h = 0.01.

Figure 4. Ratio of cancer cases.



Mathematics 2022, 10, 368 9 of 18

Figure 5. Least-square data-fitting presentation of cancer cases.

Figure 6. Regular-residuals of cancer cases in 2020.

3.3. Non-Parametric Perturbation of Model

This section introduces the stochasticity in each compartment of the system (1)–(4).
Then Equations (1)–(4) become as follows:

dx(t) = r1 − ax(t)v(t)− d1x(t) + σ1xdB(t), t ≥ 0, (13)

dy(t) = ax(t)v(t)− cy(t)z(t)− d1y(t)− by(t) + σ2y(t)dB(t), t ≥ 0, (14)

dv(t) = by(t)− h2y(t)z(t)− d1v(t)−m1v(t) + σ3v(t)dB(t), t ≥ 0, (15)

dz(t) = cy(t)z(t) + h2y(t)z(t)− d1z(t) + m1v(t) + σ4z(t)dB(t), t ≥ 0, (16)

where, for σi, i = 1, 2, 3, 4 is the randomness of the model; and B(t) is the Brownian motion.

3.4. Positivity and Boundedness of Stochastic Model

Consider U(t) = (x(t), y(t), v(t), z(t)), and the norm:

|U(t)| =
√

x2(t) + y2(t) + v2(t) + z2(t) (17)
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In addition, denote C2,1
1
(

R4 × (0, ∞) : R+
)

as the families of all positive function
V(U, t) defined on R4 × (0, ∞) respectively. Let the function be twice differentiable in U
and once in t, and then we have the following:

dU(t) = H1(U, t) + K1(U, t)dB(t) (18)

Additionally, L = ∂
∂t + ∑3

i=1 H1i (U, t) ∂
∂Ui

+ 1
2 ∑3

i,j=1(K
T
1 (U, t)K1(U, t)i,j × ∂2

∂Ui∂Uj
).

If “L” acts on a function U∗εC2,1(R4 × (0, ∞) : R4
+

)
, then

LU∗(U, t) = U∗t (U, t) + U∗U(U, t)H1(U, t) +
1
2

Trace
(

KT
1 (U, t)U∗UU(U, t)K1(U, t)

)
,

where t means transpose.

Theorem 3. A unique solution (x(t), y(t), v(t), z(t)), t ≥ 0 of the system (13)–(16) lies in R4
+

with initial conditions (x(0), y(0), v(0), z(0))ε R4
+.

Proof. By Ito’s formula, (13)–(16) admit positive solution in the sense of local on [0, τe],
while τe denotes the explosion time, due to the local Lipschitz coefficients of the model.

Next, we prove that the system (13)–(16) model admits τe = ∞.
Let m0 = 0 be sufficiently large for x(0), y(0), v(0), and z(0) lying in the interval

(
1

m0
, m0

)
.

A sequence at stopping times m ≥ 0 is defined as follows:

τm = in f
{

τε[0, τe] : x(t)
(

1
m

, m
)

or y(t)
(

1
m

, m
)

or z(t)
(

1
m

, m
)

or w(t)
(

1
m

, m
)}

, (19)

where we set inf ϕ = ∞(ϕ is an empty set).
Since τm is increasing as m→ ∞ , we have the following:

τ∞ = lim
m→∞

τm. (20)

Then τ∞ ≤ τe. Now we wish to show that τ∞ = ∞, as desired.

P(τ∞ ≤ T) > a1, ∀m ≥ m1, (21)

P(τm ≤ T) > a1, ∀m ≥ m1. (22)

Define a function f : R4
+ → R+ by using the following calculation:

f (x, y, v, z) = (x− 1− ln x) + (y− 1− ln y) + (v− 1− ln v) + (z− 1− ln z). (23)

Using Ito’s formula on (23), we have the following:

d f (x, y, v, z) =
(

1− 1
x

)
dx +

(
1− 1

y

)
dy +

(
1− 1

v

)
dv +

(
1− 1

z

)
dz + σ2

1+σ2
2+σ2

3+σ2
4

2 dt,

d f (x, y, v, z) =
(

1− 1
x

)
[r1 − axv− d1x + σ1xdB] +

(
1− 1

y

)
[axv− cyz− d1y− by + σ2ydB]

+
(

1− 1
v

)
[by− h2yz− d1v−m1v + σ3vdB] +

(
1− 1

z

)
[cyz + h2yz− d1z + m1v + σ4zdB],

d f (x, y, v, z) ≤
[

r1 + d1 +
σ2

1+σ2
2+σ2

3+σ2
4

2

]
dt + σ1xdB + σ2ydB + σ3vdB + σ4zdB.

(24)

For simplicity, we let N1 = r1 + d1 +
σ2

1+σ2
2+σ2

3+σ2
4

2 and write Equation (24) as follows:

d f (x, y, v, z) ≤ N1dt + [σ1x + σ2y + σ3v + σ4z]dB(t). (25)
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The N1 is a positive constant. By integrating Equation (25) from 0 to τmΛτ, we obtain
the following:∫ τmΛτ

0
d f (x, y, z, w) ≤

∫ τmΛτ

0
N1ds +

∫ τmΛτ

0
[σ1x + σ2y + σ3v + σ4z]dB(s), (26)

where τmΛτ= min (τm, T). Then the expectation is as follows:

EU∗(x(τmΛτ), y(τmΛτ), v(τmΛτ), z(τmΛτ) ≤ U∗(x(0), y(0), v(0), z(0)) + N1T. (27)

Set χm = {τm ≤ T} for m > m1 and from Equation (20), and we have P(χm ≥ a1}.
For every χ1εχm, there are some “I’s” such that Ui(τm, χ1) equals either m or 1

m for
i = 1, 2, 3, 4. Hence, we have the following:

U∗(x(τm, χ1), y(τm, χ1), z(τm, χ1), w(τm, χ1)).

For “I” less than min (m− 1− ln m, 1
m − 1− ln 1

m

}
, we then obtain the following:

U∗(x(0), y(0), v(0), z(0)) + N1T ≥ E(Iχχ U∗(x(τm), y(τm), v(τm), z(τm)) ≥{
min{m− 1− ln m, 1

m − 1− ln 1
m}
}

.
(28)

Iχ of χm represents the indicator functions. Letting m→ ∞ leads to the contradiction
∞ = U∗(x(0), y(0), v(0), z(0)) + N1T < ∞, as desired. �

4. Computational Methods

This section deals with well-known methods, such as the stochastic Euler, the stochastic
Runge Kutta, and the proposed stochastic nonstandard finite difference method with the
given non-negative initial conditions as follows:

4.1. Stochastic Euler

The stochastic Euler method could be defined on the system (13)–(16). (See Appendix A).

4.2. Stochastic Runge Kutta

The stochastic Runge Kutta method could be developed on the system (13)–(16).
(See Appendix B).

4.3. Stochastic NSFD

The stochastic nonstandard finite difference could be developed for the system (13)–(16).
(See Appendix C).

4.4. Stability Analysis

This section determines the model’s stability by considering the equilibrium state
and the theorem. The model is linearized for the stochastic nonstandard finite difference.
(See Appendix D).

Lemma 4. For the quadratic equation λ2 − P1λ + P2 = 0, |λi| < 1, i = 1, 2, 3, if and only if the
following conditions are satisfied:

(i) 1 + P1 + P2 > 0.
(ii) 1− P1 + P2 > 0.
(iii) P2 < 1.

Proof. The proof is straightforward. �



Mathematics 2022, 10, 368 12 of 18

4.5. Comparison Section

The stochastic nonstandard finite difference method was compared with other stochas-
tic numerical methods. It is easy to see that other stochastic numerical methods condition-
ally converge or diverge with larger time-step values by looking at the numerical solutions.
On the other hand, the stochastic nonstandard finite-difference scheme remains convergent
for all time-step sizes. Figures 7–12 show these results.

Figure 7. Combined behavior of infected cancer cells at EE when h = 0.01.

Figure 8. Combined behavior of infected cancer cells at EE when h = 0.7. Here, notice that, when we
increase a time-step size, the Euler Maruyama method fails to restore the dynamical properties of
the model.
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Figure 9. Combined behavior of infected cancer cells at EE when h = 0.1.

Figure 10. Combined behavior of infected cancer cells at EE when h = 1.

Figure 11. Combined behavior of infected cancer cells at EE when h = 0.1.
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Figure 12. Combined behavior of infected cancer cells at EE when h = 2. Here, notice that, when we
increase a time-step size, the Stochastic Runge-Kutta method fails to restore the dynamical properties
of the model. However, the stochastic nonstandard finite difference method is still convergent.

5. Conclusions

Stochastic modeling is a reliable and efficient technique for handling highly nonlinear
problems’ natural phenomena. The non-parametric perturbation technique was used in
establishing the stochastic cancer virotherapy model. The nonstandard finite difference
method gives dynamically consistent, positive, and bounded solutions. It is believed
that existing algorithms did not restore the dynamical properties of the model, such as
positivity, boundedness, and dynamical consistency, when we take a considerable time-step
size. However, the nonstandard finite-difference scheme solved the problem competitively
and out-performed the standard methods that were compared in this work. This is visibly
noticed in the unconditional convergence of the solution given by the nonstandard finite-
difference scheme against the conditional convergence or divergence offered by the existing
methods. It further shows that the approach by the nonstandard finite difference is novel
and can be applied to solving other nonlinear stochastic problems. The following steps are
helpful to reduce the risk of getting cancer by making healthy choices, such as maintaining
a healthy weight, avoiding tobacco, limiting the amount of alcohol, and protecting the skin.
In the future, we will extend the idea used in this work to different types of stochastic
modeling; moreover, its stabilities are presented in References [26–34].
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Appendix A

dx = (r1 − axv− d1x)dt + σ1xdB(t),
xn+1−xn

h = r1 − axnvn − d1xn + σ1xn∆Bn,
xn+1 = xn + h[r1 − axnvn − d1xn + σ1xn∆Bn].

(A1)
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Similarly, the decomposition of these equations is shown in (A2)–(A4)

yn+1 = yn + h[axnvn − cynzn − d1yn − byn + σ2yn∆Bn], (A2)

vn+1 = vn + h[byn − h2ynzn − d1vn −m1vn + σ3vn∆Bn], (A3)

zn+1 = zn + h[cynzn + h2ynzn − d1zn + m1vn + σ4zn∆Bn], (A4)

Appendix B

Stage 1
K1 = h[r1 − axnvn − d1xn + σ1xn∆Bn],

L1 = h[axnvn − cynzn − d1yn − byn + σ2yn∆Bn],

M1 = h[byn − h2ynzn − d1vn −m1vn + σ3vn∆Bn],

N1 = h[cynzn + h2ynzn − d1zn + m1vn + σ4zn∆Bn].

Stage 2

K2 = h
[
r1 − a

(
xn + K1

2

)(
vn + K1

2

)
− d1

(
xn + K1

2

)
+ σ1

(
xn + K1

2

)
∆Bn],

L2 = h
[

a
(

xn + L1
2

)(
vn + L1

2

)
− c
(

yn + L1
2

)(
zn + L1

2

)
− d1

(
yn + L1

2

)
− b
(

yn + L1
2

)
+ σ2

(
yn + L1

2

)
∆Bn

]
,

M2 = h
[
b
(

yn + M1
2

)
− h2

(
yn + M1

2

)(
zn + M1

2

)
− d1

(
vn + M1

2

)
−m1

(
vn + M1

2

)
+ σ3

(
vn + M1

2

)
∆Bn

]
,

N2 = h
[
c
(

yn + N1
2

)(
zn + N1

2

)
+ h2

(
yn + N1

2

)(
zn + N1

2

)
− d1

(
zn + N1

2

)
+ m1

(
vn + N1

2

)
+ σ4

(
zn + N1

2

)
∆Bn

]
.

Stage 3

K3 = h
[
r1 − a(xn + K2

2

)(
vn + K2

2

)
− d1

(
xn + K2

2

)
+ σ1

(
xn + K2

2

)
∆Bn],

L3 = h
[

a
(

xn + L2
2

)(
vn + L2

2

)
− c
(

yn + L2
2

)(
zn + L2

2

)
− d1

(
yn + L2

2

)
− b
(

yn + L2
2

)
+ σ2

(
yn + L2

2

)
∆Bn

]
,

M3 = h
[
b
(

yn + M2
2

)
− h2

(
yn + M2

2

)(
zn + M2

2

)
− d1

(
vn + M2

2

)
−m1

(
vn + M2

2

)
+ σ3

(
vn + M2

2

)
∆Bn

]
,

N3 = h
[
c
(

yn + N2
2

)(
zn + N2

2

)
+ h2

(
yn + N2

2

)(
zn + N2

2

)
− d1

(
zn + N2

2

)
+ m1

(
vn + N2

2

)
+ σ4

(
zn + N2

2

)
∆Bn

]
.

Stage 4

K4 = h[r1 − a(xn + K3)(vn + K3)− d1(xn + K3) + σ1(xn + K3)∆Bn],

L4 = h[a(xn + L3)(vn + L3)− c(yn + L3)(zn + L3)− d1(yn + L3)− b(yn + L3) + σ2(yn + L3)∆Bn],

M4 = h[b(yn + M3)− h2(yn + M3)(zn + M3)− d1(vn + M3)−m1(vn + M3) + σ3(vn + M3)∆Bn],

N4 = h[c(yn + N3)(zn + N3) + h2(yn + N3)(zn + N3)− d1(zn + N3) + m1(vn + N3) + σ4(zn + N3)∆Bn].

Final Stage

xn+1 = xn +
1
6
[K1 + 2K2 + 2K3 + K4], (A5)

yn+1 = yn +
1
6
[L1 + 2L2 + 2L3 + L4], (A6)

vn+1 = vn +
1
6
[M1 + 2M2 + 2M3 + M4], (A7)

zn+1 = zn +
1
6
[N1 + 2N2 + 2N3 + N4], (A8)
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Appendix C

xn+1 = xn + h
[
r1 − axn+1vn − d1xn+1 + σ1xn∆Bn

]
,

xn+1 = xn+hγ+hσ1xn∆Bn
1+ahvn+hd1

.
(A9)

In the same way, we decompose the remaining system as follows:

yn+1 =
yn + haxnvn + hσ2yn∆Bn

1 + hczn + hd1 + hb
(A10)

vn+1 =
vn + hbyn − hh2ynzn + hσ3vn∆Bn

1 + hd1 + hm1
(A11)

zn+1 =
zn + hcynzn + hh2ynzn + hm1vn + hσ4zn∆Bn

1 + hd1
(A12)

Appendix D

Theorem A1. For any n ≥ 0, the proposed nonstandard finite difference method is stable if the
eigenvalues of the system (A9)–(A12) lie in the unit circle for R0 < 1.

Proof. Consider the right-hand sides of the system of Equations (A9)–(A12) as functions F,
G, H, and J, with the assumption ∆Bn = 0:

F = xn+hγ
1+ahvn+hd1

, G = yn+haxnvn

1+hczn+hd1+hb , H = vn+hbyn−hh2ynzn

1+hd1+hm1
,

J = zn+hcynzn+hh2ynzn+hm1vn+hσ4zn∆Bn
1+hd1

.

The Jacobian matrix for the system (A9)–(A12) is as follows:

J(x, y, v, z) =


∂F
∂x

∂F
∂y

∂F
∂v

∂F
∂z

∂G
∂x

∂G
∂y

∂G
∂v

∂G
∂z

∂H
∂x

∂H
∂y

∂H
∂v

∂H
∂z

∂J
∂x

∂J
∂y

∂J
∂v

∂J
∂z

.

The Jacobian matrix at disease-free equilibrium (DFE) = D1 =
(

r1
d1

, 0, 0, 0
)

is as follows:

J(D1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+hd1

0 −ha
(

r1
d1

+ hr1

)
0

0 1
1+hd1+hb

ha
(

r1
d1

)
1+hd1+hb 0

0 hb
1+hd1+hm1

1
1+hd1+hm1

0

0 0 0 1
1+hd1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

|J(D1)− λ| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
1+hd1

0 −ha
(

r1
d1

+ hr1

)
0

0 1
1+hd1+hb

ha
(

r1
d1

)
1+hd1+hb 0

0 hb
1+hd1+hm1

1
1+hd1+hm1

0

0 0 0 1
1+hd1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,
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λ1 =
∣∣∣ 1

1+hd1

∣∣∣ < 1, λ2 =
∣∣∣ 1

1+hd1

∣∣∣ < 1,

|J(D1)| =

∣∣∣∣∣∣∣∣
(

1
1+hd1+hb

) ha
(

r1
d1

)
1+hd1+hb

hb
1+hd1+hm1

1
1+hd1+hm1

∣∣∣∣∣∣∣∣ = 0,

P1 = Trace of J =
(

1
1+hd1+hb

)
+ 1

1+hd1+hm1
,

P2 = Det of J =
(

1
1+hd1+hb

(
1

1+hd1+hm1

))
−
(

ha
(

r1
d1

)
1+hd1+hb

)(
hb

1+hd1+hm1

)
.

�
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